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Abstract

A method is proposed to quantify uncertainty on statistical forecasts using
the formalism of belief functions. The approach is based on two steps. In the
estimation step, a belief function on the parameter space is constructed from
the normalized likelihood given the observed data. In the prediction step,
the variable Y to be forecasted is written as a function of the parameter θ
and an auxiliary random variable Z with known distribution not depending
on the parameter, a model initially proposed by Dempster for statistical
inference. Propagating beliefs about θ and Z through this model yields a
predictive belief function on Y . The method is demonstrated on the problem
of forecasting innovation diffusion using the Bass model, yielding a belief
function on the number of adopters of an innovation in some future time
period, based on past adoption data.

Keywords: Prediction, Dempster-Shafer Theory, Evidence Theory, Bass
model, Innovation diffusion, Sales forecasting, Statistical inference,
Likelihood, Uncertainty.

1. Introduction

Forecasting may be defined as the task of making statements about
events that have not yet been observed. As such statements can usually
not be guaranteed to be true, handling uncertainty is a critical issue in any
forecasting task. Forecasting methods can be classified as statistical, causal
or judgmental, depending on the kind of information used (respectively,
data, causal relations or expert opinions). Whatever the approach used, a
forecast cannot be trusted unless it is accompanied by some measure of un-
certainty. Most of the time, forecast uncertainty is described by subjective
probabilities or prediction intervals.
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Recently, new formal frameworks for handling uncertainty have emerged
and have become increasingly used in various application areas. One such
framework is the Dempster-Shafer theory of belief functions [6], [33], [35]. In
this approach, a piece of evidence about some question of interest is repre-
sented by a belief function, which is mathematically equivalent to a random
set [29]. Independent pieces of evidence are then combined using an oper-
ation called Dempster’s rule to obtain a unique belief function quantifying
our state of knowledge about the question of interest. Since probability
measures are special belief functions, and Bayesian conditioning can be seen
as a special case of Dempster’s rule, Dempster-Shafer theory is formally an
extension of Bayesian probability theory. In particular, both approaches
yield the same conclusions from the same initial information. However, the
theory of belief function has greater expressive power and it can be argued to
yield more sensible results in the presence of deep uncertainty. The reader is
referred to, e.g., [34], [37] for detailed discussions on the comparison between
belief function and probabilistic reasoning. Recent examples of applications
of Dempster-Shafer theory can be found, e.g., in Refs. [27], [25], [24], [3],
[11], among others.

Although the theory of belief functions has gained increasing popularity
in the last few years, applications to forecasting have been, until now, very
limited. The purpose of this paper is to demonstrate the application of
belief function theory to statistical forecasting problems, with emphasis on
situations where data are scarce and, consequently, uncertainty is high and
needs to be quantified.

As an important application area, we will consider marketing economet-
rics and, more specifically, the forecasting of innovation diffusion. This has
been a topic of considerable practical and academic interest in the last fifty
years [28]. Typically, when a new product is launched, sale forecasts can only
be based on little data and uncertainty has to be quantified to avoid making
wrong business decisions based on unreliable forecasts [21], [20], [22]. The
approach described in this paper uses the Bass model for innovation diffusion
[2] together with past sales data to quantify the uncertainty on future sales
using the formalism of belief functions. The forecasting method exemplified
here can be applied to any forecasting problem when a statistical model can
be postulated and some historical data is available.

The rest of this paper is organized as follows. The notion of likelihood-
based belief function will first be recalled in Section 2 and the forecasting
problem will be addressed in Section 3. These notions will then be applied
to innovation diffusion in Section 4. Finally, the relationship with existing
approaches will be discussed in Section 5 and Section 6 will conclude the
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paper.

2. Likelihood-based belief function

Basic knowledge of the theory of belief functions will be assumed through-
out this paper. A complete exposition in the finite case can be found in
Shafer’s book [33] and the relation with random sets is explained in [30].
The reader is referred to [3] for a quick introduction on those aspects of this
theory needed for statistical inference. In this section, the definition of a
belief function from the likelihood function and its justification as proposed
in [10] will first recalled. The forecasting problem will then be addressed in
the next section.

Let X ∈ X denote the observable data, θ ∈ Θ the parameter of inter-
est and fθ(x) the probability mass or density function describing the data-
generating mechanism. Statistical inference consists in making meaningful
statements about θ after observing the outcome x of the random experi-
ment. This problem has been addressed in the belief function framework
by many authors, starting to Dempster’s seminal work [5], [6], [7], [9]. In
contrast with Dempster’s approach relying on an auxiliary variable (see Sec-
tion 3 below), Shafer proposed, on intuitive grounds, a more direct approach
in which a belief function BelΘx on Θ is built from the likelihood function.
This approach was further elaborated by Wasserman [39] and discussed by
Aickin [1], among others. It was recently justified by Denœux in [10], from
the following three basic principles:

Likelihood principle. This principle states that all the relevant informa-
tion from the random experiment is contained in the likelihood func-
tion, defined by Lx(θ) = αfθ(x) for all θ ∈ Θ, where α is any positive
multiplicative constant [15], [14]. This principle was shown by Birn-
baum [4] to result from the principles of sufficiency and conditionality,
which are of immediate intuitive appeal. This principle entails that
BelΘx should be defined only from the likelihood function.

Compatibility with Bayesian inference. This principle states that, if a
Bayesian prior π(θ) is available, combining it with BelΘx using Demp-
ster’s rule [33] should yield the Bayesian posterior. It follows from this
principle that the contour function plx(θ) associated to BelΘx should
be proportional to the likelihood function:

plx(θ) ∝ Lx(θ). (1)
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Least Commitment Principle. According to this principle, when several
belief functions are compatible with some constraints, we should select
the least committed one according to some informational ordering [13,
36].

In [10], it was shown that the least committed belief function verifying (1)
according to the commonality ordering [12] is the consonant belief function
BelΘx whose contour function is the relative likelihood function:

plx(θ) =
Lx(θ)

supθ′∈Θ Lx(θ′)
. (2)

This belief function is called the likelihood-based belief function on Θ in-
duced by x. The corresponding plausibility function can be computed from
plx as:

PlΘx (A) = sup
θ∈A

plx(θ), (3)

for all A ⊆ Θ. The focal sets of BelΘx are the levels sets of plx(θ) defined as
follows:

Γx(ω) = {θ ∈ Θ|plx(θ) ≥ ω}, (4)

for ω ∈ [0, 1]. These sets may be called plausibility regions and can be
interpreted as sets of parameter values whose plausibility is greater than
some threshold ω. The belief function BelΘx is equivalent to the random set
induced by the Lebesgue measure λ on [0, 1] and the multi-valued mapping
Γx from [0, 1] to 2Θ [30]. In particular, the following equalities hold:

BelΘx (A) = λ({ω ∈ [0, 1]|Γx(ω) ⊆ A}) (5a)

PlΘx (A) = λ({ω ∈ [0, 1]|Γx(ω) ∩A 6= ∅}), (5b)

for all A ⊆ Θ such that the above expressions are well-defined.
We can also remark that the maximum likelihood estimate (MLE) of

θ can be interpreted as the value of θ with the highest plausibility, and
likelihood regions as defined by Edwards [14], among others, are identical
to plausibility regions.

Example 1. As an example, assume that we observe a random variable X
having a binomial distribution:

fθ(x) =

(
n
x

)
θx(1− θ)n−x. (6)
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Figure 1: Contour functions (normalized likelihood functions) for the binomial distribution
with θ̂ = 0.4 and n ∈ {10, 20, 100}.

The likelihood-based belief function induced by x has the following contour
function:

plx(θ) =
θx(1− θ)n−x

θ̂x(1− θ̂)n−x
=

(
θ

θ̂

)nθ̂ (1− θ
1− θ̂

)n(1−θ̂)
, (7)

for all θ ∈ Θ = [0, 1], where θ̂ = x/n is the MLE of θ. Function plx(θ) is
plotted in Figure 1 for θ̂ = 0.4 and n ∈ {10, 20, 100}. We can see that the
contour function becomes more specific as n increases.

As plx(θ) is unimodal and continuous, each plausibility region Γx(ω) for
ω ∈ [0, 1] is a closed interval [U(ω), V (ω)] and BelΘx is equivalent to the
a closed random interval [U, V ] [8]. The marginal cumulative probability
distribution of U and V can be obtained as follows:

FU (u) = Pr(U ≤ u) (8a)

= Pr([U, V ] ∩ (−∞, u] 6= ∅) (8b)

= PlΘx ((−∞, u]) (8c)

=

{
plx(u) if u ≤ θ̂
1 otherwise,

(8d)
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and

FV (v) = Pr(V ≤ v) (9a)

= Pr([U, V ] ⊆ (−∞, v]) (9b)

= BelΘx ((−∞, v]) (9c)

= 1− PlΘx ((v,+∞)) (9d)

=

{
0 if v ≤ θ̂
1− plx(v) otherwise.

(9e)

3. Forecasting

As explained in the previous section, the inference problem consists in
making statements about some parameter θ after observing a realization
x of some random quantity X ∼ fθ(x). The forecasting problem is, in
some sense, the inverse of the previous one: given some knowledge about
θ obtained by observing x (represented here by a belief function), we wish
to make statements about some random quantity Y ∈ Y whose conditional
distribution gx,θ(y) given X = x depends on θ. For instance, in a sales
forecasting problem, x may be the numbers of sales observed in the past n
years, while Y may be number of sales to be realized in some future time
period.

We will first propose a general solution to the forecasting problem in
Section 3.1 and illustrate it with two examples in Section 3.2. Numerical
coefficients summarizing a predictive belief function will then introduced in
Section 3.3 and the relationship with the Bayesian approach will be discussed
in Section 3.4.

3.1. Problem solution

A solution to the forecasting problem can be found using the sampling
model used by Dempster [9] for inference. In this model, the data Y is
expressed as a function of the parameter θ and an unobserved auxiliary
variable Z ∈ Z with known probability distribution µ independent of θ:

Y = ϕ(θ, Z), (10)

where ϕ is defined in such a way that the distribution of Y for fixed θ is
gx,θ(y). When Y is continuous, a model of the form (10) can be obtained as
Y = F−1

x,θ (Z), where Fx,θ is the conditional cumulative distribution function
(cdf) of Y given X = x and Z has a continuous uniform distribution in [0, 1].

6



θ	


plx(θ)	


ω	


Γx(ω)	  

z	  

ϕ(θ0,z)	  

θ0	


y	  1	  

0	  

ϕ(Γx(ω),z)	  Z	  

Figure 2: Random set on Y = ϕ(θ, Z) induced by the belief function on θ and the
probability distribution of Z.

We note that, in the general case, both ϕ and µ may depend on x; however,
we do not make this dependence explicit to keep the notation simple.

By composing the multi-valued mapping Γx : [0, 1]→ 2Θ with ϕ, we get
a new multi-valued mapping Γ′x from [0, 1]× Z to 2Y defined as follows:

Γ′x : [0, 1]× Z → 2Y

(ω, z) → ϕ(Γx(ω), z).
(11)

This definition is illustrated in Figure 2: function ϕ maps each pair (θ0, z)
to some value y0 = ϕ(θ0, z). The set Γ′x(ω, z) = ϕ(Γx(ω), z) is defined as
the set of all values ϕ(θ0, z) for θ0 in Γx(ω).

As the distribution of Z does not depend on θ, Z and the underlying
random variable ω associated with BelΘx are independent. The product
measure λ ⊗ µ on [0, 1] × Z and the multi-valued mapping Γ′x thus induce
predictive belief and plausibility functions on Y defined, respectively, as
follows:

BelYx (A) = (λ⊗ µ) ({(ω, z)|ϕ(Γx(ω), z) ⊆ A}) , (12a)

PlYx (A) = (λ⊗ µ) ({(ω, z)|ϕ(Γx(ω), z) ∩A 6= ∅}) , (12b)
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for all A ⊆ Y. In particular, when Y is the real line, we may define the lower
and upper predictive cdfs of Y as, respectively,

FLx (y) = BelYx ((−∞, y]), (13a)

FUx (y) = PlYx ((−∞, y]), (13b)

for any y ∈ R.

3.2. Examples

The quantities defined in Equations (12) and (13) can sometimes be ex-
pressed analytically. Otherwise, they can be approximated by Monte Carlo
simulation. Examples for these two cases are given below.

Example 2. Let Y be a random variable with a Bernoulli distribution B(θ).
It can be generated using the following equation:

Y = ϕ(θ, Z) =

{
1 if Z ≤ θ
0 otherwise,

(14)

where Z has a uniform distribution in the interval [0, 1]. Assume that BelΘx
is induced by a random closed interval Γx(ω) = [U(ω), V (ω)] (this is the
case, in particular, if the observed data X used to estimate θ have a binomial
distribution, as in Example 1). We have

ϕ([U(ω), V (ω)], z) =


1 if Z ≤ U(ω)

0 if Z > V (ω)

{0, 1} otherwise.

(15)

Consequently, the predictive belief function BelYx can be computed as follows:

BelYx ({1}) = (λ⊗ µ)({(ω, z)|Z ≤ U(ω)}) (16a)

=

∫ 1

0
µ({z|z ≤ U(ω)})f(ω)dω (16b)

=

∫ 1

0
U(ω)f(ω)dω = E(U) (16c)

and

BelYx ({0}) = (λ⊗ µ)({(ω, z)|Z > V (ω}) (16d)

= 1− (λ⊗ µ)({(ω, z)|Z ≤ V (ω)}) (16e)

= 1− E(V ). (16f)
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Figure 3: Predictive belief and plausibility of success for a Bernoulli trial based on the
contour function plx(θ) on the probability of success θ.

Equivalently,
PlYx ({1}) = 1−BelYx ({0}) = E(V ). (17)

As Pr(U ≥ 0) = Pr(V ≥ 0) = 1, we can write:

BelYx ({1}) =

∫ +∞

0
(1− FU (u))du (18a)

=

∫ θ̂

0
(1− plx(u))du (18b)

= θ̂ −
∫ θ̂

0
plx(u)du (18c)

and

PlYx ({1}) =

∫ +∞

0
(1− FV (v))du (18d)

= θ̂ +

∫ 1

θ̂
plx(v)dv. (18e)

These two quantities can be represented as the areas of regions delimited
by the contour function, as shown in Figure 3. The difference PlYx ({1}) −
BelYx ({1}), which is the mass mY

x ({0, 1}) assigned to ignorance, is simply
the area under the contour function plx. It tends to zero as the sample size
n tends to infinity.
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Example 3. As a second example, let us consider the case where X =
(X1, . . . , Xn) is an i.i.d. sample from a normal distribution N (m,σ2) (re-
ferred to as “past data”), and Y ∼ N (m,σ2) is a not yet observed random
variable (“future data”) drawn independently from the same distribution.
The contour function on θ = (m,σ2) given a realization x of X is

plx(m,σ2) =
(2πσ2)−n/2 exp

(
− 1

2σ2

∑n
i=1(xi −m)2

)
(2πs2)−n/2 exp

(
− 1

2s2
∑n

i=1(xi − x)2
) (19a)

=

(
s2

σ2

)n/2
exp

(
n

2
− 1

2σ2

n∑
i=1

(xi −m)2

)
, (19b)

where x and s2 are, respectively, the sample mean and the sample variance.
The future data Y can be written as

Y = ϕ(θ, Z) = m+ σZ, (20)

with Z ∼ N (0, 1). For any (ω, z) in [0, 1] × R, the set ϕ(Γx(ω), z) is the
interval [yL(ω, z), yU (ω, z)] defined by the following lower and upper bounds:

yL(ω, z) = min
{(m,σ2)|plx(m,σ2)≥ω}

m+ σz (21a)

yU (ω, z) = max
{(m,σ2)|plx(m,σ2)≥ω}

m+ σz, (21b)

which can be computed using a constrained nonlinear optimization algorithm.
By drawing independently N pairs (ωi, zi), i = 1, . . . , N , we get N intervals
[yL(ωi, zi), y

U (ωi, zi)]. For any A ⊂ R, the quantities BelYx (A) and PlYx (A)
defined by (12) can be approximated by

B̂el
Y
x(A) =

1

N
#{i ∈ {1, . . . , N} | [yL(ωi, zi), y

U (ωi, zi)] ⊆ A}, (22a)

P̂ l
Y
x(A) =

1

N
#{i ∈ {1, . . . , N} | [yL(ωi, zi), y

U (ωi, zi)] ∩A 6= ∅}. (22b)

3.3. Summarizing the predictive belief function

Any of the two functions BelYx and PlYx completely describes our knowl-
edge of Y , given the observed data x. However, to facilitate interpretation
by the decision-maker, it may be useful to summarize them in the form
of a small number of coefficients. Assuming Y to be a real random vari-
able, its lower and upper expectations [30] with respect to BelYx are defined,

10



respectively, as follows:

ELx (Y ) =

∫
minϕ(Γx(ω), z) dλ(ω)dµ(z), (23a)

EUx (Y ) =

∫
maxϕ(Γx(ω), z) dλ(ω)dµ(z). (23b)

A point prediction of Y can also be obtained by plugging the MLE θ̂ in (10)
and taking the expectation with respect to Z:

ŷ =

∫
ϕ(θ̂, z)dµ(z), (24)

which is the MLE of the conditional expectation of Y given X = x. As
θ̂ ∈ Γx(ω) for all ω ∈ [0, 1], the following inequalities hold:

ELx (Y ) ≤ ŷ ≤ EUx (Y ). (25)

If Y is continuous, we may also define its lower and upper predictive
quantiles at level α, for any α ∈ (0, 1), as:

qLα = (FUx )−1(α), (26a)

qUα = (FLx )−1(α). (26b)

By definition, qLα and qUα are thus, respectively, the values such that

PlYx ((−∞, qLα ]) = α (27a)

and
BelYx ((−∞, qUα ]) = α (27b)

or, equivalently,
PlYx ((qUα ,+∞)) = 1− α. (27c)

For any α ∈ (0, 0.5], we may compute the α-quantile interval (qLα , q
U
1−α],

which has an obvious interpretation: the plausibility that Y will lie below
this interval and the plausibility that Y will lie above it are both equal to
α. Because of the sub-additivity of PlYx , we may conclude that

PlYx ((qLα , q
U
1−α]) ≤ 2α. (28a)

or, equivalently,
BelYx ((qLα , q

U
1−α]) ≥ 1− 2α. (28b)
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The definitions of lower and upper quantiles can be extended to the case
where Y is discrete by linearly interpolating the lower and upper cdfs be-
tween the discrete values of Y .

Another useful summary of of predictive belief function is the predictive
contour function plx(y) = PlYx ({y}). We note that BelYx is generally not
consonant, so that it cannot be completely recovered from its contour func-
tion. When function plx(y) has a unique maximum ỹ, it may be taken as
a point prediction of Y , with an easy interpretation as the most plausible
value of Y given x. The point estimates ŷ and ỹ are different in general, the
latter being arguably more suitable as a point prediction of Y .

3.4. Relationship with the Bayesian posterior predictive distribution

To conclude this section, we can remark that the predictive belief func-
tion BelYx boils down to the Bayesian posterior predictive distribution of
Y given X = x when a prior probability distribution π(θ) is available and
combined with the belief function BelΘx by Dempster’s rule. As recalled in
Section 2, the combined belief function BelΘx ⊕ π is then, by construction,
the posterior probability distribution fx(θ) of θ given X = x and we then
have, for any measurable subset A ⊆ Y:

BelYx (A) = Pr(ϕ(θ, Z) ∈ A|x) (29a)

=

∫
Θ

Pr(ϕ(θ, Z) ∈ A|θ, x)fx(θ)dθ (29b)

=

∫
Θ

(∫
A
gx,θ(y)dy

)
fx(θ)dθ (29c)

=

∫
A

(∫
Θ
gx,θ(y)fx(θ)dθ

)
dy (29d)

=

∫
A
gx(y)dy, (29e)

which is the posterior predictive probability that Y belongs to A, given x.
The forecasting method introduced in this paper is thus a proper gen-

eralization of the Bayesian approach. The two methods coincide when a
prior probability distribution of the parameter is provided. However, this is
not required in the belief function approach, making it less arbitrary than
the Bayesian approach in the absence of prior knowledge about the data
distribution. This important point will be further discussed in Section 5
below.
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4. Application to innovation diffusion

In this section, the inference and forecasting methodology outlined in the
previous section will be applied to the problem of forecasting the diffusion
of innovation. In spite of the considerable amount of work on this topic
since the 1960’s [28], the Bass model [2] remains one of the most widely
used models of innovation diffusion (see, e.g., [38], [23], [21]). It will first be
presented in Section 4.1. Parameter inference and sales forecasting using this
model in the belief function framework will then be addressed in Sections
4.2 and 4.3, respectively.

4.1. The Bass model
The Bass model is based on the following assumption: the probability

that an initial purchase of an innovative product will be made at t, given
that no purchase has yet been made, is an affine function of the number of
previous buyers [2]. Formally, let f(t) denote the likelihood of purchase at
time t for eventual adopters, and

F (t) =

∫ t

0
f(u)du. (30)

The likelihood of purchase at time t for eventual adopters, given that no
purchase has yet been made, is assumed to be of the form

f(t)

1− F (t)
= p+ qF (t), (31)

where p is called the coefficient of innovation and q the coefficient of imi-
tation. Using the initial value F (0) = 0, integration of the above equation
yields

F (t) =
1− exp[−(p+ q)t]

1 + (p/q) exp[−(p+ q)t]
, (32)

which is the probability that an eventual adopter will buy the product before
time t. If c denotes the probability of eventually adopting the product, the
unconditional probability of adoption before time t for an individual taken
at random from the population is

Φθ(t) = cF (t), (33)

with θ = (p, q, c). In a sample of size M taken from the process, the expected
number of eventual adopters is cM .

Bass [2] initially proposed to estimate the model parameters using an
ordinary least squares method. A maximum likelihood approach was later
proposed by Schmittlein and Mahajan [32]. This latter approach is described
hereafter.
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4.2. Parameter estimation

Typically, individual adoption times are not available, but we know the
number of adopters between some time intervals. Let xi denote the observed
number of adopters in time interval [ti−1, ti), for i = 1, . . . , T − 1, where
t0 is the initial time where the innovation was launched. The number of
individuals in the sample of size M who did not adopt the product at time
tT−1 is

xT = M −
T−1∑
i=1

xi. (34)

We note that the sample may actually consist of the whole population of
potential adopters, or a subset of that population in the case where data are
collected from a survey.

The probability that an individual adopts the innovation between times
ti−1 and ti, for i = 1, . . . , T−1, is pi = Φθ(ti)−Φθ(ti−1) , and the probability
that an individual does not adopt the innovation before tT−1 is pT = 1 −
Φθ(tT−1). Consequently, the observed data x = (x1, . . . , xT ) is a realization
of a multinomial random vector X with probabilities (p1, . . . , pT ) and the
likelihood function is

Lx(θ) ∝
T∏
i=1

pxii =

(
T−1∏
i=1

[Φθ(ti)− Φθ(ti−1)]xi

)
[1− Φθ(tT−1)]xT . (35)

Explicit formulas for the MLE θ̂ of θ do not exist and an iterative optimiza-
tion procedure must be used. The belief function on θ is defined by the
following contour function:

plx(θ) =
Lx(θ)

Lx(θ̂)
, (36)

and the marginal contour functions on each individual parameter are

plx(p) = sup
q,c

plx(θ) (37a)

plx(q) = sup
p,c

plx(θ) (37b)

plx(c) = sup
p,q

plx(θ). (37c)

Example 4. To illustrate the estimation method outlined above, we consid-
ered the Ultrasound data used in [32]. These data were collected from 209
hospitals through the U.S.A., i.e., M = 209. The hospitals were asked to
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Figure 4: Actual and fitted numbers of adopters for the Ultrasound data.

identify themselves as adopters or nonadopters of an ultrasound equipment
and, if adopters, to provide the date of adoption [31].

The actual and fitted numbers of adopters are shown in Figure 4. The
MLE estimates are p̂ = 0.0061, q̂ = 0.4353 and ĉ = 0.9236. These values are
close, but not identical to those reported in [32]. Discrepancies may be due
to the use of different optimization algorithms (we used the Matlab function
fmincon). Figure 5 shows two-dimensional slices of the contour function,
with one of the three parameters fixed to its MLE.

Finally, Figure 6 displays the marginal contour functions (37) for pa-
rameters p, q and c. These marginal plausibilities can be used to compute
plausibility intervals for each of the three parameters. These intervals are
identical to likelihood intervals [14]. For instance, setting the threshold to
0.8, we get the following intervals for p, q and c:

p ∈ [0.0050, 0.0075], q ∈ [0.401, 0.469], c ∈ [0.90, 0.96]. (38)

We can remark that these intervals are not based on asymptotic approxima-
tions, in contrast to the approximate confidence intervals given in [32]. The
relative merits of plausibility and confidence intervals will be discussed in
Section 5.
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Figure 5: Contour plots of plx(θ) in two-dimensional parameter subspaces with (a): c = ĉ,
(b): q = q̂ (b) and (c): p = p̂.
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4.3. Sales forecasting with the Bass model

Let us assume we wish to predict at time tT−1 the number of sales Y
between times τ1 and τ2, with tT−1 ≤ τ1 < τ2. The probability of purchase
for an individual in that period, given that no purchase has been made
before tT−1 is

πθ =
Φθ(τ2)− Φθ(τ1)

1− Φθ(tT−1)
. (39)

Let Q be the number of potential adopters at time tT−1, assumed to be
known. If M is the size of the whole population, then Q = xT . Since Q in-
dividuals did not adopt the innovation before time tT−1, Y has, conditionally
on x, a binomial distribution B(Q, πθ). It can thus be written as

Y = ϕ(θ,Z) =

Q∑
i=1

1[0,πθ](Zi), (40)

where 1[0,πθ] is the indicator function of the interval [0, πθ] (1[0,πθ](Zi) = 1 if
Zi ≤ πθ and 1[0,πθ](Zi) = 0 otherwise) and Z = (Z1, . . . , ZQ) has a uniform

distribution in [0, 1]Q. Individual i will adopt the innovation if Zi ≤ πθ, and
will not adopt it if Zi > πθ.

To determine ϕ(Γx(ω), z) for any ω ∈ [0, 1] and z = (z1, . . . , zQ) ∈ [0, 1]Q,
we may reason as follows. Let [πLθ (ω), πUθ (ω)], with

πLθ (ω) = min
{θ|plx(θ)≥ω}

πθ, (41a)

πUθ (ω) = max
{θ|plx(θ)≥ω}

πθ, (41b)

be the range of πθ when θ varies in Γx(ω).
Let N1(ω), N2(ω) and N2(ω) denote, respectively, the number of Zi’s

that fall in the intervals [0, πLθ (ω)), [πLθ (ω), πUθ (ω)) and [πUθ (ω), 1]:

N1(ω) =

Q∑
i=1

1[0,πLθ (ω))(Zi), (42a)

N2(ω) =

Q∑
i=1

1[πLθ (ω),πUθ (ω))(Zi), (42b)

N3(ω) =

Q∑
i=1

1[πUθ (ω),1](Zi). (42c)
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The vector (N1(ω), N2(ω), N3(ω)) has a multinomial distribution with pa-
rameters Q and

p(ω) =
(
πLθ (ω), πUθ (ω)− πLθ (ω), 1− πUθ (ω)

)
. (43)

Assuming that πθ ∈ [πLθ (ω), πUθ (ω)], we know that at least N1(ω) individuals
will adopt the product and at least N3(ω) individuals will not adopt it. The
minimum and maximum values of Y = ϕ(θ,Z) are thus, respectively,

Y L(ω,Z) = N1(ω), (44)

Y U (ω,Z) = Q−N3(ω) = N1(ω) +N2(ω), (45)

and the range of the number of adopters between times τ1 and τ2 is

ϕ(Γx(ω),Z) = [Y L(ω,Z), Y U (ω,Z)]. (46)

Given ω, Y L(ω,Z) and Y L(ω,Z) have binomial distributions B(Q, πLθ (ω))
and B(Q, πUθ (ω)), respectively. Their conditional expectations given ω are
thus, respectively, Q · πLθ (ω) and Q · πUθ (ω).

The belief and plausibilities that Y will be less than, or equal to y are

BelYx ([0, y]) =

∫ 1

0
FQ,πLθ (ω)(y)dω (47a)

PlYx ([0, y]) =

∫ 1

0
FQ,πUθ (ω)(y)dω, (47b)

where FQ,p denotes the cdf of the binomial distribution B(Q, p). The contour
function of Y is

plx(y) =

∫ 1

0
Pr(y ∈ [Y L(ω,Z), Y U (ω,Z)])dω (48a)

=

∫ 1

0

(
1− Pr(Y L(ω,Z) > y)− Pr(Y U (ω,Z) < y)

)
dω (48b)

=

∫ 1

0

(
FQ,πLθ (ω)(y)− FQ,πUθ (ω)(y − 1)

)
dω. (48c)

The integrals in (47)-(48) can be approximated by Monte Carlo simula-
tion. For instance, if ω1, . . . , ωN are N numbers drawn at random from the
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uniform distribution in [0, 1], we have

BelYx ([0, y]) ≈ 1

N

N∑
i=1

FQ,πLθ (ωi)
(y), (49a)

PlYx ([0, y]) ≈ 1

N

N∑
i=1

FQ,πUθ (ωi)
(y), (49b)

plx(y) ≈ 1

N

N∑
i=1

(
FQ,πLθ (ωi)

(y)− FQ,πUθ (ωi)
(y − 1)

)
. (49c)

Similarly, the lower and upper expectations of Y with respect to BelYx can
be approximated, respectively, by

Y
L

=
Q

N

N∑
i=1

πLθ (ωi) (50a)

and

Y
U

=
Q

N

N∑
i=1

πUθ (ωi). (50b)

Example 5. The approach described above was applied to the Ultrasound
data already used in Example 4. We assumed that Q = xT . Figures 7 and 8
show, respectively the predictions made in 1970 and 1974 for the number of
adopters in the periods 1971-1978 and 1975-1978. The estimated conditional
expectation ŷ as well as the lower and upper expectations are shown in Fig-
ures 7(a) and 8(a). The most plausible predictions ỹ are displayed in Figures
7(b) and 8(b), together with α-quantile intervals with α ∈ {0.05, 0.25, 0.5}.

The forecasts made in 1970 are based on little data, which is reflected
by large upper-lower c and quantile intervals (Figures 7). We can see that
the numbers of adopters in 1974 and 1975 is quite severely underestimated
both by ŷ and ỹ, which may be due to the partial inadequacy of the model;
However, the time of the peak is correctly predicted, and the observed data
are contained in the 0.05-quantile intervals. As expected, the upper-lower
expectation and quantile intervals are narrower for the predictions made in
1974, which are based on more historical data (Figures 8).
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Figure 7: Predictions made in 1970 for the number of adopters in the period 1971-1978.
(a): ŷ and lower-upper expectation intervals; (b): ỹ and α-quantile intervals with α ∈
{0.05, 0.25, 0.5}.
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Figure 8: Predictions made in 1974 for the number of adopters in the period 1975-1978.
(a): ŷ and lower-upper expectation intervals; (b): ỹ and α-quantile intervals with α ∈
{0.05, 0.25, 0.5}.
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Figure 9: Lower and upper cdfs for the number of adopters in 1971, forecasted in 1970,
and plug-in conditional cdf Fx,θ̂(y) of Y given x.

Figures 9 and 10 show additional information about the predictive belief
function BelYx concerning the forecasted number of adopters for 1971. Figure
9 displays the lower and upper cdfs FLx and FUx , together with the plug-in
conditional cdf F

x,θ̂
(y) of Y given x. Figure 10 displays the plausibilities

PlYx ([y−r, y+r]) as functions of y, for r = 0, 1, 2, 3, 4, 5. This representation
makes it possible to find the smallest intervals with given plausibility value.
For instance, the smallest intervals with plausibility at least equal to 0.9 are
10± 2, 11± 2, 12± 2 and 13± 2.

5. Discussion

The method just described makes it possible to quantify the uncertainty
pertaining to statistical forecasts, within the formalism of Dempster-Shafer
theory. This method is quite general and can be applied to any statistical
model. When applied to the Bass model, it allows us to compute a belief
function on the number of adopters of an innovative product, which can
be summarized in different forms, such as lower/upper cumulative distribu-
tion functions, contour functions, lower/upper expectations and lower/upper
quantiles. This representation as a belief function is an alternative to con-
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Figure 10: Plausibilities PlYx([y − r, y + r]) as functions of y, from r = 0 (lower curve) to
r = 5 (upper curve), for the number of adopters in 1971, forecasted in 1970.

fidence intervals and Bayesian predictive distributions. In this section, we
discuss the advantages of the belief function approach as compared to pre-
vious models.

As shown in Sections 2 and 3.4, the methods of inference and forecasting
described in this paper generalize Bayesian procedures (see, e.g., [26] for a
Bayesian treatment of product adoption forecasting using the Bass model).
Specifically, when a Bayesian prior is available, the belief function BelΘx
on the parameter given the observations is, by construction, the Bayesian
posterior, and the predictive belief function BelYx becomes the Bayesian
predictive posterior distribution of future observations. Consequently, the
belief function approach is not at odds with the Bayesian approach, but it is
more general. In particular, it does not require the statistician to arbitrar-
ily provide a prior probability distribution when prior knowledge does not
exist. One might object that a uniform distribution adequately represents
ignorance. However, a uniform distribution is not invariant with respect to
nonlinear transformations of the parameters. For instance, Schmittlein and
Mahajan [32] replace parameters p and q by a = q/p and b = p + q. It is
clear that a uniform distribution on, say, p and q, induces a nonuniform dis-
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tribution on a and b, and the information contained in such a distribution is
completely arbitrary. In contrast, the belief function formalism allows us to
incorporate not only probabilistic prior information, but also weaker forms
of prior knowledge up to complete ignorance.

Prediction intervals constitute another way to represent forecast uncer-
tainty. In [32], the authors give formulas to compute approximate confidence
intervals on the parameters of Bass models, based on the Fisher information
matrix. They do not, however, provide formulas for prediction intervals,
which would be of greater interest to the decision-maker. Indeed such inter-
vals are often difficult to obtain for complex models. Although confidence
and prediction intervals have a clear frequentist interpretation in a repeated
sampling context, their use to quantify the uncertainty pertaining to pre-
dictions based on a single dataset can be questioned (see, e.g., a thorough
discussion in [14] on this issue). Also, it is not clear how prediction intervals
could be combined with uncertain information from other sources, such as
experts or marketing surveys. For instance, assume that a survey has been
carried out among a sample of hospitals, asking the respondents whether
they intend to buy the ultrasound equipment in the next two years. How
could such information be combined with prediction intervals computed from
past sales data? In contrast, the belief function formalism is sufficiently gen-
eral to represent and combine any kind of information [33]. Finally, another
advantage of belief functions over prediction intervals is that the former
framework includes a formal decision theory. In practice, decision-makers
will often use sales forecasts to plan investments such as new production
lines or sale outlets. In the belief function framework, sound decision pro-
cedures can be based, e.g., on the Choquet expected utility with respect to
the belief or plausibility measures (see, e.g., [17], [18], [19], [16] for axiomatic
justifications of decision strategies based on nonadditive measures and belief
functions). No such formal and well-justified decision procedures seem to
exist for prediction intervals.

6. Conclusions

Uncertainty quantification is an important component of any forecasting
methodology. The approach introduced in this paper allows us to represent
forecast uncertainty in the belief function framework, based on past data
and a statistical model. The method is based on two steps. In the first
step, evidence on parameter θ is represented by a consonant belief function
defined from the normalized likelihood function given observed data. In
the second step, the quantity of interest Y is written as ϕ(θ, Z), where
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Z is an auxiliary variable with known distribution. Beliefs on θ and Z
are then propagated through ϕ, resulting in a belief function on Y . The
Bayesian predictive probability distribution is recovered when a prior on
θ is available, a condition that is not required here. The belief function
formalism makes it possible to combine information from several sources
(such as expert opinions and statistical data) and to prescribe a course of
action based on a sound decision-theoretic framework.

As a concrete example to illustrate the above methodology, we considered
the problem of forecasting sales of an innovative product using the Bass
model. However, the method is very general and can be used with any
parametric model such as, e.g., linear regression and time series models.
Many issues related to the forecasting problem remain to be investigated in
this framework, such as taking into account model uncertainty, combining
expert judgement with statistical data or exploiting samples from similar
populations using, for instance, the method proposed in [10].
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