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Abstract

PET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used
for the definition of Biological Target Volumes (BTVs) for radiotherapy. Re-
cently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol
(FMiso), have been proposed. They provide complementary information for
the definition of BTVs. Our work is to fuse multi-tracer PET images to
obtain a good BTV definition and to help the radiation oncologist in dose
painting. Due to the noise and the partial volume effect leading, respectively,
to the presence of uncertainty and imprecision in PET images, the segmen-
tation and the fusion of PET images is difficult. In this paper, a framework
based on Belief Function Theory (BFT) is proposed for the segmentation of
BTV from multi-tracer PET images. The first step is based on an extension
of the Evidential C-Means (ECM) algorithm, taking advantage of neighbor-
ing voxels for dealing with uncertainty and imprecision in each mono-tracer
PET image. Then, imprecision and uncertainty are, respectively, reduced
using prior knowledge related to defects in the acquisition system and neigh-
borhood information. Finally, a multi-tracer PET image fusion is performed.
The results are represented by a set of parametric maps that provide impor-
tant information for dose painting. The performances are evaluated on PET
phantoms and patient data with lung cancer. Quantitative results show good
performance of our method compared with other methods.

Keywords: Dose Painting, Positron Emission Tomography, Information
Fusion, Segmentation, Belief Function Theory.
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1. Introduction

Medical imaging plays an important role in radiotherapy for treatment
planning with the delineation of Gross Tumor Volume (GTV) based on Com-
puted Tomography images. A promising approach to increasing local control
of the tumor without increasing normal tissue exposure is to take advantage
of intra-tumor heterogeneity using functional imaging. Hall has proposed
the concept of dose painting, which involves application of a dose prescrip-
tion based on biological characteristics of the tumor (Hall, 2005). To this
end, Positron Emission Tomography (PET) is used for sub-volumes defini-
tion, also called Biological Target Volumes (BTV) (Ling et al., 2000). In
the last decade, technological innovations, such as the invention
of Intensity Modulated Radiation Therapy (IMRT), made a highly
precise radiation application possible (Thorwarth, 2012). As a con-
sequence, high conformal radiation doses can now be given to the
tumor while sparing organs at risk and normal tissues. IMRT is
based on multileaf collimators leading to a radiation with a spatial
resolution in the same order of magnitude than PET images (few
millimetres (5 - 7 mm)). Dose painting is the subject of a lot of
research on its technical feasibility (Alber et al., 2003), the poten-
tial benefit in term of dose escalation within the tumor (Thorwarth
et al., 2007), respect for dose constraints to organs at risk (Choi
et al., 2010), as clinical validation (Duprez et al., 2011).

The main radio-tracer proposed in the literature for dose paint-
ing is 18F-FluoroDesoxyGlucose (FDG), due to the enhanced glu-
cose metabolism of tumor cells corresponding to a high uptake, also
called FDG positive tissue. Several other new radio-tracers are of interest,
such as 18F-FLuoroThymidine (FLT) to visualize areas corresponding to a
high level of cell proliferation (Yang et al., 2010), and 18F-FluoroMisonidazol
(FMiso) to visualize tumoral regions that have an inadequate supply of oxy-
gen (hypoxic regions) and are radioresistant (Chang et al., 2009). Dose pre-
scription could possibly be adapted in accordance with the radio-tracers. For
example, an increase of dose frequency deliverance could be planned for high
proliferative cells (i.e., FLT positive tissue), or the dose can be boosted for
FMiso positive tissues. Thus, the definition of BTV in each tracer image and
their fusion is important to make the radiotherapy more efficient.

Although many methods have been proposed for segmenting positive tis-
sue on PET images in the literature, there is no consensus on this issue.
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Most of the methods are proposed to delineate only FDG-PET positive tis-
sues. Example include thresholding methods (Erdi et al., 1997; Daisne et al.,
2003; Black et al., 2004; Nestle et al., 2005; Vauclin et al., 2009) and region
growing methods (Haiying et al., 2006; Krohn et al., 2007; Potesil et al., 2007;
Green et al., 2008). The disadvantage of these methods is their sensitivity
to noise and heterogeneous uptake of positive tissues. Watershed algorithms
are also proposed in (Riddell et al., 1999; Tylski et al., 2006; Geets et al.,
2007). However, they are sensitive to noise because they are based on gradi-
ent measure. Some methods based on probabilistic measures (Aristophanous
et al., 2007; Hatt et al., 2009) and fuzzy measures (Zaidi et al., 2002; Dewalle-
Vignion et al., 2011) have recently been proposed. Their advantages are the
capability of dealing with noise and/or partial volume effect which is due to
the low spatial resolution of acquisition system and the post-filtering applied
on PET images. However, in the face of the problems due to heterogeneous
uptake of positive tissues, these methods fail. The segmentation of FLT and
FMiso-PET images is more complicated than FDG-PET images (see Fig-
ure 1). In (Hatt et al., 2010), the authors propose to use their probabilistic
method (Hatt et al., 2009) for the segmentation of FLT-PET images. For
FMiso-PET positive tissue segmentation, a statistical approach based on ar-
tificial ants moving in a three dimensional image space has been proposed
(Haase et al., 2012). This specific method has been proposed to address low
contrast images. To date, there is no method reported to address more than
three tracers. Such a method is challenging to develop due to the partial
volume effect, the possibly high noise and the low contrast in PET images.

(a) FDG (b) FLT (c) FMiso

Figure 1: FDG, FLT and FMiso PET images for one patient.

In this paper, we provide a tool to fuse multi-tracer PET images for
achieving a good dose painting.

As probability and possibility theories, Belief Function Theory (BFT) is a
theoretical framework for reasoning with partial knowledge (Dempster, 1967;
Shafer, 1976; Smets and Kennes, 1994). Moreover, it has the advantage to
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contain powerful combination operators (Smets, 1993; Denœux, 2008). In
previous work (Lelandais et al., 2012), we have shown that BFT is a good
tool to address multi PET tracers. Our method used BFT to address the
imperfections by combining neighboring voxels in a Fuzzy C-Means (FCM)
algorithm and to combine multi-tracer PET images. In this paper, we pro-
pose a new method that is also based on BFT. The belief masses relative to
the tumor are estimated by an extension of the Evidential C-Means (ECM)
algorithm which is widely used in data classification to address uncertainty
and imprecision. Spatial information is added to the classical ECM to reduce
uncertainty due to noise. A new objective function is proposed to design a
new algorithm named Spatial Evidential C-Means (SECM) algorithm. Our
method is divided into three steps: 1) modeling of uncertainty and impreci-
sion in each mono-tracer PET-image, using spatial information. 2) Reduction
of imprecision and uncertainty by combining a measure of partial volume ef-
fect specific to the acquisition system and neighborhood information. 3)
Fusion of multi-tracer PET images to build parametric maps that describe
the locations of glucose metabolism, cell proliferation and hypoxia of tumor.

The manuscript is organized as follow. The proposed framework is pre-
sented in the next section. A brief presentation of the BFT is also given in
this section. The results on PET images are given in section 3 followed by a
conclusion.

2. Material and methods

As our method is based on belief function theory, we first present it in
the following section. Then, the method is presented.

2.1. Belief Function Theory

2.1.1. Concept

As probability and possibility theories, belief function theory is a theo-
retical framework for reasoning with partial and unreliable information. Let
Ω = {ω1, ω2, . . . , ωc} be a finite set of classes, called the frame of discernment.
Partial knowledge obtained from information sources is taken into account
by assigning Basic Belief Assignments (BBAs) or masses to different sub-
sets of the frame of discernment. Function m is defined as a mapping from
2Ω = {∅,{ω1},{ω2}, . . . ,{ωc},{ω1, ω2}, . . . ,Ω} to [0,1] verifying:

∑
A⊆Ω

m(A) = 1. (1)
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A hypothesis A is called a focal set if m(A) ≠ 0. The mass m(Ω) represents
the degree of ignorance (m(Ω) = 1 corresponds to a total ignorance) and the
mass m(∅) is used for representing the conflict.

Using this framework, one can distinguish singletons, such as {ω1}, from
disjunctions, such as {ω1, ω2} corresponding to a set of exclusive classes. Sin-
gletons allow us to represent uncertainty as in probability theory. A BBA is
considered as uncertain when masses are approximately equally distributed
over singletons, corresponding to equiprobability in probability theory. Dis-
junctions allow us to represent imprecision. A BBA is considered as imprecise
when non-empty masses are assigned over disjunctions, implying that we do
not take part in favor of one class or another.

2.1.2. Basic Belief Assignment (BBA) transformation

From a BBA one can determine a belief function (bel) and a plausibility
function (pl) such as:

bel ∶ 2Ω Ð→ [0,1]
A z→ ∑B⊆A,B≠∅m(B),

(2)

pl ∶ 2Ω Ð→ [0,1]
A z→ ∑B∩A≠∅m(B).

(3)

These two functions can be used in the last stage of a process of decision-
making. For decision making, one can also use the pignistic probability
function (BetP ) (Smets and Kennes, 1994) defined by:

BetP ∶ 2Ω Ð→ [0,1]
A z→ ∑B⊆Ω

∣A∩B∣
∣B∣

m(B)
1−m(∅) .

(4)

where ∣.∣ denotes the cardinality of the considered set. The idea is to convert a
BBA into a probability function by redistributing the masses on disjunctions
towards singletons.

2.1.3. Combination of BBAs

Two BBAs coming from two information sources and defined on the same
frame of discernment Ω can be pooled using combination rules.

Let S1 and S2 be two reliable sources of information. The conjunctive
combination rule is given by:

mS1 ∩#S2
(A) = ∑

B∩C=A

m1(B).m2(C). (5)
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It allows us to reduce uncertainty and imprecision by transferring belief
masses to conjunctions of hypotheses. When the information contained in
sources are in conflict, masses are transferred on ∅ in the open world as-
sumption. In order to satisfy m(∅) = 0 (closed world assumption (Smets and
Kennes, 1994)), the Dempster’s rule is used (Dempster, 1967):

mS1⊕S2
(A) =

1

1 − κ
∑

B∩C=A

m1(B).m2(C). (6)

where κ is the mass on the empty set in the open world assumption. Demp-
ster’s rule involves normalizing the conjunctive rule by the conflict between
sources.

Both the conjunctive and Dempster’s rules are commutative and asso-
ciative, and can also be generalized to N sources of information.

2.2. Evidential C-Means (ECM)

The ECM algorithm has been introduced in (Masson and Denœux, 2008)
for dealing with partial knowledge in the context of BFT framework. Let
{x1, . . . ,xi, . . . ,xn} be a collection of vectors in Rp describing the n objects.
Let c be the desired number of classes. Each cluster is represented by a
prototype or a center vk ∈ Rp associated with each class ωk. Then, for each
subset Aj ⊆ Ω, Aj ≠ ∅, a centroid v̄j is calculated as the barycenter of the
prototypes associated with the classes in Aj :

v̄j =
1

cj

c

∑
k=1

skjvk (7)

with:

skj = {
1 if ωk ∈ Aj

0 otherwise
(8)

where cj = ∣Aj ∣ denotes the cardinal of Aj . The distance dij between xi and
the focal set Aj is defined by:

d2ij = ∣∣xi − v̄j ∣∣2 (9)

Let V denotes a matrix of size (c× p) composed of the coordinates of the
cluster centers such that Vkq is the qth component of the cluster center vj .
ECM looks for a partition matrix M = (mij) (Aj ≠ ∅, Aj ⊆ Ω), called a credal
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partition, of size (n × 2c) and for the matrix V by minimizing the following
objective function:

JECM(M,V ) =
n

∑
i=1

∑
{j/Aj≠∅,Aj⊆Ω}

cαj m
β
ijd

2

ij +
n

∑
i=1

δ2m
β
i∅ (10)

subject to:

∑
{j/Aj≠∅,Aj⊆Ω}

mij +mi∅ = 1 ∀i = 1, n. (11)

where mi∅ denote mi(∅), and where δ is a weighting parameter. The empty
set is used for outliers. Coefficient α ≥ 0 controls the degree of penalization
of the subsets according to their cardinality (α = 2 by default) and coefficient
β > 1 controls the fuzziness of the partition (β = 2 by default).

2.3. Proposed method: Spatial Evidential C-Means (SECM)

For deriving a credal partition from image data, we propose adding spa-
tial information to the ECM. Some methods (Ahmed et al., 2002; Chen and
Zhang, 2004) have been proposed to derive a fuzzy partition in image process-
ing by using neighborhood information. Because the performance of ECM
has shown superiority in many cases, we propose to extend it by integrating
spatial information. Let Φ(i) = {1, . . . , t, . . . , T} the set of the T neighbors of
a voxel i, including i. Let t ∈ Φ(i) be a neighbor of i and let bt be a weight
function that varies in [0,1] according to the spatial distance between t and
i. bt controls the neighborhood influence and is defined as follow:

bt = exp(
−d2it
2 ⋅ η2

) (12)

where η is a parameter controlling the influence of neighborhood. For our
application, η2 = FWHM2/8 log 2, with FWHM (Full Width at Half Maxi-
mum) corresponding to the spatial resolution of PET images. bt equals 1
when dit = 0, and decreases as dit increases. For the distance dij in equation
9, we propose the weighted sum of the distances in Φ(i): ∑t∈Φ(i) btdtj . The
objective function to be minimized is then given by:

JSECM(M,V ) =
n

∑
i=1

∑
{j/Aj≠∅,Aj⊆Ω}

cαjm
β
ij ∑

t∈Φ(i)

btd
2

tj +
n

∑
i=1

δ2mβ
i∅ (13)

subject to

∑
{j/Aj≠∅,Aj⊆Ω}

mij +mi∅ = 1 ∀i = 1, n, (14)
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Note that M and V have been defined before. Using this objective function,
the lower ∑t∈Φ(i) btdtj is, the higher the mass mij = mi(Aj) will be, and vice
versa.

To model the imperfection from PET medical images, we suggest mod-
ifying the objective function slightly. We assume that all the voxels belong
either to the background (ω1 hypothesis) or to high uptake of radioactivity
(ω2 hypothesis). Thus, with the closed world assumption, m(∅) = 0, and the
term corresponding to the outlier detection can be removed. The objective
function becomes then:

JSECM(M,V ) =
n

∑
i=1

∑
{j/Aj≠∅,Aj⊆Ω}

cαj m
β
ij ∑

t∈Φ(i)

btd
2

tj (15)

subject to:

∑
{j/Aj≠∅,Aj⊆Ω}

mij = 1 ∀i = 1, n. (16)

To minimize JSECM , an alternate optimization scheme similar to those
detailed in (Masson and Denœux, 2008) can be used. First, we consider that
V is fixed. We can show thatM can be updated using the following equation:

mij =
c
−α/β−1
j (∑t∈Φ(i) b

1/(β−1)
t d

2/(β−1)
tj )

−1

∑Ak≠∅
c
−α/β−1
k

(∑t∈Φ(i) b
1/(β−1)
t d

2/(β−1)
tk

)
−1 (17)

Then, we consider that M is fixed. Let B be a matrix of size (c × p) defined
by:

Blq =∑
i

∑
t∈Φi

btxtq ∑
Aj∋ωl

cα−1j m
β
ij , l = 1, c, q = 1, p, (18)

and H a matrix of size (c × c) given by:

Hlk = ∑
i

∑
Aj⊇{ωk,ωl}

cα−2j m
β
ij ∑

t∈Φi

bt, k, l = 1, c (19)

We can show that the minimization of JSECM with respect to V is an un-
constrained optimization problem which can be simplified as:

HV = B. (20)

This equation can be solved using a standard linear system solver. The
proof is given in Appendix A. By alternatively computing M using (17) and
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Figure 2: Poposed fusion sheme from multi-tracer PET images.

solving V using (18), (19) and (20) in an iterative process, the convergence
of the algorithm is guaranteed.

The process can be applied irrespective of the number of classes. It allows
us to consider neighborhood information in deriving the credal partition from
image data. For comparison, if ECM allows us to model both uncertainty and
imprecision in a one-dimensional feature space (gray level), SECM models
the imperfections in a T -dimensional feature space, where T is the number
of neighbors, in order to take into account spatial relationships.

2.4. Proposed framework

The proposed framework first processes each PET image using SECM to
model both uncertainty and imprecision. Then, imprecision and uncertainty
are reduced by a combination of different pieces of information. The fusion
of the three PET images is finally performed to obtain a parametric map
allowing us to help the radiation oncologist for dose painting purpose. The
details of each step are given below.

2.4.1. SECM for each PET image

A tissue is said to be positive if it presents a high uptake with
one tracer PET image. Two focal sets are considered: the back-
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ground and positive tissue, respectively identified by hypotheses
{Hb} and {Hp}. Because the belief function framework is used, a
third focal set representing imprecision is also considered: {Hb,Hp}.

After applying SECM on PET images, basic belief masses are spread
over hypotheses {Hb}, {Hp} and {Hb,Hp}. As a result, we obtain certain,
uncertain and imprecise voxels, defined as follows: It results that:

• Certain voxels are those having a high belief mass in favor of {Hb} or
{Hp}.

• Uncertain voxels are those having a medium belief mass in favor of
both {Hb} and {Hp}.

• Imprecise voxels are those having a high belief mass in favor of {Hb,Hp}.

In PET images, the uncertainty comes from the noise, while the impreci-
sion comes from two phenomena. The first one corresponds to partial volume
effect that is present for voxels at the transition between two regions. The
second one corresponds to the potential heterogeneity of positive tissues.
Heterogeneity is reflected by the presence of inhomogeneity of gray levels
in tumor region. Thus, the SECM algorithm allows us to separate these
two problems: uncertainty due to noise and imprecision due to both partial
volume effect and uptake heterogeneity.

2.4.2. Imprecision reduction for each PET image

As the partial volume effect is caused by the low spatial resolution of the
acquisition system, we propose to measure this effect using PET phantom
images. A Jaszczak phantom is used, which contains eight spheres whose
volumes vary from 1.02 to 98.16 ml, and eight contrasts ranging from 1.7
to 22.9. Because the same acquisition system is used in both cases, PET
phantom images and patient images have the same spatial resolution. Our
objective is to reduce {Hb,Hp} representing the imprecision. We define a
coefficient γ which reflects the part of imprecision due to the partial volume
effect. This coefficient can be measured through the phantom because the
sphere volumes are known a priori. The coefficient γ, corresponding to the
part of belief from {Hb,Hp} that should be transferred to {Hp}, is learned
for each sphere according to its volume and its contrast with the background
measured after applying SECM. The measurement is carried out by applying
our SECM method on the phantom PET images, and by searching with
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Figure 3: The value γ, learned according to the volume and the contrast of spheres.

a dichotomical process, the values allowing us to measure the true sphere
volumes. The measurement result obtained is presented Figure 3. The lower
both the contrast and the volume are, the higher γ is, except for the smallest
volumes.

The use of γ for reducing imprecision is carried out by applying a rein-
forcement mechanism. First, we propose the following simple mass function
having two focal elements for representing the a priori contextual knowledge:

mγ({Hp}) = γ,

mγ({Hb,Hp}) = 1 − γ.
(21)

where Hp is the subset to reinforce. Then, the combination of each voxel-
source with this BBA is applied using Dempster’s rule:

Mi =mi ⊕mγ . (22)

This process allows us to transfer a part of belief to the subset {Hp} corre-
sponding to the tumor in PET, and thus reduce imprecision. The reduction
of imprecision is applied on the entire image. However, it has an influence
for voxels where partial volume effect occurs (where m({Hb,Hp}) >> 0).

2.4.3. Uncertainty reduction for each PET image

Noise is important in PET images due to low contrast, a short acquisition
time period and/or a low activity of the tracer. As proposed in (Capelle-Laize
et al., 2004; Zhang et al., 2007; Makni et al., 2014; Lelandais et al., 2012),
a solution for reducing noise in the belief function framework is to combine
the neighborhood information.
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We propose to combine mass functions from neighboring voxels. First, a
discounting is done according to the same coefficient bt as before, by trans-
ferring a part of belief on the set {Hb,Hp}:

Mt({Hb}) = btMt(Hb),
Mt({Hp}) = btMt(Hp),

Mt({Hb,Hp}) = 1 − bt + btMt({Hb,Hp})
(23)

The discounting operation allows us to reduce the influence of voxels that
are physically far away from i before the conjunctive combination. Then, in
order to respect the closed world assumption, we propose to use Dempster’s
rule:

Mi(.) = ⊕
t∈Φ(i)

Mt(.) (24)

The combination of neighbor voxels allows us to remove uncertainty due
to noise, by transferring their belief on the singletons. Note that residual
imprecision, after the previous step, is also reduced at this step.

2.4.4. Decision for one PET image

For segmenting one mono-tracer PET image, the plausibility function
is computed (eq. 3) according to the two classes, and voxels are classified
according to their highest plausibility value. Note that this process is not
carried out if multi-tracer PET images are considered and fused. Algorithm
1 gives an overview of the proposed method.
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Algorithm 1: Proposed framework algorithm.

Data: {x1, . . . ,xn}: n voxels of one PET image
Result: Segmented image according to 2 classes: Hb and Hp

Parameters:
η: weighting exponent for neighborhood
α: weighting exponent for cardinality (default value 2)
β > 1: weighting exponent (default value 2)
ǫ: termination threshold (default value 103)
γ: part of imprecision due to partial volume effect
SECM:
Choose randomly 2 initial cluster centers = V0

t← 0
repeat

Compute Mt using (17), (12), (9) and (7)
Compute Ht and Bt using (19), (18), and Mt

Solve HtVt = Bt

until ∣∣Vt − Vt−1∣∣ < ǫ ;
Imprecision reduction:
Compute mγ using (21)
Compute M using (22), Mt and mγ

Uncertainty reduction:
Compute M using (23) and M

ComputeM using (24) and M

Decision:
Choose Hb or Hp for each voxel maximizing (3)

2.4.5. Fusion for multi-tracer PET images

As each PET image provides different information on tumor, the fusion
of multi-tracer PET images allows us to carry out the dose painting more
efficiently.

Frame of discernment. We consider that the FDG PET image is the refer-
ence. It means that the positive tissue volume with FLT and FMiso PET im-
ages correspond to sub-volumes of the positive tissue volume with FDG PET
image. Considering the fact that diagnosis of cell malignancy is clin-
ically done on FDG PET images, and those using FLT and FMizo
are supplementary information, FDG PET images have been con-
sidered as the reference and FLT and FMizo images as sub-volumes

13



Image {Hb} {Hp}
FDG {N} {M,P,H,F}
FLT {N,M,H} {P,F}
FMiso {N,M,P} {H,F}

Table 1: Hypotheses considered after SECM for multi-modal PET images.

of those defined on FDG PET images. Thus, five classes are distin-
guished:

• {N} corresponds to Normal tissues (i.e., background with FDG).

• {M} corresponds to tissues presenting an important glucoseMetabolism
(i.e., positive tissue with FDG only).

• {P} corresponds to tissues with an important cell P roliferation (i.e.,
positive tissue with FDG and FLT).

• {H} corresponds to Hypoxic tissues (i.e., positive tissue with FDG and
FMiso).

• {F} for Full uptake corresponds to tissues presenting the three phe-
nomena (i.e., positive tissue with FDG, FLT and FMiso).

The frame of discernment for the three PET images is now: Ω = {N,M,P,H,F}.
For each voxel of the three modalities, belief masses are spread over 32 hy-
potheses: {∅,{N},{M},{P}, . . . ,{N,M}, . . . ,Ω}.

SECM and imperfection reduction. After SECM and imperfection reduction
for each PET image, the focal sets are {Hb}, {Hp}, and {Hb,Hp}. Because
of the frame of discernment used for multi-tracer PET image fusion, and
according to the medical interpretation of PET images, the useful hypotheses
forming the frame of discernment are given in Table 1. It is assumed that a
low uptake in FDG corresponds to a normal tissue {N}, while a high uptake
in FDG corresponds to a tumoral tissue that can possibly corresponds to a
high or low uptake in FLT or FMiso. Moreover, a low uptake in FLT or in
FMiso does not mean that the tissue is normal.
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Fusion of multi-tracer PET images for parametric image construction. For
the fusion of multi-tracer PET images, we propose fusing each voxel of the
three PET images using the conjunctive combination rule (Eq. 5). This
combination allows us to discriminate between hypotheses {M}, {P}, {H}
and {F} which are very helpful for dose painting.

Decision. Finally, a labeling process is carried out by maximizing the plausi-
bility function according to hypotheses {N}, {M}, {P}, {H} and {F}. This
process yields a parametric image presenting the multiple BTVs.

2.5. Datasets

2.5.1. PET phantom images

Our method was evaluated on two physical PET phantoms. The first one
presents a level of noise similar to that encountered on the FDG and FLT
PET images. The second presents a level of noise similar to that encountered
on the FMiso PET image.

The FDG and FLT phantom contains nine spheres whose volume varies
between 0.43 mL and 97.3 mL. Moreover, five contrasts varying from 2 to
8 are considered. Because the smaller sphere (0.43 mL) was not visible on
the two lower contrasts, and the 0.99 mL sphere was not visible on the lower
contrast, these three spheres have not been considered.

The FMiso phantom contains six spheres whose volumes vary between
0.54 mL and 26.2 mL. Three contrasts varying from 2.7 to 3.8 were consid-
ered. For comparison, the background activity concentration with the FMiso
phantom was 17 times lower than that of the FDG and FLT phantom. As
a result, the noise was more important in this second phantom. The small-
est spheres (0.54 and 1.15 mL) have not been considered because they are
difficult to visualize. For the same reason, the 2.63 mL sphere has not been
considered with the smallest contrast (2.7).

Acquisition parameters for these two phantoms are given in Appendix B.

2.5.2. Multi-tracer PET images of patients

PET images of patients using FDG, FLT and FMiso tracers were also
used for the evaluation of our method. The images were obtained from three
patients suffering from lung cancer in the RTEP4 clinical trial (Vera et al.,
2011). As tumors were paramediastinal, no respiratory motion were
taken into account.

15



Registration of images was made as follow. First, a registration of CT
images, acquired for each PET/CT exam, was performed using mutual in-
formation (Viola and Wells, 1997) with FDG PET/CT image as reference.
Then, registration parameters were used for PET image registration. A trans-
verse slice is given in Figure 4 for three radio-tracers (patient 1). Each image
was scaled to its own maximum Standard Uptake Value (SUV).

FDG FLT FMiso

(a) patient #1

FDG FLT FMiso

(b) patient #2

FDG FLT FMiso

(c) patient #3

Figure 4: FDG, FLT and FMiso PET images for three patients.

2.6. Approaches used for comparison

We compared our method on PET phantom images with two other meth-
ods recently proposed. The first method is the Adaptive Thresholding (AT)
proposed in (Vauclin et al., 2009) for tumor segmentation in FDG PET
imaging and inspired from (Daisne et al., 2003). The second method is the
Fuzzy Locally Adaptive Bayesian (FLAB) method introduced in (Hatt et al.,
2009), with the following parameters: two classes were used, the size of the
neighborhood was 3 × 3 × 3 and Gaussian distributions were assumed. Both
methods have been proposed for the segmentation of PET images.
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2.7. Region of interest definition

As our aim is not to detect tumors, but to estimate their volume, we
assume that the lesions have been previously identified by the clinician and
that a box encompassing them has manually or automatically been placed.
Note that small changes in the placement of the box or its size have no
significant impact on the estimation of tumor volume using our method.

3. Results

3.1. Parameter setting

As mentioned in the previous section, four parameters have to
be initialized before applying our method. The first two parame-
ters are α and β, which control, respectively the degree of penal-
ization of the subsets of high cardinality and the fuzziness degree.
Because only three focal sets are used for segmenting PET images
({Hb}, {Hp} and {Hb,Hp}), α acts as a weight for hypothesis {Hb,Hp},
and β controls the flattening of the fuzzy transition represented by
{Hb,Hp} hypothesis. Because we do not wish to favor {Hb,Hp}, α has
been set to its default value of 2. Coefficient β has been set to 6.
This value was chosen empirically using phantom data. Compared
to the default value 2, changing the value to 6 has no influence in
segmenting positive tissues of large volume, but has an influence
on the segmentation of small volumes, which are more subject to
partial volume effect. The third parameter η controls the influence
of the neighborhood. It is related to the spatial resolution of im-
ages. Because FWHM is a measure of the spatial resolution of our
PET images, and equals 7 mm, this measure was used for initial-
izing η, as presented in Section 2.3. The last parameter γ is used
for reducing imprecision in PET images. As explained in Section
2.4.5, its value is determined using PET phantom images.

3.2. On PET phantom images

The results of the sphere volume estimation for each method is presented
in Figures 5 and 6. Figure 5 shows the results for the FDG and FLT phan-
tom, and Figure 6 for the FMiso phantom. Blue, green and red colors are
used, respectively, for SECM, FLAB and AT methods. From left to right,
the measured volumes are given from the smallest to the largest sphere. As
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(a) SECM (b) FLAB (Hatt et al., 2009)

(c) AT (Vauclin et al., 2009)

Figure 5: Histograms of measured volumes according to the actual sphere volumes for
SECM (a), FLAB (b) and AT (c) methods. The actual volumes are also identified by
horizontal lines. The figure is better viewed in color.

an indication, the true volumes are represented by a horizontal line for each
sphere. The closer the color bar and the line, the better the volume estima-
tion. The measured volumes of each sphere are also given for each contrast.
The lighter bar corresponds to the lowest contrasts, and the darker bar cor-
responds to the highest contrasts.

As we can see on the FDG and FLT phantom PET images (Figure 5),
SECM provides the best estimation of sphere volumes. For the largest spheres
(> 11 mL), the mean absolute error is about 1.6 ± 1.8 mL for the SECM
method, while it is about 6.4 ± 4.7 mL and 5 ± 7.1 mL for FLAB and AT,
respectively. For the smallest spheres (< 4 mL), SECM and FLAB yield
comparable results. For these two methods, the errors are due to the high
partial volume effect that makes the class barycenter estimation difficult.
About AT, for small and for large spheres, the measured volumes increase
with respect to the contrast. This dependence on contrast variation shows
the poor robustness of the method, although its calibration step uses contrast
information. The good performance of our method is due to our strategy of
first modeling the imperfections and then reducing them according to the
volume of positive tissue and its contrast with the background.

On FMiso phantom PET images of low signal to noise ratio (Figure 6),

18



(a) SECM (b) FLAB (Hatt et al., 2009)

(c) AT (Vauclin et al., 2009)

Figure 6: Histograms of mean measured volumes and their standard deviation according
to the actual sphere volumes for SECM (a), FLAB (b) and AT (c) methods. The actual
volumes are also identified by horizontal lines. The figure is better viewed in color.

we can see the limit of our SECM method. When a very important noise is
present, and when the contrast is very low (about 2.7), SECM gives the worst
results. This is due to the very important noise for 2.7 contrast images that
induces the presence of regions around the spheres presenting high uptakes.
These regions are considered by our method as regions that could potentially
correspond to heterogeneity of the positive tissue to segment. That is why
an over-estimation of volumes is observed with our method for the lower
SNR. However considering 3.3 and 3.8 contrasts only, SECM is the only
one method that is robust to sphere size variations. Indeed, the maximum
of mean volume error estimations is +3.2 mL for SECM (obtained for the
smallest sphere), is −6.5 mL for FLAB (obtained for the largest sphere) and
−7.7 mL for AT (obtained for the largest sphere).
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(a) FDG
{Hb} {Hp} {Hb,Hp}

(b) Belief mass estimation

(c) FLT
{Hb} {Hp} {Hb,Hp}

(d) Belief mass estimation

(e) FMiso
{Hb} {Hp} {Hb,Hp}

(f) Belief mass estimation

Figure 7: Representation of the three transverse slices of the three radio-tracers and the
corresponding belief mass estimations according to hypotheses {Hb}, {Hp} and {Hb,Hp}
using SECM

3.3. On patient data

The results of the belief mass estimation using SECM (see section 2.4.1)
are given in Figure 7 for patient 1 according to the three-tracer PET images.
The belief mass estimation is represented for each tracer PET image by a
map according to the three hypotheses, namely {Hb}, {Hp} and {Hb,Hp}. On
each map, the lighter (respectively, the darker) the intensity of the color is,
the higher (respectively the lower) the mass of the corresponding hypothesis
is. A high mass for hypotheses {Hb} or {Hp} means that the voxel certainly
belongs to the corresponding hypothesis. For positive tissues, the high masses
are found for voxels for which both themself and their neighborhood present
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a high uptake. They are mainly found in the middle of positive tissues for
the three tracers. A voxel having a high mass assigned to {Hb,Hp} means
that it corresponds to an imprecise region. For the three tracers, high masses
are in favor of this hypothesis at the transition between the background and
positive tissue. It corresponds to voxels that are subject to partial volume
effect. Furthermore, as we can see on the FDG belief mass estimation (see
Figure 7(b)), the voxels identified in the white circle have high masses in
favor of {Hb,Hp}. It is an imprecise region whose voxels and their neighbors
have a similar uptake. It seems to be due to the presence of heterogeneity in
the tumor. Thus, hypothesis {Hb,Hp} models both partial volume effect and
heterogeneity regions for which it is difficult to make a decision. Medium
masses for a voxel on both {Hb} and {Hp} means that the voxel is uncertain.
This phenomenon is mainly present for the FMiso PET image due to high
noise inside the positive tissue region.

The result of the imprecision and uncertainty reduction steps is shown
in Figure 8 for patient 1 according to the three-tracer PET images. As we
can see for the three tracers, low masses are assigned to hypothesis {Hb,Hp},
showing that the imprecision has well been reduced. Moreover, high masses
(close to 1) are assigned to {Hb} and {Hp}, showing that the uncertainty has
also been reduced. The important point to observe is that the heterogeneous
region in the upper right of FDG PET positive tissue is now considered as
certainly belonging to the tumor.

The result of the fusion of multi-tracer PET images is given in Figure 9
for patient 1. Figure 9(d) shows the result of the pignistic probability trans-
formation of masses obtained after fusion. The pignistic probability maps are
given according to {M}, {P}, {H} and {F} hypotheses. As in the previous
figure, the lighter the intensity of the color is, the more certain is the voxel
belonging to the corresponding hypothesis. Figure 9(f) corresponds to the
segmented regions obtained by taking the maximum plausibility among the
five classes. The colors are defined as follows: the black region corresponds
to {N}, the pink region corresponds to {M}, the blue region corresponds
to {P}, the green region corresponds to {H} and the yellow region corre-
sponds to {F}. Thus, the fusion allows us to obtain the maps of the specific
regions to be irradiated for dose painting task. As a high FDG uptake
corresponds to tumor cells, FDG PET images are considered as
the reference. Tumor cells are not necessarily associated to a high
proliferation, nor to hypoxic cells. It is also possible that low-FDG
uptake is associated to high-FLT or FMiso uptake. With our fusion
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(a) FDG
{Hb} {Hp} {Hb,Hp}

(b) Belief mass estimation

(c) FLT
{Hb} {Hp} {Hb,Hp}

(d) Belief mass estimation

(e) FMiso
{Hb} {Hp} {Hb,Hp}

(f) Belief mass estimation

Figure 8: Representation of the three transverse slices of the three radio-tracers and the
corresponding belief mass estimations according to {Hb}, {Hp} and {Hb,Hp} hypotheses
after uncertainty and imprecision reduction steps.

model, this kind of information can be seen on a map correspond-
ing to conflict between data. As presented in Figure 9(e), this map (on
the empty set) is also highlighted. The conflict corresponds to hypoxic tissues
and/or tissues presenting a high cell proliferation that are normal according
to glucose metabolism (i.e., positive tissues according to FLT and FMiso
and the background with FDG). It shows positive tissues that potentially
correspond to healthy tissues. In our case, conflict indicates the presence of
bones that have a naturally high cell proliferation. This conflict is interesting
information for dose painting because it could correspond to an organ at risk
that would need a low radiation dose.

The fusion results for the two other patients are given in Figures 10
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(a) FDG (b) FLT (c) FMiso

BetP ({M}) BetP ({P}) BetP ({H}) BetP ({F})

(d) pignistic probabilities

m(∅)

(e) Conflict (f) Contours

Figure 9: Images showing results of the method of information fusion on multi-tracer PET
images. (a), (b) and (c) are the initial images using FDG, FLT and FMiso tracers. (d)
are the parametric images applying first the BBA estimation of each ROI of each image
and then fusing these BBAs. The final result showing how dose painting can be achieved
is presented in (f); it corresponds to the segmented regions.

and 11. In Figure 10, a necrosis in the tumor region is present and only a
small region at the right side of the tumor presents a high cell proliferation
associated with a hypoxia. In Figure 11, we observe that the tumor presents
a high cell proliferation, but only few voxels correspond to hypoxia. These
results show that our method is efficient even if the size of the region to
segment is small. They have been visually evaluated by experts.

The use of multiple information conveyed by multi-tracer PET
images could have a major impact on the treatment by radiation
therapy. The integration of images into a radiation therapy pro-
tocol becomes more difficult as the number of images increases.
Our results prove that this task can be performed using a fusion
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(a) FDG (b) FLT (c) FMiso

pl({M}) pl({P}) pl({H}) pl({F})

(d) Plausibilities

m(∅)

(e) Conflict (f) Contours

Figure 10: Images showing results of the method of information fusion for the second
patient.

process. Our fusion method may be routinely used in the future.

4. Conclusion

In radiotherapy planning, the conventional FDG tracer (glucose metabolism)
is broadly used for tumor depiction in PET imaging. However, in many
complex situations, new tracers such as FLT and FMISO can provide com-
plementary information: cellular proliferation and hypoxia, respectively. To
date, the segmentation is mainly performed on FGD PET images. In this
paper we have proposed a framework based on belief function theory to fuse
multi-PET tracers. Because the neighborhood information is integrated in
the SECM algorithm, our method allows us to model both uncertainty due
to noise and imprecision due to partial volume effect and heterogeneity. A
process for reducing the uncertainty and the imprecision is proposed, based
on a measurement of partial volume effect from the acquisition system. With
multi-tracer PET images, a final fusion step is performed to obtain parame-
ter maps that represent different phenomena observed from multi-tracer PET
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(a) FDG (b) FLT (c) FMiso

pl({M}) pl({P}) pl({H}) pl({F})

(d) Plausibilities

m(∅)

(e) Conflict (f) Contours

Figure 11: Images showing results of the method of information fusion for the second
patient.

images. These maps allow us to help the radiation oncologist for the treat-
ment planning because it is possible to adapt the dose prescription according
to the different sub-volume defining the tumor.

Our method for volume estimation analysis has been validated using two
PET phantom images by comparison with a Bayesian (FLAB) and a thresh-
olding (AT) method. On the first phantom, the results have shown that
our method gives the best results for the largest spheres (> 11 mL), and
comparable results with FLAB for the smallest spheres (< 4 mL). On the
second phantom with low SNR, the results has shown that our segmentation
method can achieve a better estimation of the sphere volumes when the con-
trast is higher than 2.7. The poor result with the 2.7 contrast is due to the
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presence of regions around the spheres presenting high uptake due to noise.
These regions are considered by our method as regions that could potentially
correspond to the positive tissue to segment.

The major interest of our method is that it can be applied either for
modeling uncertainty and imprecision, for segmenting BTV by reducing im-
perfection or for segmenting BTV from multi-tracer PET images by fusing
them. The results on patient data show the feasibility of using our method for
dose painting. Our method is a valuable help to adapt the dose prescription
according to the different sub-volume defining the tumor. This information
fusion process from multi-tracer PET images had never been proposed before.

The results were also evaluated using phantom data, which are similar as
the SNR found on FDG and FLT, and FMiso PET images. Future work will
address the evaluation of our method on heterogeneous simulated phantom
data. A dose painting strategy is under validation (Aerts et al., 2010). The
impact of our method for treatment planning will be evaluated in our feature
work.

Appendix A. SECM optimization

First, we consider that V is fixed, and we introduce n Lagrange multipliers
λi to solve the minimization problem with respect to M :

L (M,λ1, . . . , λn) = JSECM(M,V ) −
n

∑
i

λi

⎛

⎝
∑

j/Aj≠∅,Aj⊆Ω

mij − 1
⎞

⎠
(A.1)

By differentiating the Lagrangian with respect to the mij and λi and
setting the derivatives to zero, we obtain:

∂L

∂mij

= βcαj ⋅m
β−1
ij ∑

t∈Φ(i)

btd
2

tj − λi = 0 (A.2)

∂L

∂λi

= ∑
{j/Aj≠∅,Aj⊆Ω}

mij − 1 = 0 (A.3)

We thus have from (A.2):

mij = (
λi

β
)

1

β−1

(
1

cαj ∑t∈Φ(i) btd
2

tj

)

1

β−1

(A.4)
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Using (A.3) and (A.4):

(
λi

β
)

1

β−1

=
⎛

⎝
∑
j

1

c
α/(β−1)
j

1

∑t∈Φ(i) b
1/(β−1)
t d

2/(β−1)
tj

⎞

⎠

−1

(A.5)

Returning in (A.4), one obtains the necessary condition of optimality for
M :

mij =
c
−α/β−1
j (∑t∈Φ(i) b

1/(β−1)
t d

2/(β−1)
tj )

−1

∑Ak≠∅ c
−α/β−1
k (∑t∈Φ(i) b

1/(β−1)
t d

2/(β−1)
tk )

−1 (A.6)

Let us now consider that M is fixed. The minimization of JSECM with re-
spect to V is an unconstrained optimization problem. The partial derivatives
of JSECM with respect to the centers are given by:

∂JSECM

∂vl

=
n

∑
i

∑
j

cαjm
β
ij ∑

t∈Φi

bt
∂d2ij

∂vl

(A.7)

∂d2ij

∂vl
= 2(slj)(v̄j − xt)(

1

cj
) (A.8)

∂(e−(vk−vr)2)
∂vl

= −2(vk − vr)e−(vk−vr)2 (A.9)

From (A.7), (A.8) and (A.9), we thus have:

∂JSECM

∂vl

= 2
n

∑
i

∑
Aj≠∅

cα−1j m
β
ij ∑

t∈Φi

btslj(v̄j − xt) (A.10)

∂JSECM

∂vl

= 2∑
i

∑
j

cα−1j m
β
i,j ∑

t∈Φi

btsl,j (
1

cj
∑
k

sk,jvk − xt) (A.11)

Setting these derivatives to zero gives l linear equations in vk which can
be written as:

∑
i

∑
t∈Φi

btxt∑
j

cα−1j m
β
i,jsl,j = ∑

k

vk∑
i

∑
j

cα−2j m
β
i,jsl,jsk,j ∑

t∈Φi

bt (A.12)

Let B be a matrix of size (c × p) defined by:
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Blq = ∑
i

∑
t∈Φi

btxtq ∑
Aj∋ωl

cα−1j m
β
ij (A.13)

l = 1, c, q = 1, p, and H a matrix of size (c × c) given by:

Hlk = ∑
i

∑
Aj⊇{ωk,ωl}

cα−2j m
β
ij ∑

t∈Φi

bt (A.14)

k, l = 1, c.
V is solution of the following linear system:

HV = B. (A.15)

Appendix B. PET phantom acquisition parameters

Appendix B.1. FDG and FLT phantom

Data have been acquired on a Jaszczak phantom (Data Spectrum Cor-
poration™, Hillsborough, NC, USA). It contains nine spheres whose volume
varies between 0.43 mL and 97.3 mL (0.43, 0.99, 2.08, 3.78, 11.6, 19.3, 27.9,
58.1 and 97.3 mL). At the beginning of the acquisition, the activity concen-
tration of the spheres was of 41.6 kBq/mL, whereas the activity concentration
of the background was 5.4 kBq/mL. For comparison, similar concentrations
are encountered on FDG and FLT PET exams (5.0 MBq/kg). Then, activity
has successively been added to the background to make acquisitions with 5
different contrasts (7.7, 6.3, 4.9, 3.4 and 2.0).

PET acquisitions and image reconstruction were obtained on a Biograph
Sensation 16 Hi-Rez (SIEMENS Medical Solution, Knoxville, TN, USA) fol-
lowing the protocol used in clinical routine. PET emission data were acquired
in 3D mode with a 162 mm axial Field Of View (FOV). After the acquisition,
the data were corrected for dead-time, random, scatter and attenuation, and
reconstructed with an Attenuation Weighted Ordered Subset Expectation
Maximization method (AWOSEM: 4 iterations and 8 subsets) in a 168× 168
matrix (voxel size of 4.06 × 4.06 × 2.0 mm3. A Gaussian post-filtering was
applied with a full width at half maximum of 5 mm. The spatial resolution
was 6.8 mm in transverse plane at the center of the FOV.
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Appendix B.2. FMiso phantom

Data have been acquired on an IEC NEMA phantom (Data Spectrum
Corporation™, Hillsborough, NC, USA). It contains six spheres whose vol-
umes vary between 0.54 mL and 26.2 mL (0.54, 1.15, 2.63, 5.53, 11.6 et 26.2
mL). At the beginning of the acquisition, the activity concentration of the
spheres was 1.2 kBq, whereas the activity concentration of the background
was 0.31 kBq/mL. The objective is to have low concentrations as those en-
countered on FMiso PET images. For comparison, the background activity
concentration is 17 times lower than that of the FDG and FLT phantom.
Then, activity has successively been added to the background to make ac-
quisitions with 3 different contrasts (3.8, 3.3 and 2.7).

Except for acquisition time, the same acquisition and reconstruction pa-
rameters were used. Data were acquired in List-mode during 21 minutes, and
nine bootstrap samples of 7 minutes each were extracted. 7 minutes is also
used for FMiso PET image acquisition time. Due to the low activity concen-
tration in the phantom, and thus the low Signal to Noise Ratio (SNR) in the
reconstructed images, the use of nine bootstrap samples allows us to better
evaluate the methods with respect to noise, by analyzing reproducibility.
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