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Abstract

We give conditions under which nonuniformly expanding maps exhibit

a lower bound of polynomial type for the decay of correlations and for a

large class of observables. We show that if the Lasota-Yorke type in-

equalities for the transfer operator of a first return map are satisfied in

a Banach space B, and the absolutely continuous invariant measure ob-

tained is weak mixing, in terms of aperiodicity, then under some renewal

condition, the maps has polynomial decay of correlations for observables

in B. We also provide some general conditions that give aperiodicity for

expanding maps in higher dimensional spaces. As applications, we ob-

tain polynomial decay, including lower bound in some cases, for piecewise

expanding maps with an indifferent fixed point and for which we also al-

low non-markov structure and unbounded distortion. The observables are

functions that have bounded variation or satisfy quasi-Hölder conditions

respectively and, in the case of polynomial lower bounds, they have the

support avoiding the neutral fixed points.
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Matemático, UMI2807, in Santiago de Chile with a CNRS support (délégation).

1



1 Assumptions and statements of results 5

2 Aperiodicity 10

3 Systems on the interval 14

4 Systems on multidimensional spaces: generalities and the role

of the derivative 19

4.1 Setting and Statement of results. . . . . . . . . . . . . . . . . . . 19

4.2 Proof of Theorem D . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Systems on multidimensional spaces: the role of the determi-

nant 30

5.1 Assumptions and statement of the results. . . . . . . . . . . . . . 30

5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Proof of Theorem E . . . . . . . . . . . . . . . . . . . . . . . . . 34

0 Introduction

The purpose of this paper is to study polynomial decay of correlations for in-

variant measures which are absolutely continuous with respect to some reference

measures. Typically the maps T which we consider are non uniformly expanding

and they may neither have a Markov partition nor exhibit bounded distortion.

The main tool we use is the transfer operator on induced subsystems endowed

with the first return map. Let us call ||Rn|| a suitable norm (see below) of the

n-th power of the transfer operator restricted to the level sets with first return

time τ = n. We will show that if Lasota-Yorke inequalities can be verified for

the transfer operator of the first return maps, and if ∥Rn∥ converges to 0 at

a speed 1/nβ+1, β > 1, then the decay rates are given by the measure of the

sets {τ = n}. In the second part of the paper we apply the results to piecewise

expanding maps with an indifferent fixed point in one dimensional and higher

dimensional spaces to get polynomial decay of correlations. The results for

maps in higher dimensional spaces with Dfp = id at the indifferent fixed point

p is new, and in all the cases, the observables are more general than Hölder

functions.

We now explain in more details the content of this paper. Let us consider

a non uniformly expanding map T defined on a compact subset X ⊂ Rn, with

or without discontinuities. Since we do not have necessarily bounded distortion

or Markov partitions, Hölder continuous functions are not preserved under the

transfer operator. Therefore we will work on Banach spaces B consisting of

some L1 functions, and endow a norm ∥ · ∥B stronger than the L1 norm ∥ · ∥L1 .

We give some conditions on B under which the results apply, see Assumption

B.
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Let us now take a subset X̃ ⊂ X and define the first return map T̂ . The

first ingredient of our theorem is the Lasota-Yorke inequality for the transfer

operator P̂ of T̂ with respect to the norms ∥ · ∥B and ∥ · ∥L1 . Hence, P̂ has a

fixed point ĥ that defines an absolutely continuous measure µ̂ invariant under T̂ .

The measure µ̂ can be extended to a measure µ onX invariant under T . We may

assume ergodicity for µ̂, otherwise we can take an ergodic component. Then

the ergodicity of µ̂ gives ergodicity of µ. However, we also need some mixing

property for µ. Therefore our second ingredient is to require that the function τ

given by the first return time is aperiodic, which is equivalent to the weak mixing

of µ for T . The third ingredient is the renewal condition, which could be stated

by asking that ||Rn|| decays at least as n−(β+1), with β > 1. Such a decay gives

also an estimate of the error term, which should be faster than the decay rates

of µ(τ > n) in order to get an optimal rate for the decay of correlations. With

these conditions it follows from the general theory of renewal developed by Sarig

[Sr] and successively improved by Gouezel [Go], that the decay of correlations

Cov(f, g ◦ Tn) := |
∫
f g ◦ Tn dµ −

∫
fdµ

∫
g dµ|, is polynomial for functions

f ∈ B and g ∈ L∞(X, ν) with supp f, supp g ⊂ X̂. We would like to stress

that contrarily to the previous two quoted papers by Sarig and Gouezel, we do

not assume existence of absolutely continuous invariant measures (acim). Our

conditions are given by the Lasota-Yorke type inequalities (see below), which

imply existence of acim and the conditions on spectral gap as required. Since

such conditions are easier to verify for maps without Markov partitions, it makes

it possible to verify those inequalities for observables beyond Hölder continuous

functions.

The assumption on aperiodicity is usually difficult to check. We provide some

general conditions in Theorem B for the maps T under which aperiodicity follows

automatically. The conditions include piecewise smoothness, finite image and

uniform expansion for an induced maps and topological mixing for the original

maps.

As applications we studied piecewise smooth expanding maps with an indif-

ferent fixed point in one and higher dimensional spaces. In the one-dimensional

case we use the set of bounded variation functions for the Banach space B, and
we found that the decay rates are of order nβ−1 if near the fixed point the maps

has the form T (x) ≈ x + x1+γ , γ ∈ (0, 1) and β = 1/γ. Upper bounds for the

decay of correlations for these kinds of maps were already given by Young [Yo2]

and by Melbourne and Terhesiu, see Sect. 5.3 in [MT].

One of our main goal in the paper is to obtain polynomial decay of corre-

lations for piecewise smooth expanding maps with an indifferent fixed point in

higher dimensional space.

For a large class of those maps, we constructed, in a previous paper ([HV]),

absolutely continuous invariant measures by using the Lasota-Yorke inequality.

Our maps could be written in the form of (4.4) near the indifferent fixed point

p, where the local behavior is precisely given by an isometry plus homogeneous
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terms and higher order terms. In the present paper we show that such maps

have polynomial decay of correlations for observables in B. As we said above,

in the estimates we should compare the decay of ∥Rn∥ with the measure of

the level sets with the first return time larger than n. The former could be

determined by the norms ∥DT−n∥ or the determinants | detDT−n|, whereas
the latter, denoted by µ(τ > n), is often of order n−m/γ , with m = dimX and

γ is given in (4.4)∗. If ∥Rn∥ decreases as |detDT−n|, then it usually approaches

to 0 faster than µ(τ > n) does, and therefore both upper and lower estimates for

decay rates of correlations are of the same order as
∑

k≥n µ(τ > k). In this case

we have optimal rates of decay of correlations. We obtain optimal rates under

the assumption that all preimages of some neighborhood of p do not intersect

discontinuities, (see Theorem E and examples in Section 7 for more details).

This is satisfied whenever T has a Markov partition or a finite range structure

(see Remark 5.1). Whenever ∥Rn∥ decreases as ||DT−n||, we get polynomial

upper bound (Theorem D).

The proof of aperiodicity in Theorem B is particularly technical. We use

some results in the theory developed in the paper [ADSZ], where aperiodic-

ity is proved for a large class of interval maps, and some methods in [AD] for

skew product rigidity. We extended aperiodicity result to the multidimensional

setting without Markov partition. The authors in [ADSZ] mentioned that ape-

riodicity for non-Markov case was not so well understood. Our results indicate

that under some general conditions, if we could find a suitable Banach space

for which a Lasota-Yorke type of inequality (see (1.7)) can be verified, then

aperiodicity follows.

For piecewise expanding interval maps with indifferent fixed points, it is

relatively easy to get the desired spectral properties on the space of bounded

variation functions and to estimate decreasing rates for ∥Rn∥: our theorem

allows then to get optimal polynomial decay rates of correlation.

The higher dimensional case is much more complicated. Part of reason is

due to unbounded distortion of the systems caused by different expansion rates

in different directions as a point move away from the indifferent fixed point.

Moreover it is not easy to estimate the decreasing rates of the norm ∥Rn∥ for

quasi-Hölder spaces: Theorems D and E deals with these situations, by assuming

certain hypothesis. One surely needs more work to weaken those assumptions

and achieve optimal decay for a much larger class of maps.

To study statistic properties for non uniformly hyperbolic or expanding sys-

tems, it is common to find some “good” part on which we can get bounded

distortion, like Pesin’s blocks ([Ps]), elements in Young’s tower ([Yo1, Yo2]), or

some neighborhood near points that have hyperbolic times ([ABV]). Another

approach is to work directly on some Banach spaces, like bounded variation func-

tions ([LY]) or quasi-Hölder functions ([Ss]), that are preserved by the transfer

∗Notice that T−n denotes the inverse of Tn restricted to the domain of injectivity contain-
ing p.
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operator of the dynamical system. Our paper follows the latter way and we give

some conditions on Banach spaces through which one can obtain some statistical

properties such as existence of a physical measure and decay of correlations.

We would like to remark at this point that the functional space is abstract,

as long as certain general assumptions (Assumption B(d) to (f)) are satisfied. In

the applications, we present two type of Banach spaces. It seems interesting to

find more different spaces to deal with different kinds of dynamical systems. We

finally observe that renewal theory has been recently used by Melbourne and

Terhesiu in the already quoted paper [MT] to give, in some situations, upper

bounds under less restrictive conditions.

Part I: Conditions for Polynomial Decay Rates

1 Assumptions and statements of results

Let X ⊂ Rm be a subset with positive Lebesgue measure ν. We assume ν(X) =

1. Let d be the (euclidean) metric induced from Rm.

The transfer (Perron-Frobenius) operator P = Pν : L1(X, ν) → L1(X, ν)

is defined by
∫
ψ ◦ Tϕdν =

∫
ψPϕdν ∀ϕ ∈ L1(X, ν), ψ ∈ L∞(X, ν).

Let X̂ ⊂ X be a measurable subset of X with positive Lebesgue measure.

Recall that the first return map of T with respect to X̂ ⊂ X is defined by

T̂ (x) = T τ(x)(x), where τ(x) = min{i ≥ 1 : T ix ∈ X̂} is the return time. We

put ν̂ the normalized Lebesgue measure on X̂. Then we let P̂ = P̂ν̂ be the

transfer operator of T̂ .

Moreover we define

Rnf = 1X̂ · Pn(f1{τ=n}) and Tnf = 1X̂ · Pn(f1X̂) (1.1)

for any function f on X̂. For any z ∈ C, denote R(z) =
∞∑

n=1

znRn. It is clear

that P̂ = R(1) =
∑∞

n=1Rn.

For simplicity of notation, we regard the space L1(X̂, ν̂) as a subspace

L1(X, ν) consisting of functions supported on X̂, and we denote it with L1(ν̂)

or L1 sometimes and when no ambiguity arises.

Suppose that there is a seminorm | · |B for functions in L1(X̂, ν̂). Consider

the set B = B(X̂) = {f ∈ L1(X̂, ν̂) : |f |B <∞}. Define a norm on B by

∥f∥B = |f |B + ∥f∥1

for f ∈ B, where ∥f∥1 is the L1 norm. We assume that B satisfies the following.

Assumption B. (a) (Compactness) B is a Banach space and the inclusion

B ↪→ L1(ν̂) is compact; that is, any bounded closed set in B is compact in

L1(ν̂).
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(b) (Boundness) The inclusion B ↪→ L∞(ν̂) is bounded; that is, ∃Cb > 0 such

that ∥f∥∞ ≤ Cb∥f∥B for any f ∈ B.

(c) (Algebra) B is an algebra with the usual sum and product of functions, in

particular there exists a constant Ca such that ∥fg∥B ≤ Ca∥f∥B∥g∥B for

any f, g ∈ B.

The possibility of computing a lower bound for the decay of correlations relies

on the following important result first established by Sarig [Sr] and successively

improved by Gouëzel [Go], here we take Gouëzel’s version.

Theorem. [Sr, Go] Let Tn be bounded operators on a Banach space B such

that T (z) = I +
∑

n≥1 z
nTn converges in Hom(B,B) for every z ∈ D. Assume

that:

(R1) (Renewal equation) for every z ∈ D, T (z) = (I − R(z))−1, where R(z) =∑
n≥1 z

nRn, Rn ∈ Hom(B,B) and
∑

n≥1 ∥Rn∥ < +∞.

(R2) (Spectral gap) 1 is a simple isolated eigenvalue of R(1).

(R3) (Aperiodicity) for every z ∈ D \ {1}, I −R(z) is invertible.

Let P be the eigenprojection of R(1) at 1. If
∑

k>n ∥Rk∥ = O(1/nβ) for some

β > 1 and PR′(1)P ̸= 0, then for all n,

Tn =
1

λ
P +

1

λ2

∞∑
k=n+1

Pk + En, (1.2)

where λ is given by PR′(1)P = λP , Pn =
∑

k>n PRkP and En ∈ Hom(B,B)
satisfies ∥En∥ = O(1/nβ) if β > 2, O(log n/n2) if β = 2, and O(1/n2β−2) if

2 > β > 1.

In the dynamical setting we are interested in, the operators Tn and Rn

are defined by (1.1). In order to check points (R1) to (R3) in the statement

above, one needs equivalent dynamical properties, which are summarized in the

following spectral-like assumption; we will denote D = {z ∈ C : |z| < 1} and

S = {z ∈ C : |z| = 1}.

Assumption S. Let X ⊂ Rm be compact subset with νX = 1 and X̂ ⊂ X be a

compact subset of X.

Let T : X → X be a map whose first return map with respect to X̂ is T̂ = T τ ,

and B be a Banach space satisfying Assumption B(a) to (c). We assume the

following.

(S1) (Lasota-Yorke inequality) There exist constants η ∈ (0, 1) and D > 0 such

that for any f ∈ B,

|P̂f |B ≤ η|f |B +D∥f∥1; (1.3)
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(S2) (Spectral radius) There exist constants B, D̂ > 0 and η̂ ∈ (0, 1) such that

for any f ∈ B, z ∈ D,

∥R(z)nf∥B ≤ |zn|
(
Bη̂n∥f∥B + D̂∥f∥1

)
; (1.4)

(S3) (Ergodicity) The measure µ̂ given by µ̂(f) = ν̂(ĥf) is ergodic, where ĥ is

a fixed point of P̂.

(S4) (Aperiodicity) The function eitτ given by the return time is aperiodic, that

is, the only solution for eitτ = f/f◦T̂ almost everywhere with a measurable

function f : X̂ → S are f constant almost everywhere and t = 0.

(S5) (Return times tail) The B-norm of the operator Rn is summable and sat-

isfies
∑∞

k=n+1 ∥Rk∥B = O(n−β) for some β > 1

Before commenting on the correspondence between assumptions R(1)−R(3)
and S(1)−S(5), we observe that Assumption S implies the following important

theorem on decay of correlations whose proof is basically in the seminal paper

by Sarig [Sr], see also [Go]:

Theorem. Let us suppose that Assumption (S) is satisfied; then there exists

a constant C > 0 such that for any function f ∈ B, g ∈ L∞(X, ν) with

supp f, supp g ⊂ X̂,∣∣∣Cov(f, g ◦ Tn)−
( ∞∑
k=n+1

µ(τ > k)
)∫

fdµ

∫
gdµ

∣∣∣ ≤ CFβ(n)∥g∥∞∥f∥B, (1.5)

where Fβ(n) = 1/nβ if β > 2, (log n)/n2 if β = 2, and 1/n2β−2 if 2 > β > 1.

Comments. 1. We begin to observe that whenever for the system (T̂ , ν̂) the

Lasota-Yorke’s inequality (1.3) is satisfied for any function f ∈ B, and if

the Banach space B satisfies Assumption B(a), then P̂ has a fixed point

ĥ ∈ B with ĥ ≥ 0 and P̂ĥ = ĥ, and the measure µ̂ defined by µ̂(f) = ν̂(fĥ)

is T̂ invariant. Such a measure measure µ̂ can be extended to an absolutely

continuous invariant measure µ on X in the usual way (see e.g. [Kk]). It

is well known that if µ̂ is ergodic, so is µ. Ergodicity of µ̂, as required by

(S3) immediately implies (R2).

2. The aperiodicity condition (R3) follows if we show that 1 is not an eigen-

value of R(z) for |z| = 1 with z ̸= 1. Let us fix 0 < t < 2π and put z = eit;

if we suppose that R(z)f = f for some nonzero f ∈ B, by the arguments

developed in the proof of the Lemma 6.6 in [Go] that is equivalent to the

equation e−itτf ◦ T̂ = f almost everywhere. By the aperiodicity condi-

tion (S4) we conclude that t = 0 and f is a constant µ̂-almost everywhere

which is a contradiction.
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3. Practically, (1.4) usually can be obtained in a similar way as (1.3), (for

example, see the proof of Theorem D). On the other hand, since P̂ = R(1),

(1.4) implies the Lasota-Yorke inequality for P̂n for some n > 0 with

Bη̂n < 1.

4. As we said in the Introduction, Assumption (S4) is actually equivalent

to the fact that µ is weak mixing for T (see e.g [PP]). Since decay of

correlations implies mixing, we obtain that with Lasota-Yorke inequality,

weak mixing implies mixing. This fact is also implied in the theorem of

Ionescu-Tulcea and Marinescu ([IM]).

Assumption (S4) is usually difficult to check. However, for piecewise ex-

panding systems, the condition could be verified and we will give some sufficient

conditions in Theorem B below.

The more general version of aperiodicity is as the following. Let G be a

locally compact Abelian polish group. A measurable function ϕ : X̂ → G is

aperiodic if the only solutions for γ ◦ ϕ = λf/f ◦ T almost everywhere with

γ ∈ Ĝ, |λ| = 1 and a measurable function f : X̂ → G are γ = 1, λ = 1 and

f constant almost everywhere. (See [ADSZ] and references therein.) Here we

only consider the case γ = id, and ϕ = eitτ , and G being the smallest compact

subgroup of S containing eit.

We denote by Bε(Γ) the ε neighborhood of a set Γ ⊂ X.

Assumption T. (a) (Piecewise smoothness) There are countably many dis-

joint open sets U1, U2, · · · , with X̂ =
∪∞

i=1 Ui such that for each i, T̂i :=

T̂ |Ui extends to a C1+α diffeomorphism from U i to its image, and τ |Ui is

constant; we will use the symbol T̂i to denote the extension as well.

(b) (Finite images) {T̂Ui : i = 1, 2, · · · } is finite, and νBε(∂T̂Ui) = O(ε)

∀i = 1, 2, · · · .

(c) (Expansion) There exists s ∈ (0, 1) such that d(T̂ x, T̂ y) ≥ s−1d(x, y)

∀x, y ∈ U i ∀i ≥ 1.

(d) (Topological mixing) T : X → X is topological mixing.

Remark 1.1. Conditions (b) and (c) in Assumption T correspond to condi-

tions (F) and (U) in [ADSZ]. There is there a third assumption, (A), which

is distortion and which is not necessarily guaranteed in our systems. With this

precision, we could regard the systems satisfying Assumption T(a)-(c) as higher

dimensional “AFU systems”.

Remark 1.2. We mention that if T has relatively prime return time on almost

all points x ∈ X̂, then Condition (d) is satisfied.

Also we put some more assumptions on the Banach space B.
A set U ⊂ X̂ is said to be almost open with respect to ν̂ if for ν̂ almost every

point x ∈ U , there is a neighborhood V (x) such that ν̂(V (x) \ U) = 0.
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Assumption B. (d) (Denseness) The image of the inclusion B ↪→ L1(ν̂) is

dense in L1(ν̂).

(e) (Lower semicontinuity) For any sequence {fn} ⊂ B with lim
n→∞

fn = f

ν̂-almost everywhere, |f |B ≤ lim inf
n→∞

|fn|B.

(f) (Openness) For any nonnegative function f ∈ B, the set {f > 0} is almost

open with respect to ν̂.

Remark 1.3. Assumption B(f) means that functions in B are not far from

continuous functions.

Take a partition ξ of X̂. Consider a family of skew-products of the form

T̃ = T̃S : X̂ × Y → X̂ × Y , T̃S(x, y) =
(
T̂ x, S(ξ(x))(y)

)
, (1.6)

where (Y,F , ρ) is a Lebesgue probability space, Aut(Y ) is the collection of

its automorphisms, that is, invertible measure-preserving transformations, and

S : ξ → Aut(Y ) is arbitrary.

Consider functions f̃ ∈ L1(ν̂ × ρ) and define

|f̃ |B̃ =

∫
Y

|f̃(·, y)|Bdρ(y), ∥f̃∥B̃ = |f̃ |B̃ + ∥f̃∥L1(ν̂×ρ).

Then we let

B̃ = {f̃ ∈ L1(ν̂ × ρ) : |f̃ |B̃ <∞}.

It is easy to see that with the norm ∥ · ∥B̃, B̃ is a Banach space.

The transfer operator P̃ = P̃ν̂×ρ acting on L1(ν̂ × ρ) is defined as the dual

of the operator f̃ → f̃ ◦ T̃ from L∞(ν̂ × ρ) to itself. Note that if Y is a space

consisting of a single point, then we can identify X̂ × Y , T̃ and P̃ with X̂, T̂

and P̂ respectively.

Theorem B. Suppose T̂ satisfies Assumption T(a) to (d) and B satisfies As-

sumption B(d) to (f), and P̃ satisfies the Lasota-Yorke inequality

|(P̃ f̃)|B̃ ≤ η̃|f̃ |B̃ + D̃∥f̃∥L1(ν̂×ρ) (1.7)

for some η̃ ∈ (0, 1) and D̃ > 0. Then the absolutely continuous invariant

measure µ̂ obtained from the Lasota-Yorke inequality (1.3) is ergodic and eitτ is

aperiodic. Therefore Assumptions (S3) and (S4) follow.

Remark 1.4. The theorem is for ergodicity and aperiodicity of µ. As we men-

tioned in the Comment (4) above, aperiodicity of µ is equivalent to weak mixing

for µ with respect to T . So practically, if we know that µ is mixing or weak

mixing for T , then we do not need to use the theorem.

9



Remark 1.5. Same as for (1.4), the inequality (1.7) may be obtained in a sim-

ilar way as (1.3). This is because any S(ξ(x)) is a measure preserving trans-

formation, and therefore P̂ and P̃ have the same potential function. (See the

proof of Theorem D).

Remark 1.6. It is well known that for C1+α, α > 1, uniformly expanding maps

or uniformly hyperbolic diffeomorphisms, the absolutely continuous invariant

measures µ are ergodic if the maps are topological mixing. However, it is not

the case if the conditions on C1+α or uniformty of hyperbolicity fails. In [Qu]

the author gives an example of C1 uniformly expanding maps of the unite circle,

and in [HPT] the authors provide an example of C∞ diffeomorphisms, where

Lebesgue measures are preserved and topological mixing does not give ergodicity.

In the proof of the theorem we in fact give some additional conditions under

which topological mixing implies ergodicity (see Lemma 2.2).

2 Aperiodicity

The proof of Theorem B is based on a result in [ADSZ]. We briefly mention the

terminology used there.

A fibered system is a quintuple (X,A, ν, T, ξ), where (X,A, ν, T ) is a non-

singular transformation on a σ-finite measure space and ξ ⊂ A is a finite or

countable partition (mod ν) such that:

(1) ξ∞ =
∨∞

i=0 T
−iξ generates A;

(2) every A ∈ ξ has positive measure;

(3) for every A ∈ ξ, T |A : A→ TA is bimeasurable invertible with nonsingular

inverse.

The transformation given in (1.6) is called the skew products over ξ. Con-

sider the corresponding transfer operator of P̃ = P̃ν×ρ. A fibred system

(X,A, ν, T, ξ) with ν finite is called skew-product rigid if for every invariant

function h̃(x, y) of P̃ of an arbitrary skew product T̃S , the set {h̃(·, y) > 0} is

almost open (mod ν) for almost every y ∈ Y . In [ADSZ], a set U being almost

open (mod ν) means that for ν almost every x ∈ U , there is a positive integer

n such that ν(ξn(x) \ U) = 0. Since the partition ξ we are interested in sat-

isfies ν(∂A) = 0 for any A ∈ ξn and T̂ is piecewise smooth, the fact that ξ∞
generates A implies that the definition given there is the same as we defined for

Assumption B(f).

A set that can be expressed in the form T̂nξn(x), n ≥ 1 and x ∈ X̂, is called

an image set. A cylinder C of length n0 is called a cylinder of full returns, if for

almost all x ∈ C there exist nk ↗ ∞ such that T̂nkξnk+n0(x) = C. In this case

we say that T̂n0(C) is a recurrent image set.

Our proof of Theorem B is based on a result given in Theorem 2 in [ADSZ]:
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Theorem. Let (X,A, µ, T, ξ) be a skew-product rigid measure preserving fibered

system whose image sets are almost open. Let G be a locally compact Abelian

polish group. If γ ◦ ϕ = λf/f ◦ T holds almost everywhere, where ϕ : X → G, ξ

measurable, γ ∈ Ĝ, λ ∈ S, then f is constant on every recurrent image set.

In the proof of Theorem B and the lemmas below we will work exclusively

on the induced space X̂ and with measures ν̂ and µ̂ and density ĥ. So we will

drop the hat on these notations.

Proof of Theorem B. Recall that µ is an T̂ invariant measure with density h,

where h is the fixed point of P̂ in B. By Lemma 2.2 we know that µ is ergodic.

So we only need to prove that eitτ is aperiodic.

Denote by A the Borel σ-algebra inherited from Rm. Take a countable

partition ξ of X̂ into {Ui} or finer. We also require that each A ∈ ξ is almost

open, and νBε(∂T̂ ξ) = O(ε), where ∂T̂ ξ = ∪A∈ξ∂(T̂A). The latter is possible

because we can take smooth surfaces as the boundary of the elements of ξ, in

addition to Assumption T(b). Since T̂ is uniformly expanding by Assumption

T(c), we know that each element of ξ∞ =
∨∞

i=0 T̂
−iξ contains at most one

point. So ξ∞ generates A. We may regard that each A ∈ ξ has positive measure,

otherwise we can use X̂\A to replace X̂. Also, for every A ∈ ξ, T̂ |A : A→ T̂A is

a diffeomorphism, and therefore T̂ |A is bimeasurable invertible with nonsingular

inverse. So the quintuple (X̂,A, µ, T̂ , ξ) is a measure preserving fibered system.

The construction of ξ implies that µ(∂ξ) = ν(∂ξ) = 0. Hence, µ(∂ξn) =

ν(∂ξn) = 0 for any n ≥ 1. Note that the intersection of finite number of almost

open sets is still almost open. Differentiability of T̂ on each Ui implies that all

elements ξn(x) of ξn are almost open, and therefore all image sets T̂nξn(x) are

almost open with respect to µ.

To get skew product rigidity, let us consider the skew product T̃S defined

in (1.6) for any (Y,F , ρ). Let P̃ = P̃ν×ρ be the transfer operator and h̃ an

invariant function, that is, P̃h̃ = h̃. By Proposition 2.3 below we know that

h̃ ∈ B̃. Hence, for ρ-almost every y ∈ Y , h̃(·, y) ∈ B. By Assumption B(f),

{h̃(·, y) > 0} is almost open mod ν. This gives the skew product rigidity.

So far we have verified all conditions in the theorem of [ADSZ] stated above.

Applying the theorem to the equation eitτ = f/f ◦ T̂ almost everywhere, where

f : X̂ → S is a measurable function, we get that f is constant on every recurrent

image sets J .

Now we prove aperiodicity, by following similar arguments in [Go]. Assume

the equation eitτ = f/f ◦ T̂ holds almost everywhere for some real number t and

a measurable function f : X̂ → S. By Lemma 2.1 below we get that X̂ contains

a recurrent image set J with µ(J) > 0. By the theorem above, we know that

f is constant, say c, almost everywhere on J . By the absolute continuity of µ

and the fact that {h > 0} is ν-almost open, we can find an open set J ′ ⊂ J of

positive µ-measure. By Assumption T(d), T is topological mixing. Therefore

for all sufficiently large n, we have T−nJ ′ ∩ J ′ ̸= ∅. Since the intersection is
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open† , we get that µ(T−nJ ′∩J ′) > 0. So for any typical point x in T−nJ ′∩J ′,

there is k > 0 such that Tnx = T̂ kx, and n =
∑k−1

i=0 τ(T̂
ix). Since eitτ = f/f ◦T̂

along the orbit of x, we have

eint = eit
∑k−1

0 τ(T̂ ix) =
f(x)

f(T̂ x)

f(T̂ x)

f(T̂ 2x)
· · · f(T̂

k−1x)

f(T̂ kx)
=

f(x)

f(T̂ kx)
=
c

c
= 1.

Since this is true for all large n, by replacing n by n+ 1 we get that eit = 1. It

follows that t = 0 and f = f ◦ T̂ almost everywhere which implies that f must

be a constant almost everywhere since µ is ergodic.

To prove Lemma 2.1, we need a result from Lemma 2 in Section 4 in [ADSZ].

We state it as the next lemma. The setting for the lemma is a conservative

fibered system. So it can be applied directly to our case.

Lemma. A cylinder C ∈ ξn0 is a cylinder of full returns if and only if there

exists a set K of positive measure such that for almost every x ∈ K, there are

ni → ∞ with T̂niξni+n0(x) = C.

Lemma 2.1. There is a recurrent image set J contained in X̂ with µJ > 0.

Proof. Recall that s is given in Assumption T(c). Take Cξ > 0 such that

diamD ≤ Cξ for all D ∈ ξ. Set

A′
k,n0

= {x ∈ X̂ : x /∈ BCξsk+n0 (∂T̂ ξ)},

An,n0 =

n−1∩
k=0

T̂n−kA′
k,n0

.

By the construction of ξ, there is C ′ > 0 such that νA′
k,n0

≥ 1 − C ′Cξs
k+n0 .

By Assumption B(b), ∥h∥∞ < ∞. So if we take C = C ′Cξ∥h∥∞/(1 − s), then

µAk,n0 ≥ 1 − C ′Cξ∥h∥∞sk+n0 = 1 − C(1 − s)sk+n0 . Since µ is an invariant

measure, µAn,n0 ≥ 1− C(1− s)
∑n−1

i=0 s
i+n0 ≥ 1− Csn0 . If we choose n0 large

enough, then µAn,n0 is bounded below by a positive number for all n > 0, and

the bound can be chosen arbitrarily close to 1 by taking n0 sufficiently large.

Note that ξn is a partition with at most countably many elements. For each

n0 > 0, let B′
n0

be the union of finite elements of ξn0 such that µB′
n0

> 1 −
Csn0/2. Then set Bn,n0 = B′

n0
∩ T̂−nB′

n0
. Clearly, µBn,n0 ≥ 1−Csn0 . Denote

Cn,n0 = An,n0 ∩Bn,n0 . We have µCn,n0 ≥ 1−2Csn0 . Hence,
∑∞

n=0 µCn,n0 = ∞
for all large n0.

A generalized Borel-Cantelli Lemma by Kochen and Stone ([KS], see also

[Ya]) gives that for any given n0 > 0, the set of points that belong to infinitely

many Cn,n0
has the measure bounded below by

lim sup
n→∞

∑
1≤i<k≤n µCi,n0µCk,n0∑

1≤i<k≤n µ(Ci,n0 ∩ Ck,n0)
.

†Strictly speaking that intersection contains open sets since T and all its powers, although
not continuous, are local diffeomorphisms, on each domain where they are injective.
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Note that if n0 → ∞, then both µCi,n0
and µCk,n0

approach to 1. Hence the

upper limit goes to 1 as n0 → 1. Denote

Γn0 = {x ∈ X̂ : x ∈ Cn,n0 infinitely often}.

The above arguments gives µΓn0 → 1 as n0 → ∞.

Note that for a one to one map T , T (A ∩ T−1B) = B if and only if

B ⊂ TA. Since ξn(x) = ξ(x) ∩ T̂−1(ξn−1(T̂ x)), and T̂ is a local diffeomor-

phism, we know that T̂ ξn(x) = ξn−1(T̂ x) if and only if ξn−1(T̂ x) ⊂ T̂ ξ(x).

Inductively, T̂nξn+n0(x) = ξn0(T̂
nx) if and only if ξn−i+n0(T̂

ix) ⊂ T̂ ξ(T̂ i−1x)

for i = 1, · · · , n. If x ∈ An,n0 for some n, n0 > 0, then T̂n−ix /∈ BCξsi+n0 (∂T̂ ξ)

for all i = 1, · · · , n. Since the diameter of each member of ξ is less then Cξ,

by Assumption T(c), diam ξn(x) ≤ Cξs
n for any x ∈ X̂ and n ≥ 0. We get

ξn−i+n0(T̂
ix) ⊂ T̂ ξ(T̂ i−1x) and therefore T̂nξn+n0(x) = ξn0(T̂

nx). Conse-

quently, if x ∈ Γn0 , then x ∈ Cni,n0 = Ani,n0 ∩ Bni,n0 for infinitely many

ni. Hence, T̂
niξni+n0(x) = ξn0(T̂

nix) and T̂nix ∈ Bn0 for infinitely many ni,

Take n0 > 0 such that µΓn0 > 0. Since Bn0 consists of only finitely many

elements in ξn0
, we know that there is an element C ∈ ξn0

with C ⊂ Bn0
such

that

µ{x : T̂nξn+n0(x) = ξn0(T̂
nx) = C infinitely often} > 0. (2.1)

By the above lemma from [ADSZ], C is a cylinder of full returns. Hence,

J = T̂n0C is a recurrent image set. Since µ is an invariant measure, (2.1)

implies µC > 0 and therefore µJ > 0.

Lemma 2.2. Suppose T and B satisfies Assumption T(d) and B(f) respec-

tively. Then there is only one absolutely continuous invariant measure µ which

is ergodic.

Proof. Suppose µ has two ergodic components µ1 and µ2 whose density func-

tions are h1 and h2 respectively. Hence, ν({h1 > 0} ∩ {h2 > 0}) = 0. Since

h1, h2 ∈ B, the sets {h1 > 0} and {h2 > 0} are almost open. We can take

open sets U1 and U2 such that ν(U1 \ {h1 > 0}) = 0 and ν(U2 \ {h1 > 0}) = 0.

Since T is topological mixing, there is n > 0 such that T−nU1 ∩U2 ̸= ∅. Hence,

ν(T−nU1 ∩ U2) > 0 and therefore ν(U1 ∩ TnU2) > 0. It follows that there

is k > 0 such that ν(U1 ∩ T̂ kU2) > 0. Since P̂h2 = h2, h2(x) > 0 implies

h2(T̂
kx) > 0. Hence ν(T̂ kU2 \ {h2 > 0}) = 0. Therefore, ν({h1 > 0} ∩ {h2 >

0}) ≥ ν(U1 ∩ T̂ kU2) > 0, which is a contradiction.

We are left with the proof that any fixed point h̃ of P̃ belongs to B. The
result was proved for Gibbs-Markov maps in [AD]. We show that it holds in

more general cases.

Proposition 2.3. Suppose that B satisfies Assumption B(d) and (e), and P̃
satisfies Lasota-Yorke inequality (1.7). Then any L1(ν×ρ) function h̃ on X̂×Y
that satisfies P̃ν×ρh̃ = h̃ belongs to B̃.
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Proof. By Assumption B(d), B is dense in L1(X̂, ν). It is easy to see that B̃
is dense in L1(X̂ × Y, ν × ρ). Hence, for any ε > 0 we can find a nonnegative

function f̃ε ∈ B̃ such that ∥f̃ε−h̃||L1(ν×ρ) < ε. By the stochastic ergodic theorem

of Krengel ([Kr]), there exists a nonnegative function h̃ε ∈ L1(X̂×Y, ν×ρ) and
a subsequence {nk} such that

lim
k→∞

1

nk

nk−1∑
ℓ=0

P̃ℓf̃ε = h̃ε ν × ρ-a.e. (2.2)

and P̃h̃ε = h̃ε.

Note that Lasota-Yorke inequality (1.7) implies that for any f̃ ∈ B̃, ℓ ≥ 1,

|P̃ℓf̃ |B̃ ≤ η̃ℓ|f̃ |B̃ + D̃∗∥f̃∥L1(ν×ρ) ≤ D̃2∥f̃∥B̃, (2.3)

where D̃∗ = D̃η̃/(1 − η̃) ≥ D̃(η̃ + · · · + η̃ℓ−1) and D̃2 = 1 + D̃∗. Denote ψk =

1

nk

nk−1∑
ℓ=0

P̃ℓfε. By (2.3) ψk ≤ D̃2∥f̃∥B̃. (2.2) implies that lim inf
k→∞

ψk(x, y) =

h̃ε(x, y) for ν-a.e. x ∈ X̂, ρ-a.e. y ∈ Y . Hence, by Assumption B(e) and Fatou’s

lemma we obtain

|h̃ε|B̃ =

∫
Y

| lim
k→∞

ψk(·, y)|Bdρ(y) ≤
∫
Y

lim inf
k→∞

|ψk(·, y)|Bdρ(y)

≤ lim inf
k→∞

∫
Y

|ψk(·, y)|Bdρ(y) = lim inf
k→∞

|ψk|B̃ ≤ D̃2||f̃ε||B̃
(2.4)

It means h̃ε ∈ B̃.
By Fatou’s Lemma and the fact that P̃ is a contraction on L1(X̂×Y, ν×ρ),

it follows immediately that (2.2) and the fact P̃h̃ = h̃ imply

∥h̃− h̃ε∥L1(ν×ρ) ≤ lim inf
k→∞

1

nk

nk−1∑
l=0

||P̃ℓ(h̃− f̃ε)∥L1(ν×ρ) ≤ ∥h̃− f̃ε∥L1(ν×ρ) ≤ ε.

By the first inequality of (2.3) we know that for any n ≥ 1,

∥h̃ε∥B̃ = ∥P̃nh̃ε∥B̃ ≤ η̃n∥h̃ε∥B̃ + D̃∗∥h̃ε∥L1(ν×ρ).

Sending n to infinity we get ∥h̃ε∥B̃ ≤ D̃∗∥h̃ε∥L1(ν×ρ) ≤ D̃∗(∥h̃∥L1(ν×ρ + ε).

Replace now ε with a decreasing sequence cn → 0 as n→ ∞. Since h̃cn converges

in L1(ν × ρ) to h̃, there is a subsequence ni such that limi→∞ h̃cni
= h̃, ν×ρ-a.e..

Then by the same arguments as for (2.4), we see

|h̃− h̃cn |B̃ ≤ lim inf
i→∞

|h̃cni
− h̃cn |B̃ ≤ 2 sup

0≤ε≤1
∥h̃ε∥B̃ ≤ 2D̃1(∥h̃∥L1(ν×ρ) + 1).

So we get h̃− h̃cn ∈ B̃.
Therefore h = (h− hcn) + hcn ∈ B̃ and this completes the proof.
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Part II: Applications to non-Markov Maps

We now apply our results to piecewise expanding non-Markov maps with

an indifferent fixed point. We use different Banach spaces for maps in one and

higher dimensional spaces.

3 Systems on the interval

The object of this section is twofold: to give an example of a Banach space

which fits our assumptions, and to provide the lower bound for the decay of cor-

relations. Moreover, we will use a large space of observables, bounded variation

function instead of Hölder continuous functions.

Let X = I = [0, 1] and ν be the Lebesgue measure on X.

Recall that for a map T : X → X and a subset X̂ ⊂ X, the corresponding

first return map is denoted by T̂ : X̂ → X̂; ν̂ will denote again the normalized

Lebesgue measure over X̂.

Assume that T : X → X is a map satisfying the following assumptions.

Assumption T′. (a) (Piecewise smoothness) There are points 0 = a0 <

a1 < · · · < aK = 1 such that for each j, Tj = T |Ij is a C2 diffeomor-

phism on its image, where Ij = (aj−1, aj).

(b) (Fixed point) T (0) = 0.

(c) (Expansion) There exists z ∈ I1 such that T (z) ∈ I1 and ∆ := inf
x∈X̂

|T ′(x)| >

2 for any x ∈ X̂, where X̂ = [z, 1].

(d) (Distortion) Γ := sup
x∈[z,1]

|T̂ ′′(x)|/|T̂ ′(x)|2 ≤ ∞.

(e) (Topological mixing) T : I → I is topological mixing.

Denote J = [0, z] and X̂ = X̂J = X \ J . I0 = TJ \ J ⊂ I1. We also denote

the first return map T̂ = T̂J by T̂ij if T̂ = T i
1Tj . Further, we denote I01 = I1 \J ,

I0j = Ij \T−1
j J if j > 1, and Iij = T̂−1

i,j I0 for i > 0. Hence, {Iij : i = 0, 1, 2, · · · }
form a partition of Ij = (aj , bj) for j = 2, · · · ,K. Also, we denote Īij = [aij , bij ]

for any i = 0, 1, 2, · · · and j = 1, · · · ,K.

Recall that the variation of a real or complex valued function f on [a, b] is

defined by

V b
a (f) = V[a,b](f) = sup

ξ∈Ξ

n∑
i=1

|f(x(ℓ))− f(x(ℓ−1))|,

where ξ is a finite partition of [a, b] into a = x(0) < x(1) < · · · < x(n) = b and

Ξ is the set of all such partitions. A function f ∈ L1([a, b], ν), where ν denotes

the Lebesgue measure, is of bounded variation if V[a,b](f) = infg V[a,b](g) < ∞,
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where the infimum is taken over all the function g = f ν-a.e.. Let B be the

set of functions f ∈ L1(X̂, ν̂), f : X̂ → R with V (f) := VX̂(f) < ∞. For

f ∈ B, denote by |f |B = V (f), the total variation of f . Then we define ∥f∥B =

∥f∥1 + |f |B, where the L1 norm is intended with respect to ν̂. It is well known

that ∥ · ∥B is a norm, and with the norm, B becomes a Banach space.

To obtain the decay rates, we also assume that there are constants 0 < γ < 1,

γ′ > γ and C > 0 such that in a neighborhood of the indifferent fixed point

p = 0,

T (x) = x+ Cx1+γ +O(x1+γ′
),

T ′(x) = 1 + C(1 + γ)xγ +O(xγ
′
),

T ′′(x) = Cγ(1 + γ)xγ−1 +O(xγ
′−1).

(3.1)

For any sequences of numbers {an} and {bn}, we will denote an ≈ bn if

lim
n→∞

an/bn = 1, and an ∼ bn if c1bn ≤ an ≤ c2bn for some constants c2 ≥ c1 > 0.

Denote

dij = sup{|T̂ ′
ij(x)|−1 : x ∈ Iij}, dn = max{dn,j : 2 ≤ j ≤ K}. (3.2)

Theorem C. Let X̂, T̂ and B are defined as above. Suppose T satisfies As-

sumption T ′ (a) to (e). Then Assumption B(a) to (f) and assumptions S(1) to

S(4) are satisfied and ∥Rn∥ ≤ O(dn). Hence, if dn = O(n−β) for some β > 1,

then there exists C > 0 such that for any functions f ∈ B, g ∈ L∞(X, ν) with

supp f, supp g ⊂ X̂, (1.5) holds.

In particular, if T satisfies (3.1) near 0, then

∞∑
k=n+1

µ(τ > k) has the order

n−(1/γ−1) and dn has the order O(n−(1/γ+1)). So we have

Cov(f, g ◦ Tn) ≈
∞∑

k=n+1

µ(τ > k)

∫
fdµ

∫
gdµ ∼ 1/n1/γ−1.

It is well known that if the map T allows a Markov partition, then the rate

of decay of correlations is of order O(n−(1/γ−1)) (see e.g. [Hu], [Sr],[LSV], [PY]).

For non-Markov case, the upper bound estimate is given in [Yo2], in [MT], and

[Sr] for observables with some Hölder property. With the methods in [Sr], the

lower bound could be obtained by estimating the lower bound of the decay rate

of the tower. Since our methods do not require Markov properties, the decay

rates can be obtained directly from the size of the sets {τ ≥ k}; we also stress

that our observables are functions with bounded variation.

Proof of Theorem C. By Lemma 3.1 below, B satisfies Assumption B(a) to (f).

By Lemma 3.2, we know that conditions S(1) and S(2) are satisfied. Notice

that all requirements of Assumption T are satisfied, since part (a), (c) and (d)

follow from Assumption T′(a), (c) and (e) directly, and part (b) follows from
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the definition of T̂ . Moreover Lemma 3.2 (iii) gives (1.7). Hence Theorem B

can be applied and therefore conditions S(3) and S(4) are satisfied.

The estimate ∥Rn∥ = O(dn) follows from Lemma 3.3: we have thus proved

the decay of correlations (1.5).

Suppose that T also satisfies (3.1). Denote by zn ∈ I1 the point such that

Tn(zn) = z. It is well known that zn ≈ (γn)−1/γ (see e.g. Lemma 3.1 in

[HV]), and then we can obtain (T−n
1 )′(x) = O(n−1/γ−1). It follows that dn =

O(n−1/γ+1). Since the density function h is bounded on X̂, µ(τ > k) ≤ C1ν(τ >

k) ≤ C2zk for some C1, C2 > 0. Hence
∞∑

k=n+1

µ(τ > k) = O(n−1/γ−1)).

Lemma 3.1. B is a Banach space satisfying Assumption B(a) to (f) with Ca =

Cb = 1.

Proof. These are standard facts, see for instance [Zm].

Lemma 3.2. There exist constants η ∈ (0, 1) and D, D̄ > 0 satisfying

(i) for any f ∈ B, |P̂f |B ≤ η|f |B +D∥f∥L1(ν̂);

(ii) for any f ∈ B, ∥R(z)f∥B ≤ |z|
(
η∥f∥B + D̄∥f∥L1(ν̂)

)
; and

(iii) for any f ∈ B̃, ∥P̃ f̃∥B̃ ≤ η∥f̃∥B̃ +D∥f̃∥L1(ν̂×ρ).

Proof. (i) Denote xij = T̂−1
ij (x), and ĝ(xij) = |T̂ ′

ij(xij)|−1. By the definition,

we have

P̂f(x) =
K∑
j=1

∞∑
i=0

f(T̂−1
ij x)ĝ(T̂−1

ij x)1T̂ Iij
(x).

Take a partition ξ of T̂ Iij into T̂ijaij = x(0) < x(1) < · · · < x(kij) = T̂ijbij ,

where we assume T̂ijaij < T̂ijbij without loss of generality. Whenever T̂ Iij may

intersect more than one intervals Ik = (ak, bk) in the case i = 0, then we put

the endpoints ak and bk into the partition. Denote x
(ℓ)
ij = T̂−1

ij x(ℓ). We have

kij∑
ℓ=1

∣∣f(x(ℓ)ij )ĝ(x
(ℓ)
ij )− f(x

(ℓ−1)
ij )ĝ(x

(ℓ−1)
ij )

∣∣
≤

kij∑
ℓ=1

ĝ(x
(ℓ)
ij )

∣∣f(x(ℓ)ij )− f(x
(ℓ−1)
ij )

∣∣+ kij∑
ℓ=1

∣∣f(x(ℓ−1)
ij )

∣∣∣∣ĝ(x(ℓ)ij )− ĝ(x
(ℓ−1)
ij )

∣∣.
(3.3)

By (3.2), ĝ(x
(ℓ)
ij ) ≤ dij . By definition,

∑kij

ℓ=1

∣∣f(x(ℓ−1)
ij ) − f(x

(ℓ)
ij )

∣∣ ≤ VIij (f).

Also, by the mean value theorem and Assumption T′(d),

|g(x̂(ℓ)ij )− ĝ(x
(ℓ−1)
ij )|

x
(ℓ)
ij − x

(ℓ−1)
ij

≤ |ĝ′(c(ℓ)ij )| = |T̂ ′′(c
(ℓ)
ij )|/|T̂ ′(c

(ℓ)
ij )|2 ≤ Γ,
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where c
(ℓ)
ij ∈ [x

(ℓ−1)
ij , x

(ℓ)
ij ]. Using the fact that

lim
max{|x(ℓ)

ij −x
(ℓ−1)
ij |}→0

kij∑
ℓ=1

∣∣f(x(ℓ−1)
ij )

∣∣(x(ℓ)ij − x
(ℓ−1)
ij ) =

∫ bij

aij

|f |dν̂,

we get from (3.3) that

VT̂ Iij
((f · ĝ) ◦ T̂−1

ij ) ≤ dijVIij (f) + Γ

∫
Iij

|f |dν̂. (3.4)

Denote c = min{ν(T̂ Iij) : i = 1, 2, · · · , 1 ≤ j ≤ K}, where c > 0 because there

are only finite number of images T̂ Iij . It can be shown that (see e.g. [Br])

V (P̂f) ≤ 2
K∑
j=1

∞∑
i=0

VT̂ Iij
((f · ĝ) ◦ T̂−1

ij ) + 2c−1∥f∥1.

By Assumption T′(c), dij ≤ ∆−1 for all i = 1, 2, · · · and j = 1, · · · ,K. Hence

|P̂f |B = V (P̂f) ≤ 2∆−1V (f) + 2Γ

∫
|f |dν̂ + 2c−1∥f∥1 = η|f |B +D∥f∥1,

where η = 2∆−1 < 1 and D = 2Γ + 2c−1 > 0.

Part (ii) and (iii) can be proved in a similar way for the proof of correspond-

ing part of Lemma 4.2.

Lemma 3.3. There exists a constant CR > 0 such that ∥Rn∥B ≤ CRdn for all

n > 0.

Proof. For f ∈ B, denote

Rijf = 1X̂ · Pi(f1Iij )(x). (3.5)

Hence Ri =
K∑
j=1

Rij and P̂ =
∞∑
i=0

K∑
j=1

Rij by definition and linearity of P̂.

Assume i > 0; since T̂ij [aij , bij ] = I0 ⊂ I, by (3.2), ν̂(Iij) ≤ dij ν̂(I0) < dij .

Hence, by Assumption B(b),∫
Iij

|f |dν̂ ≤ ∥f∥∞ν̂(Iij) ≤ Cb∥f∥B · dij ν̂(I0) ≤ Cbdij∥f∥B. (3.6)

Note that VIij (f) ≤ V (f) = |f |B < ∥f∥B. By (3.4),

VT̂ Iij
((f · ĝ) ◦ T̂−1

ij ) ≤ dij∥f∥B + ΓCbdij∥f∥B = (1 + ΓCb)dij∥f∥B. (3.7)

Since Rijf(x) = 1X̂(x) · (f · ĝ) ◦ T̂−1
ij (x), we have

|Rijf |B ≤ 2VT̂ Iij
((f · ĝ) ◦ T̂−1

ij ) + 2
1

ν̂(I0)

∫
Iij

|f |dν̂.
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By (3.6) and (3.7),

|Rijf |B ≤ 2(1 + ΓCb)dij∥f∥B + 2Cbdij∥f∥B.

On the other hand, by (3.5) and (3.6), we have

∥Rijf∥L1 =

∫
X̂

P̂i+1(f1Iij )dν̂ =

∫
Iij

fdν̂ ≤
∫
Iij

|f |dν̂ ≤ Cbdij∥f∥B.

Hence, we get

∥Rijf∥B = |Rijf |B + ∥Rijf∥L1 ≤ [2(1 + ΓCb) + 3Cb]dij∥f∥B.

By the definition of Rij and dn, we get

∥Rnf∥B ≤
K∑
j=2

∥Rn−1,jf∥B ≤ K ′(2 + 2ΓCb + 3Cb)dn,

where K ′ < K is the number of preimages of I0 that are not in I1. So the result

follows with CR = K ′(2 + 2ΓCb + 3Cb).

4 Systems on multidimensional spaces: general-

ities and the role of the derivative

The main difficulty to investigate the statistical properties for systems with an

indifferent fixed point p in higher dimensional space is that near p the system

could have unbounded distortion in the following sense: there are uncountably

many points z near p such that for any neighborhood V of z, we can find ẑ ∈ V

with the ratio

| detDT−n
1 (z)|/| detDT−n

1 (ẑ)|

unbounded as n → ∞ (see Example in Section 2 in [HV]). For this reason

we need a more deeper analysis of the expanding features around the neutral

fixed point. This has been accomplished in the previous quoted paper and in

order to construct an absolutely continuous invariant measure by adding the

Assumption T ′′ below, which, together with (4.4), will also be used to get the

rate of mixing.

4.1 Setting and Statement of results.

LetX ⊂ Rm,m ≥ 1, be again a compact subset with intX = X, d the Euclidean

distance, and ν the Lebesgue measure on X with νX = 1.

Assume that T : X → X is a map satisfying the following assumptions.
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Assumption T′′. (a) (Piecewise smoothness) There are finitely many dis-

joint open sets U1, · · · , UK with piecewise smooth boundary such that X =∪K
i=1 Ui and for each i, Ti := T |Ui can be extended to a C1+α̂ diffeomor-

phism Ti : Ũi → Bε1(TiUi), where Ũi ⊃ Ui, α̂ ∈ (0, 1] and ε1 > 0.

(b) (Fixed point) There is a fixed point p ∈ U1 such that T−1p /∈ ∂Uj for any

j = 1, . . . ,K.

(c) (Topological mixing) T : X → X is topologically mixing.

For any ε0 > 0, denote

GU (x, ε, ε0) = 2
K∑
j=1

ν(T−1
j Bε(∂TUj) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
.

Remark 4.1. We stress that the measure ν(T−1
j Bε(∂TUj) usually plays an

important role in the study of statistical properties of systems with discontinu-

ities. Here GU (x, ε, ε0) gives a quantitative measurement of the competition

between the expansion and the accumulation of discontinuities near x. We

refer to [Ss], Section 2, for more details about its geometric meaning. Fur-

thermore it is proved, still in [Ss] Lemma 2.1, that if the boundary of Ui con-

sists of piecewise C1 codimension one embedded compact submanifolds, then

GU (ε, ε0) ≤ 2NU
γm−1

γm

sε

(1− s)ε0

(
1+o(1)

)
, where NU is the maximal number of

smooth components of the boundary of all Ui that meet in one point and γm is

the volume of the unit ball in Rm.

From now on we assume that p = 0.

For any x ∈ Ui, we define s(x) as the inverse of the slowest expansion near

x, that is,

s(x) = min
{
s : d(x, y) ≤ sd(Tx, Ty), y ∈ Ui, d(x, y) ≤ min{ε1, 0.1|x|}

}
.

where the factor 0.1 makes the ball away from the origin, though any other

small factor would work as well.

Take an open neighborhood Q of p such that TQ ⊂ U1, then let

s = s(Q) = max{s(x) : x ∈ X\Q}. (4.1)

Let T̂ = T̂Q be the first return map with respect to X̂ = X̂Q = X \Q. Then

for any x ∈ Uj , we have T̂ (x) = Tj(x) if Tj(x) /∈ Q, and T̂ (x) = T i
1Tj(x) for

some i > 0 if Tj(x) ∈ Q. Denote T̂ij = T i
1Tj for i ≥ 0.

Further, we take Q0 = TQ \ Q. Then we denote U01 = U1 \ Q, U0j =

Uj \ T−1
j Q if j > 1, and Uij = T̂−1

ij Q0 for i > 0. Hence, {Uij : i = 0, 1, 2, · · · }
form a partition of Uj for j = 2, · · · ,K.
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For 0 < ε ≤ ε0, we denote

GQ(x, ε, ε0) = 2

K∑
j=1

∞∑
i=0

ν(T̂−1
ij Bε(∂Q0) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
,

and

G(x, ε, ε0) = GU (x, ε, ε0) +GQ(x, ε, ε0), G(ε, ε0) = sup
x∈X̂

G(x, ε, ε0). (4.2)

Remark 4.2. If T−1TQ ∩ ∂Uj = ∅ for any j, then for any small ε0, ei-

ther GQ(x, ε, ε0) = 0 or GU (x, ε, ε0) = 0, and therefore we have G(x, ε, ε0) =

max{GU (x, ε, ε0), GQ(x, ε, ε0)}.

Remark 4.3. If T has bounded distortion then GQ is roughly equal to the ratio

between the volume of Bε0(∂Q0) and the volume of Q0. Therefore if ε0 is small

enough, then sup
x∈X̂

{GQ(x, ε, ε0)} is bounded by sup
x∈X̂

{GU (x, ε, ε0)}.

Assumption T′′. (d) (Expansion) T satisfies 0 < s(x) < 1 ∀x ∈ X \ {p}.
Moreover, there exists an open region Q with p ∈ Q ⊂ Q ⊂ TQ ⊂ TQ ⊂
U1 and constants α ∈ (0, α̂], η ∈ (0, 1), such that for all ε0 small,

sα + λ ≤ η < 1,

where s is defined in (4.1) and

λ = 2 sup
0<ε≤ε0

G(ε, ε0)

εα
εα0 . (4.3)

(e) (Distortion) For any b > 0, there exist J > 0 such that for any small ε0
and ε ∈ (0, ε0), we can find 0 < N = N(ε) ≤ ∞ with

|detDT−n
1 (y)|

| detDT−n
1 (x)|

≤ 1 + Jεα ∀y ∈ Bε(x), x ∈ Bε0(Q0), n ∈ (0, N],

and
∞∑

n=N

sup
y∈Bε(x)

| detDT−n
1 (y)| ≤ bεm+α ∀x ∈ Bε4(Q0),

where α is given in part (d).

For sake of simplicity of notations, we may assume α̂ = α.

Remark 4.4. We put Assumption T ′′(e) since near the fixed point distortion

for DT1 is unbounded in general. It requires that either distortion of DT−n
1 is

small, or | detDT−n
1 | itself is small.
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Remark 4.5. There are some sufficient conditions under which Assumption

T ′′(d) and (e) could be easily verified. We refer [HV] for more details, see in

particular Theorems B and C in that paper.

If near p distortion is bounded, then Assumption T′′(e) is automatically

satisfied and it will be stated as follows (it could be regarded as the case N(ε) =

∞ for any ε ∈ (0, ε0)):

Assumption T′′. (e′) (Bounded distortion) There exist J > 0 such that for

any small ε0 and ε ∈ (0, ε0),

| detDT−n
1 (y)|

| detDT−n
1 (x)|

≤ 1 + Jεα ∀y ∈ Bε(x), x ∈ Bε0(Q0), n ≥ 0.

Remark 4.6. It is well known that if dimX = m = 1, any system that has the

form given by (4.4) below near the fixed point satisfies Assumption T′′(e′). The

systems given in Example 4.1 satisfy it too.

To estimate the decay rates, we often consider the following special cases:

There are constants γ′ > γ > 0, Ci, C
′
i > 0, i = 0, 1, 2, such that in a neighbor-

hood of the indifferent fixed point p = 0,

|x|
(
1− C ′

0|x|γ +O(|x|γ
′
)
)
≤|T−1

1 x| ≤ |x|
(
1− C0|x|γ +O(|x|γ

′
)
)
,

1− C ′
1|x|γ +O(|x|γ

′
) ≤∥DT−1

1 (x)∥ ≤ 1− C1|x|γ +O(|x|γ
′
),

C ′
2|x|γ−1 +O(|x|γ

′−1) ≤∥D2T−1
1 (x)∥ ≤ C2|x|γ−1 +O(|x|γ

′−1).

(4.4)

We will now define the space of functions particularly adapted to study the

action of the transfer operator on the class of maps just introduced. If Ω is

a Borel subset of X̂, we define the oscillation of f over Ω by the difference of

essential supremum and essential infimum of f over Ω:

osc(f,Ω) = Esup
Ω

f − Einf
Ω

f.

If Bϵ(x) denotes the ball of radius ϵ about the point x, then we get a measurable

function x→ osc(f, Bϵ(x)).

For 0 < α < 1 and ε0 > 0, we define the quasi-Hölder seminorm of f with

supp f ⊂ X̂ as‡

|f |B = sup
0<ϵ≤ϵ0

ϵ−α

∫
X̂

osc(f,Bϵ(x))dν̂(x), (4.5)

where ν̂ is the normalized Lebsegue measure on X̂, and take the space of the

functions as

B =
{
f ∈ L1(X̂, ν̂) : |f |B <∞

}
, (4.6)

‡Since the boundary of X̂ is piecewise smooth, we could define the space of the function
directly on X̂ instead of Rm as it was done in [Ss].
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and then equip it with the norm

∥ · ∥B = ∥ · ∥L1(X̂,ν̂) + | · |B. (4.7)

Clearly, the space B does not depend on the choice of ε0, though | · |B does.

Let sij = sup
{
∥DT̂−1

ij (x)∥ : x ∈ Bε0(Q0)
}
, and sn = max

{
sn−1,j : j =

2, · · · ,K
}
.

Theorem D. Let X̂, T̂ and B be defined as above. Suppose T satisfies Assump-

tion T ′′(a) to (e). Then there exist ε0 ≥ ε1 > 0 such that Assumption B(a)

to (f) and conditions S(1) to S(4) are satisfied and ∥Rn∥ ≤ O(sαn). Hence, if∑∞
k=n+1 s

α
n ≤ O(n−β) for some β > 1, then there exists C > 0 such that for

any functions f ∈ B, g ∈ L∞(X, ν) with supp f, supp g ⊂ X̂, (1.5) holds.

Remark 4.7. For Lipschitz observables, the rates of decay of correlation are

given by the rates of decay of µ{τ > n} if the systems have Markov partitions

and bounded distortion. It is generally believed that for Hölder observables, the

decay rates may be slower if the Hölder exponents become smaller. It is unclear

to the authors whether the rates we get are optimal. In the next section, we

will put stronger conditions on the systems so that we can get optimal rates for

Hölder observables with the Hölder exponents larger than or equal to α.

Remark 4.8. For one dimensional systems the rates given in the theorem are

optimal, since the decreasing rates given by the norm of derivatives are the same

as those given by determinants (see the discussion in the Introduction or Section

5 for more details). So the theorem provides the same decay rates as Theorem C

does, but for different sets of observables, since functions with bounded variation

are not necessary quasi-Hölder functions and vice versa.

Before giving the proof, we present an example.

Example 4.1. Assume that T satisfies Assumption T′′(a) to (d), and near the

fixed point p = 0, the map T satisfies

T (z) = z(1 + |z|γ +O(|z|γ
′
)),

where z ∈ X ⊂ Rm and γ′ > γ.

Denote zn = T−n
1 z. It is easy to see that |zn| =

1

(γn)β
+ O

( 1

nβ′

)
, where

β = 1/γ and β′ > β (see e.g. Lemma 3.1 in [HV]). Using this fact we can check

that T satisfies also Assumption T′′(e ′). Hence, the theorem can be applied.

If the dimension m ≥ 2, then ∥DT−n
1 ∥ is roughly proportional to |zn|, since,

if higher order terms are ignored, T−n
1 maps a sphere about the fixed point

of radius |z| to a sphere of radius |zn|. So sn = O
( 1

nβ

)
and

∞∑
k=n+1

sαk =

O
( 1

nαβ−1

)
. If γ ∈ (0, 1/2) is such that αβ > 1, the series is convergent.
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Note that ν(τ > n) is of the same order as zmn , and therefore µ(τ > n) =

O
( 1

nmβ−1

)
. It follows that

∞∑
k=n+1

µ(τ > k) = O
( 1

nmβ−2

)
. Since the order is

higher, by (1.5), we get ∣∣∣Cov(f, g ◦ Tn)
∣∣∣ ≤ C/nαβ−1.

for f ∈ B, g ∈ L∞(X, ν) with supp f, supp g ⊂ X̂.

On the other hand, if m = 1, then ∥DT−n
1 ∥ is roughly proportional to

|zn − zn+1|. So sn = O
( 1

nβ+1

)
and

∞∑
k=n+1

sαk = O
( 1

nα(β+1)−1

)
. If γ ∈ (0, 1)

is such that α(β + 1) > 1, the series is convergent. Also,
∞∑

k=n+1

µ(τ > k) =

O
( 1

nβ−1

)
. So if α(β + 1) > β, the sum involving sαk is of higher order. We get

that the decay rate is given by∣∣∣Cov(f, g ◦ Tn)
∣∣∣ = O(

∞∑
k=n+1

µ(τ > k)) = O
( 1

nβ−1

)
.

4.2 Proof of Theorem D

Proof of Theorem D. Choose ε0 > 0 as in Lemma 4.2, and define B correspond-

ingly by using this ε0. By Proposition 3.3 in [Ss], B is complete, and hence is a

Banach space. Then Assumption B(a) to (f) follow from Lemma 4.1.

By Lemma 4.2 we know that conditions S(1) and S(2) are satisfied. As-

sumption T′′(a), (d) and (c) imply Assumption T (a), (c) and (d) respec-

tively. Assumption T(b) is implied by the construction of the first return map.

Lemma 4.2(iii) give (1.7). So all conditions for Theorem B are satisfied. Hence

we obtain conditions S(3) and S(4). The fact ∥Rn∥ = O(sαn) follows from

Lemma 4.3.

In order to deduce the spectral properties of P̂ from the Lasota-Yorke in-

equality, one needs to verify Assumption B on the space of functions B.

Lemma 4.1. B is a Banach space satisfying Assuptions B(a) to (f) with Ca =

2Cb = 2γ−1
m ϵ−m

0 , where γm is the volume of the unit ball in Rm.

Proof. Parts (a), (b) and (c) are stated in Propositions 3.3 and 3.4 in [Ss] with

Cb = max{1, εα}/γmεm0 and Ca = 2max{1, εα}/γmεm0 . Part (d) follows from

the fact that Hölder continuous functions with compact support in X̂ are dense

in L1(X̂, ν̂).

Let us now assume f(u) = limn→∞ fn(u) for ν̂-a.e. u ∈ Rm. Take x ∈ Rm,

and ε ∈ (0, ε0). It is easy to see that for almost every pair of y, z ∈ Bε(x), we
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have

|f(y)− f(z)| ≤ lim
n→∞

|fn(y)− fn(z)| ≤ lim inf
n→∞

osc(fn, Bε(x)).

Hence, osc(f,Bε(x)) ≤ lim infn→∞ osc(fn, Bε(x)). By Fatou’s lemma, we have∫
osc(f,Bε(x))dν̂ ≤ lim inf

n→∞

∫
osc(fn, Bε(x))dν̂.

It implies |f |B ≤ lim infn→∞ |fn|B. We get part (e).

It leaves to show part (f). For a function f ∈ B, denote

Dn(f) =
{
x ∈ Rm : lim inf

ε→0
osc(f,Bε(x)) >

1

n

}
, D(f) =

∞∪
n=1

Dn(f).

Clearly D(f) is the set of discontinuous points of f . If ν̂(D(f)) > 0, then

there exists N > 0 such that Leb(DN (f)) > ι > 0. Notice that DN (f) =∪
k≥1 Sk, where Sk =

∩
n≥k{x : osc(f,B 1

n
(x)) > 1

N } is an increasing sequence

of measurable sets.

For k big enough we still have ν̂(Sk) > ι and therefore, for such a k:

|f |B ≥ sup
ε>0

ε−a

∫
DN (f)

osc(f,Bε(x))dν̂(x) ≥ sup
ε>0

ε−a

∫
Sk

osc(f,Bε(x))dν̂(x) = ∞.

This means f /∈ B; in other words, any f ∈ B satisfies ν̂(D(f)) = 0.

Take any f ∈ B with f ≥ 0 almost everywhere. If f(x) = 2c > 0 for some

x /∈ D(f), then there is ε > 0 such that osc(f,Bε(x)) ≤ c. Hence, f(x′) ≥ c > 0

for almost every point x′ ∈ Bε(x). So Bε(x) \ {f > 0} has Lebesgue measure

zero. This implies that {f > 0} is almost open and therefore part (f) follows.

Before stating the next Lemma, we remind that the space B depends on the

exponent α and the value of the seminorms on ϵ0: as we did above, we will not

index B with these two parameters. Moreover all the integrals in the next proof

will be performed over X̂.

Lemma 4.2. There exists ε∗ > 0 such that for any ε0 ∈ (0, ε∗), we can find

constants η ∈ (0, 1) and D, D̂ > 0 satisfying

(i) for any f ∈ B, |P̂f |B ≤ η|f |B +D∥f∥L1(ν̂);

(ii) for any f ∈ B, ∥R(z)f∥B ≤ |z|
(
η∥f∥B + D̂∥f∥L1(ν̂)

)
; and

(iii) for any f̃ ∈ B̃, ∥P̃ f̃∥B̃ ≤ η∥f̃∥B̃ +D∥f̃∥L1(ν̂×ρ).

Proof. By Assumption T′′ (d), sα + λ < 1. Therefore if we first choose b small

enough, we obtain ζ = J according to Assumption T′′(e), and then we could

take ε0 small enough in order to get

η := (1 + ζεα0 )(s
α + λ) + 2γ−1

m bK ′ < 1, (4.8)
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where K ′ is the number of j such that Uij ̸= ∅. Clearly, η is decreasing with ε0.

Let us define:

D := 2ζ + 2(1 + ζεα0 )λ/ε
α
0 + 2γ−1

m bK ′ > 0. (4.9)

For any x ∈ X̂, let us denote xij = T̂−1
ij x, ĝij(x) = |detDT̂ij(x)|−1 and for

f ∈ B:
Rijf = 1X̂ · Pi(f1Uij

)(x). (4.10)

Clearly,

Rijf(x) = f(xij)ĝ(xij)1Uij (xij). (4.11)

Hence Ri =
∑K

j=1Rij and P̂ =
∑∞

i=0

∑K
j=1Rij by definition and the linearity

of P̂. We also define

Gij(x, ε, ε0) = 2
ν(T̂−1

ij Bε(∂T̂Uij) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
.

Clearly, G(x, ε, ε0) = 2
∑∞

i=0

∑K
j=1Gij(G(x, ε, ε0).

For any ε ∈ (0, ε0], take N = N(ε) > 0 as in Assumption T′′(e).

For i ≤ N(ε) and by the proof of Proposition 6.2 in [HV], we know that

osc(Rijf,Bε(x)
)
= osc

(
(fĝ) ◦ T̂−1

ij 1T̂Uij
, Bε(x)

)
=osc

(
(fĝ) ◦ T̂−1

ij , Bε(x)
)
1T̂Uij

(x) +
[
2Esup

Bε(x)

(fĝ) ◦ T̂−1
ij

]
1Bε(∂T̂Uij)

(x).
(4.12)

The computation in the proof also gives

osc
(
fĝ, T̂−1

ij Bε(x) ∩ Uij

)
≤(1 + ζεα) osc

(
f, Bsε(xij) ∩ Uij

)
ĝ(xij) + 2ζεα|f(xij)|ĝ(xij).

Notice that osc
(
f, Bsε(xij)∩Uij

)
≤ osc

(
f, Bsε(xij)

)
. By integrating and using

(4.11) we get ∫
osc

(
(fĝ) ◦ T̂−1

ij , Bε(·)
)
1T̂Uij

dν̂

≤
∫ [

(1 + ζεα)Rij osc
(
f, Bsε(·)

)
+ 2ζεαRij |f |

]
dν̂.

(4.13)

On the other hand, by the same arguments as in Section 4 of [Ss], we get∫
2
[
Esup
Bsε(x)

(fĝ) ◦ T̂−1
ij

]
1Bε(∂T̂Uij)

(x)dν̂

≤2(1 + ζεα)

∫
X̂

Gij(x, ε, ε0)
[
|f |(x) + osc(f,Bε0(x))

]
dν̂.

(4.14)
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Therefore by (4.12), (4.13) and (4.14),

|Rijf |B = sup
0<ε≤ε0

ε−α

∫
osc(Rijf,Bε(·)

)
dν̂

≤ sup
0<ε≤ε0

ε−α

∫ [
(1 + ζεα)Rij osc

(
f, Bsε(·)

)
+ 2ζεαRij |f |

]
dν̂

+ sup
0<ε≤ε0

ε−α2(1 + ζεα)

∫
X̂

Gij(x, ε, ε0)
[
|f |(x) + osc(f,Bε0(x))

]
dν̂.

(4.15)

For i > N(ε), by the definition of oscillation we obtain directly that

osc(Rijf,Bε(x)
)
≤ 2∥f∥∞ sup

T̂−1
ij Bε(x)

ĝ.

Hence, by Assumption B(b) with Cb = γ−1
m ε−m

0 , we have

|Rijf |B = sup
0<ε≤ε0

ε−α

∫
osc(Rijf,Bε(·)

)
dν̂

≤2∥f∥∞ε−α sup
0<ε≤ε0

∫
sup

T̂−1
ij Bε(x)

ĝ dν̂

≤2(γmε
m
0 )−1(|f |B + ∥f∥1) ε−α sup

0<ε≤ε0

∫
sup

T̂−1
ij Bε(x)

ĝ dν̂.

(4.16)

(i) We first note that for all 0 < ε ≤ ε0,

ε−α

N(ε)∑
i=0

K∑
j=1

∫
Rij osc

(
f, Bsε(·)

)
dν̂ ≤ ε−α

∫
P̂ osc

(
f, Bsε(·)

)
dν̂

≤sα(sε)−α

∫
osc

(
f, Bsε(·)

)
dν̂ ≤ sα|f |B,

(4.17)

ε−α

N(ε)∑
i=0

K∑
j=1

∫
2(1 + ζεα)Gij(·, ε, ε0)

[
|f |+ osc(f,Bε0(·))

]
dν̂

≤ε−α2(1 + ζεα)G(ε, ε0)

∫ [
|f |+ osc(f,Bε0(·))

]
dν̂

≤(1 + ζεα)λ
[
ε−α
0 ∥f∥1 + |f |B

]
,

(4.18)

where we used (4.2) and (4.3). Also, by Assumption T′′(e) and Assumption

B(b) with Cb = γ−1
m ε−m+α

0 , we have that for all 0 < ε ≤ ε0:

ε−α∥f∥∞
∫ ∞∑

N(ε)

K′∑
j=1

sup
T̂−1
ij Bε(x)

ĝ dν̂ ≤ ε−α∥f∥∞ · bK ′εm+α ≤ γ−1
m bK ′∥f∥B.

(4.19)
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Since P̂f(x) =
∑∞

i=0

∑K
j=1Rijf(x), by (4.15) and (4.16), and using (4.17)

to (4.19), we obtain that |P̂f |B is bounded by

sup
0<ε≤ε0

ε−α
[∫ ∞∑

i=0

K∑
j=1

osc(Rijf,Bε(x))dν̂ +

∫ ∞∑
i=0

K∑
j=1

osc(Rijf,Bε(x))dν̂
]

≤(1 + ζεα0 )s
α|f |B + 2ζ∥f∥1 + (1 + ζεα0 )λ(ε

−α
0 ∥f∥1 + |f |B) + 2γ−1

m bK ′∥f∥B
≤[(1 + ζεα0 )(s

α + λ) + 2γ−1
m bK ′]|f |B + [2ζ + 2(1 + ζεα0 )λ/ε

α
0 + 2γ−1

m bK ′]∥f∥1.

By definition of η in (4.8) and D in (4.9) we get the desired inequality.

(ii) Note that for any real valued function f and z ∈ C, we have osc(zf,Bε(x)) =

|z| osc(f,Bε(x)). Also, note that if {an} is a sequence of positive numbers and

z ∈ D, |
∑∞

n=1 z
nan| ≤ |z|

∑∞
n=1 an. Hence we have

|R(z)f |B ≤ |z| sup
0<ε≤ε0

ε−α
∞∑
i=0

K∑
j=1

∫
osc(Rijf,Bε(x))dν̂ ≤ |z||P̂f |B.

By part (i), the inequality becomes

|R(z)f |B ≤ |z|(η|f |B +D∥f∥1).

Also, since P̂ and Rn are positive operators,∥∥R(z)f∥1 ≤
∞∑

n=1

∥∥znRnf
∥∥
1
≤ |z|

∞∑
n=1

∥∥Rn|f |
∥∥
1
= |z|

∥∥P̂|f |
∥∥
1
= |z|

∥∥f∥∥
1
.

It follows that

∥R(z)f∥B ≤ |z|(η∥f∥B + (D + 1)∥f∥1).
Using induction on n, we get the expected result with D̂ = (D + 1)/(1− η).

(iii) The transfer operator P̃ has the form (see also [ADSZ])

(P̃ f̃)(x, y) =
∞∑

n=0

K∑
j=1

f̃(T̂−1
ij x, S(Uij)

−1(y))g(T̂−1
ij x)1T̂Uij

(x, y),

for any f̃ ∈ B̃, where S(Uij) : Y → Y are automorphisms. Let us denote:

(R̃ij f̃)(x, y) = f̃(T̂−1
ij x, S(Uij)

−1(y))g(T̂−1
ij x)1T̂Uij

(x, y).

Following the same computations as above, we get formulas similar to (4.15)

and (4.16) but with Rn and T̂ij replaced by R̃n and T̃ij respectively, and f(·)
replaced by f̃(·, y). Denote y1 = S(Uij)

−1(y). Instead of (4.15) and (4.16), we

get that for i < N(ε),

|R̃ij f̃(·, y)|B = sup
0<ε≤ε0

ε−α

∫
osc(R̃ij f̃(·, y1), Bε(·)

)
dν̂

≤ sup
0<ε≤ε0

ε−α

∫ [(
(1 + ζεα)R̃ij osc

(
f̃(·, y1), Bsε(·)

)
+ 2ζεαR̃ij |f̃(·, y1)|

)
+2Gij(x, ε, ε0)(1 + ζεα)

(
osc(f̃(·, y1), Bε(·)) + |f̃(·, y1)|

)]
dν̂,
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and for i ≥ N(ε),

|R̃ij f̃(·, y)|B = sup
0<ε≤ε0

ε−α

∫
osc(R̃ij f̃(·, y1), Bε(·)

)
dν̂

≤2(γmε
m
0 )−1(|f̃(·, y1)|B + ∥(f̃ ·, y1)∥L1(ν))ε

−α sup
0<ε≤ε0

∫
sup

T̂−1
ij Bε(x)

ĝdν̂.

We observe that for any x, S(Uij) : Y → Y preserves the measure ρ. We set

f̄(x) =

∫
S
f̃(x, y1)dρ(y), osc

(
f̃(·), Bε(·)

)
=

∫
S
osc

(
f̃(·, y1), Bε(·)

)
dρ(y).

Integrating with respect to y, and using Fubini’s theorem, we get

|R̃ij f̃ |B̃ ≤ sup
0<ε≤ε0

ε−α

∫ [(
(1 + ζεα)R̃ijosc

(
f̃(·), Bsε(·)

)
+ 2ζεαR̃ij |f̄(·)|

)
+2Gij(xij , ε, ε0)(1 + ζεα)

(
osc(f̃(·), Bε(·)) + |f̄(·)|

)]
dν̂.

and

|R̃ij f̃ |B̃ ≤ 2(γmε
m
0 )−1(|f̃ |B̃ + ∥f̃∥L1(ν̂×ρ)) ε

−α sup
0<ε≤ε0

∫
sup

T̂−1
ij Bε(x)

ĝdν̂

By Fubini’s theorem, we have also |f̃ |B̃ = sup
0<ε≤ε0

ε−α

∫
osc(f̃(·), Bε(·))dν̂,

and |f̃ |L1(ν̂×ρ) =

∫
|f̄(·)|dν̂. Using the same arguments as in the proof of

part (i) we get

|P̃ f̃(·, y)|B̃ ≤
∞∑

n=0

K∑
j=1

|R̃ij f̃ |B̃ ≤ (1 + ζεα0 )s
α|f̃ |B̃ + 2ζ∥f̃∥L1(ν̂×ρ)

+(1 + ζεα0 )λ
(
|f̃ |B̃ + ε−α

0 ∥f̃∥L1(ν̂×ρ)

)
+2γ−1

m bK ′(|f̃ |B̃ + ∥f̃∥L1(ν̂×ρ)

)
,

and therefore the result of part (iii) with the same η and D giving in (4.8) and

(4.9) respectively.

Lemma 4.3. There exists a constant CR > 0 such that ∥Rn∥B ≤ CRs
α
n for all

n > 0.

Proof. Since Ri =
∑

j Rij , we only need to prove the results for Rij .

Take ε ∈ (0, ε0]. Choose any b > 0 and let N(ε) be given by Assump-

tion T′′(e).

We first consider the case n = i+ 1 ≤ N(ε).

By the definition of Rij given in (4.10), we have for any f ∈ B,∫
Rijfdν̂ =

∫
1X̂ · Pi+1(f1Uij )dν̂ =

∫
X̂

f1Uijdν̂ =

∫
Uij

fdν̂. (4.20)
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We now denote dij = sup
{
| detDT̂−1

ij (x) : x ∈ Bε(Q0)
}
. Since for any x,

| detDT̂−1
ij (x)| ≤ ∥DT̂−1

ij (x)∥, we have dij ≤ sij . Since T̂Uij = Q0,

ν(Uij) ≤ dijν(Q0) ≤ sijν(Q0). (4.21)

Hence by Assumption B(b),∫
Rijfdν̂ ≤ ∥f∥L∞(ν̂)ν(Uij) ≤ Cbν(Q0)sij∥f∥B. (4.22)

By similar arguments as for (4.20), we have∫
X̂

Rij osc
(
f, Bsijε(·)

)
dν̂ ≤

∫
X̂

osc
(
f, Bsijε(·)

)
1Uijdν̂ ≤ sαijε

α|f |B. (4.23)

We note that for each j, T̂Uij = Q0 and the “thickness” of T̂−1
ij Bε(∂Q0) is

of order sijε, since ∂Q0 consists of piecewise smooth surfaces. So Gij(ε, ε0) ≤
CGεsij for some CG independent of i and j. Therefore we have∫

X̂

ε−α2(1 + ζεα)Gij(·, ε, ε0)
[
|f |+ osc(f,Bε0(·))

]
dν̂

≤2(1 + ζεα)CGε
1−αsij

[
∥f∥L1(ν̂) + εα0 |f |B

]
,

Hence by (4.15) we get that

|Rijf |B ≤ C ′
Rs

α
ij

[
∥f∥L1(ν̂) + |f |B

]
= C ′

Rs
α
ij∥f∥B

for C ′
R = (1 + ζεα0 )(1 + 2CGε

1−α
0 ) + 2ζCbν̂(Q0).

We now consider the case n = i+1 > N(ε). As we mentioned in Remark 4.6,

in this case m ≥ 2. By definition, there is Cs > 0 such that ĝ(xij) ≤ C2
s s

2
ij for

any xij ∈ T̂−1
ij Bε(Q0) with j = 2, · · · ,K. By Assumption T′′(e) we know that

for any x ∈ Bε(Q0),(
sup

T̂−1
n−1,jBε(x)

ĝ
)1/2

≤
( ∞∑
i=N(ε)

sup
T̂−1
ij Bε(x)

ĝ
)1/2

≤
√
bε(m+α)/2 ≤

√
bεα.

Therefore by (4.16) we have

|Rnf |B ≤ C ′′
Rsij∥f∥B ≤ C ′′

Rs
α
ij∥f∥B

for C ′′
R = 2(γmε

m
0 )−1

√
bCs.

Finally, by (4.22), we have

∥Rijf∥1 ≤
∫
Rij |f |dν̂ ≤ Cbν(Q0)sij∥f∥B.

Thus we have ∥Rijf∥B = (C ′
R+C ′′

R+Cbν(Q0))s
α
ij∥f∥B. The result of the lemma

then follows.
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5 Systems on multidimensional spaces: the role

of the determinant

In this section we put additional conditions on the the map T that we stud-

ied in the previous chapter in order to get optimal estimates for the decay of

correlations.

5.1 Assumptions and statement of the results.

Let us suppose T satisfies Assumption T′′(a), (d) and (e) in the last section.

We replace part (b) and (c) by the following

Assumption T′′. (b′) (Fixed point and a neighborhood) There is a fixed

point p ∈ U1 and a neighborhood V of p such that T−nV /∈ ∂Uj for any

j = 1, . . . ,K and for any n ≥ 0.

(c′) (Topological exactness) T : X → X is topologically exact, that is, for any

x ∈ X, ε > 0, there is an Ñ = Ñ(x, ε) > 0 such that T ÑBε(x) = X.

Remark 5.1. It is easy to see that if T has a finite Markov partition, or a finite

image structure (see e.g. [Yr]), then T satisfies Assumption T ′′(b′) as long as

p is not on the boundary of the elements of the partition in the former case and

not on the boundary of the images in the latter case.

Remark 5.2. Clearly, topological exactness implies topological mixing.

We rename the seminorm and the Banach space defined in (4.6) and (4.7)

by replacing B with Q which will therefore depend on α and on ϵ0, the latter

dependence affecting only the value of the seminorms. Then instead of (4.7) we

put

∥f∥Q = ∥f∥L1(ν̂) + |f |Q.

Recall that V is a neighborhood of p given in Assumption T ′′(b). We denote

the preimages T−1
ik

. . . T−1
i1
V by Vi1...ık or VI where I = i1 . . . ık. We also denote

with I the set of all possible words i1 · · · ik such that T−1
ik

. . . T−1
i1
V is well

defined, where ik ∈ {1, · · · ,K} and k > 0.

For an open set O, letH := Hα
ε1 = Hα

ε1(O,H) be the set of Hölder functions f

over O that satisfies |f(x)−f(y)| ≤ Hd(x, y)α for any x, y ∈ O with d(x, y) ≤ ε1.

Let ĥ be a fixed point of the transfer operator P̂, which will be unique under

the assumptions of the theorem below. We now define B by

B := Bα
ε0,ε1 =

{
f ∈ Q : ∃H > 0 s.t. (f/ĥ)|VI ∈ Hα

ε1(VI ,H) ∀I ∈ I
}
, (5.1)

and for any f ∈ B, let

|f |H := |f |Hα
ε1

= inf{H : (f/ĥ)|VI ∈ Hα
ε1(VI ,H) ∀I ∈ I}.
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Sublemmas 5.3 and 5.4 below imply that ĥ > 0 on all Vij , and therefore the

definition makes sense. Then we take | · |Q + | · |H as a seminorm for f ∈ B and

define the norm in B by

∥ · ∥B= ∥ · ∥1 + | · |Q + | · |H. (5.2)

Clearly, B ⊂ Q and ∥f∥B ≥ ∥f∥Q if f ∈ B.
Recall that for any sequences of numbers {an} and {bn}, we use an ≈ bn if

lim
n→∞

an/bn = 1, and an ∼ bn if c1bn ≤ an ≤ c2bn for some constants c2 ≥ c1 > 0.

Let dij = sup
{
| detDT̂−1

ij (x) : x ∈ Bε0(Q0)
}
, and dn = max

{
dn−1,j : j =

2, · · · ,K
}
.

Theorem E. Let X̂, T̂ and B be defined as above. Suppose T satisfies As-

sumption T ′′(a), (b ′), (c ′), (d) and (e). Then there exist ε0 ≥ ε1 > 0 such

that Assumption B(a) to (f) and conditions S(1) to S(4) are satisfied and

∥Rn∥ ≤ O(d
m/(m+α)
n ). Hence, if

∑∞
k=n+1 d

m/(m+α)
n ≤ O(n−β) for some β > 1,

then there exists C > 0 such that for any functions f ∈ B, g ∈ L∞(X, ν) with

supp f, supp g ⊂ X̂, (1.5) holds.

Moreover, if T satisfies (4.4) near p = 0, then
∞∑

k=n+1

µ(τ > k) has the order

n−(m/γ−1) or higher. In this case, if dn = O(n−β′
) for some β′ > 1 and if

β = β′ · m

m+ α
− 1 ≥ max{2, m

γ
− 1}, (5.3)

then

Cov(f, g ◦ Tn) ≈
∞∑

k=n+1

µ(τ > k)

∫
fdµ

∫
gdµ ∼ 1/nm/γ−1. (5.4)

In particular, if Assumption T ′′(e ′) in the last section also holds, then the above

statemnets remain true if we replace m/(m+ α) by 1.

Remark 5.3. For the case that T satisfies (4.4) near p, if h is bounded away

from 0 on the sets {τ > n}, then µ(τ > n) and ν(τ > n) have the same order,

and
∑∞

k=n+1 µ(τ > k) = O(n−(m/γ−1)). This is the case in Example 7.1, 7.2

and 7.4 below.

On the other hand, ĥ may be only supported on part of the sets {τ > n}, and
therefore µ(τ > n) may have higher order, like in Example 7.3. In this case,∑∞

k=n+1 µ(τ > k) has an order higher than n−(m/γ−1).

5.2 Examples

Before giving the proof, we present a few examples. We will always assume that

T satisfies Assumption T ′′(a), (b ′), (c ′) and (d).
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Example 5.1. Assume m = 3, and near the fixed point p = (0, 0, 0), the map

T has the form

T (w) =
(
x(1 + |w|2 +O(|w|3)), y(1 + |w|2 +O(|w|3)), z(1 + 2|w|2 +O(|w|3)

)
where w = (x, y, z) and |w| =

√
x2 + y2 + z2.

This map is very similar to that in Example 1 in [HV], although it is now in

a three dimensional space. We could still use the same arguments to show that

Assumption T′′ (e) is satisfied.

Denote wn = T−n
1 w; clearly, |w|+ |w|3 + O(|w|4) ≤ |T (w)| ≤ |w|+ 2|w|3 +

O(|w|4). By standard arguments we know that

1√
4n

+O
( 1√

n3

)
≤ |wn| ≤

1√
2n

+O
( 1√

n3

)
(see also Lemma 3.1 in [HV]). Since we are in a three dimensional space, we

now have ν(τ > k) ∼ 1

km/γ
=

1

k3/2
, and therefore

∞∑
k=n+1

ν(τ > k) ∼ 1

n1/2
.

It is easy to see that detDT (w) = 1 + 6x2 + 6y2 + 8z2 + O(|w|3). So we

have | detDT−1
1 (w)| ≤ 1− 6|w|2 +O(|w|3). By Lemma 3.2 in [HV] with r(t) =

1−6t2+O(t3), γ = 2, C ′ = 6 and C = 1, we get that |detDT−n
1 (x)| = O(1/n3).

Hence we have β′ = 3 and β = 3m/(m+α)− 1 > 3 · 3/(3 + 1)− 1 = 5/4. Since

m/γ − 1 = 1/2, (5.3) holds, and therefore we have (5.4) with the decay rate of

order 1/
√
n.

Example 5.2. Assume m = 2, and near the fixed point p = (0, 0), the map T

has the form

T (z) =
(
x(1 + |z|γ +O(|z|γ

′
)), y(1 + 2|z|γ +O(|z|γ

′
))
)

where z = (x, y), |z| =
√
x2 + y2, γ ∈ (0, 1) and γ′ > γ.

By methods similar to Example 1 in [HV] we can check that Assumption

T′′ (e) is satisfied. Denote zn = T−n
1 z. Since |z|+ |z|1+γ +O(|z|γ′

) ≤ |T (z)| ≤
|z|+ 2|z|γ+1 +O(|z|γ′

), we have

1

(2γn)1/γ
+O

( 1

nδ

)
≤ |zn| ≤

1

(γn)1/γ
+O

( 1

nδ

)
for some δ > 1/γ. So ν(τ > k) ∼ 1

k2/γ
, and therefore

∞∑
k=n+1

ν(τ > k) ∼ 1

n2/γ−1
.

It is possible to show that | detDT (z)| = 1 +
(3 + γ)x2 + (3 + 2γ)y2

|z|2−γ
+

O(|z|γ
′
). Therefore | detDT−1

1 (z)| ≤ 1−(3+γ)|z|γ+O(|z|γ′
), and | detDT−n

1 (z)| =
O(1/n1+3/γ). Hence β′ = 1 + γ/3 and β = (1 + 3/γ) · 2/(2 + α) − 1 >

(1 + 3/γ) · 2/3 − 1 = 2/γ − 1/3 > 2/γ − 1. It means (5.3) holds, and the

decay rates is of order 1/n2/γ−1.
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Example 5.3. Assume m = 2, and take the same map as in Example 1 in

[HV], namely, near the fixed point p = (0, 0), the map T has the form

T (x, y) =
(
x(1 + x2 + y2), y(1 + x2 + y2)2

)
,

where z = (x, y) and |z| =
√
x2 + y2.

The map allows an infinite absolutely continuous invariant measure. How-

ever, the map can be arranged in such a way that there is an invariant component

that supports a finite absolutely continuous invariant measure µ. Near the fixed

point, the region of this component has the form

{z = (x, y) : |y| < x2}.

We may regard X as this component, and T : X → X satisfies the assumptions.

We could check that the map has bounded distortion near the fixed point

restricted to this region. Hence, the map satisfies Assumption T′′(e′).

Since |zn| = O(1/
√
n) and for z = (x, y), |y| ≤ x2, we get ν(τ > k) ∼ 1

k3/2
,

and

∞∑
k=n+1

ν(τ > k) ∼ 1

n1/2
.

On the other hand, | detDT (z)| = 1 + 5x2 + 7y2 + O(|z|4). Since |y| ≤
x2, |z| = |x| + O(|z|2); thus | detDT (z)| = 1 + 5|z|2 + O(|z|4), and therefore

| detDT−n
1 (z)| = O(1/n5/2). So β′ = 5/2 and β = 3/2. We obtain that the

decay rate is of order 1/n1/2.

Example 5.4. Assume m ≥ 3 and near the fixed point p = (0, 0, 0), the map T

has the form

T (z) = z
(
1 + |z|γ +O(|z|γ+1)

)
,

where m > γ > 0.

These examples are comparable with those in Example 6.1, except for the

stronger topological assumptions which we now put on the maps. We know that

these maps satisfy Assumption, T′′(e′).

Denote zn = T−n
1 z. We have |zn| = 1/(nγ)1/γ + O

(
1/(nγ)1/γ+1

)
and

| detDT (z)| = 1 + (m + γ)|z|γ + O
(
|z|γ+1

)
. Hence, we get that | detDT−n

1 | ∼
1/nm/γ+1. (For the relative computations see Lemma 3.1 and 3.2 in [HV]).

Therefore β′ = m/γ + 1 and β = m/γ.

On the other hand, we see that ν(τ > k) = O
(
1/km/γ

)
, and then

∞∑
k=n+1

ν(τ >

k) ∼ 1

nm/γ−1
. Since m > γ, the invariant measure µ is finite and β > 1. We

get that the decay rate is of order 1/nm/γ−1.
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5.3 Proof of Theorem E

Proof of Theorem E. Take ε0 > 0 satisfying Lemma 4.2 in the last section,

and then choose ε1 ∈ (0, ε0] as in Lemma 5.2 below. We reduce ε1 further if

necessary such that η′ := η+DH(ε0)ε
α
1 < 1, where η < 1 is given in Lemma 4.2

and DH(ε0) > 0 is given in Lemma 5.2. Then we take B := Bα
ε0,ε1 as in (5.1).

With the norm given in (5.2), B satisfies Assumption B(a) to (f) by Lemma 5.1.

By Lemma 4.2 and 5.2, condition S(1) is satisfied with constants η and D

replaced by η′ defined as above and D + DH(ε0)ε
α
1 respectively, where D is

the number given in Lemma 4.2. Condition S(2) can be obtained in a similar

way. Assumption T′′(a), (d) and (c′) imply Assumption T (a), (c) and (d)

respectively. Assumption T(b) follows from the construction of the first return

map. Lemma 4.2(iii) and 5.2(iii) give (1.7). Therefore all the conditions for

Theorem B are satisfied. Hence we obtain conditions S(3) and S(4).

The facts ∥Rn∥ = O(d
m/(m+α)
n ), and ∥Rn∥ = O(dn) if Assumption T′′(e′) is

satisfied, follow from Lemma 5.5. Therefore we have established the decay of

correlations (1.5).

If T also satisfies (4.4), then we know that for any z close to p, |T−n
1 z| is

of order n−1/γ . Hence ν̂{τ > k} has the order k−m/γ , and
∑∞

k=n+1 k
−m/γ =

O(n−m/γ+1). Then the rest of the theorem is clear.

Lemma 5.1. B is a Banach space satisfying Assumption B(a) to (f) with Ca =

2Cb = 2γ−1
m ε−m+α

0 , where γm is the volume of the unit ball in Rm.

Proof. We already know that Q is a Banach space, and the proof of the com-

pleteness of B follows from standard arguments. So B is a Banach space.

Now we verify Assumption B(a) to (f).

By Lemma 4.1, the unit ball of Q is compact in L1(X̂, ν̂). Since ||f ||B ≥
||f ||Q for any f ∈ B ⊂ Q, the unit ball of B is contained in the unit ball of Q.

Since B is closed in Q, the unit ball of B is also compact. This is Assumption

B(a).

Moreover, for any f ∈ Q, ∥f∥∞ ≤ Cb∥f∥Q ≤ Cb∥f∥B with Cb = γ−1
m ε−m+α

0 .

We have thus got Assumption B(b).

Invoking again Lemma 4.1, we have for any f, g ∈ Q, ∥fg∥Q ≤ Ca∥f∥Q∥g∥Q,
where Ca = 2γ−1

m ε−m+α
0 = 2Cb. It is easy to check that

|fg|H ≤ ∥f∥∞|g|H + ∥g∥∞|f |H ≤ Cb∥f∥Q|g|H + Cb∥g∥Q|f |H.

Hence,

∥fg∥B = ∥fg∥Q + |fg|H ≤ Ca∥f∥Q∥g∥Q + Cb∥f∥Q|g|H + Cb∥g∥Q|f |H
≤Ca

(
∥f∥Q + |f |H

)(
∥g∥Q + |g|H

)
= Ca∥f∥B∥g∥B.

Therefore Assumption B(c) follow with Ca = 2γ−1
m ε−m+α

0 = 2Cb.
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Similarly, part (d) of Assumption B follows from the fact that B contains all

Hölder functions, and Hölder functions are dense in L1(X̂, ν̂).

Assume f(x) = limn→∞ fn(x) for ν̂-a.e. x ∈ X̂. By the proof of Lemma 4.1

we have |f |Q ≤ lim infn→∞ |fn|Q. For any y, z ∈ VI , where I ∈ I,

|f(y)− f(z)|
d(y, z)α

≤ lim
n→∞

|fn(y)− fn(z)|
d(y, z)α

≤ lim inf
n→∞

|fn|H.

It gives |f |H ≤ lim infn→∞ |fn|H. Since |f |B = |f |Q + |f |H, we get part (e).

Since B ⊂ Q, part (f) is directly from the fact that Q satisfies Assump-

tion B(f).

Lemma 5.2. Let ε0 be as in Lemma 4.2. There exists DH = DH(ε0), D̄H =

D̄H(ε0) > 0 and ε− ∈ (0, ε0] such that for any ε1 ∈ (0, ε−], and by using the

notation for the Banach space introduced in (5.1):

(i) for any f ∈ Bα
ε0,ε1 , |P̂f |Hε1

≤ sα|f |Hε1
+DHε

α
1 ∥f∥Qε0

;

(ii) for any f ∈ Bα
ε0,ε1 , |R(z)f |Hε1

≤ |z|
(
sa|f |Hε1

+ D̄Hε
α
1 ∥f∥Qε0

)
;

(iii) and for any f ∈ B̃α
ε0,ε1 |P̃ f̃ |H̃ε1

≤ sα|f̃ |H̃ε1
+DHε

α
1 ∥f̃∥Q̃ε0

.

Proof. (i) Let ε∗ ∈ (0, ε0], Jĥ > 0 as in the proof of Sublemma 5.4 below.

Suppose ε ∈ (0, ε∗], and |f |Hε1
= H for some f . Take x, y ∈ VI for some

I ∈ I with d(x, y) = ε ≤ ε∗. Then by Assumption T′′(e), we can take J > 0,

N = N(ε) > 0 for b = 1. Note that

P̂f(x)

ĥ(x)
− P̂f(y)

ĥ(y)
=

K∑
j=1

∞∑
i=1

ĝ(xij)ĥ(xij)

ĥ(x)

(f(xij)
ĥ(xij)

− f(yij)

ĥ(yij)

)

+
K∑
j=1

N∑
i=1

f(yij)

ĥ(yij)

( ĝ(xij)ĥ(xij)
ĥ(x)

− ĝ(yij)ĥ(yij)

ĥ(y)

)

+

K∑
j=1

∞∑
i=N+1

f(yij)

ĥ(yij)

( ĝ(xij)ĥ(xij)
ĥ(x)

− ĝ(yij)ĥ(yij)

ĥ(y)

)
.

(5.5)

Since |f |H = H, we have f(xij)/ĥ(xij) − f(yij)/ĥ(yij) ≤ Hd(xij , yij)
α ≤

sαHd(x, y)α. Now, P̂ĥ = ĥ implies

K∑
j=1

∞∑
i=1

ĝ(xij)ĥ(xij)/ĥ(x) = 1. (5.6)

Thus the first sum of the inequality is bounded by sαHd(x, y)α ≤ sα|f |Hd(x, y)α.
Note that by our assumption, Vij does not intersect discontinuities. By

Sublemma 5.4, ĥ(y)/ĥ(x) ≤ eJĥd(x,y)
α

, and by Assumption T′′(e), ĝ(y)/ĝ(x) ≤
eJd(x,y)

α

if i ≤ N(ε). So [ĝ(yij)ĥ(yij)/ĥ(y)]/[ĝ(xij)ĥ(xij)/ĥ(x)] ≤ eJ
′d(x,y)α for
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some J ′ > 0. We take ε− ∈ (0, ε∗] small enough such that eJε
α
1 − 1 ≤ 2J ′εα1 for

any ε1 ≤ (0, ε−]. Then for d(x, y) = ε ≤ ε1, we have∣∣∣ ĝ(xij)ĥ(xij)
ĥ(x)

− ĝ(yij)ĥ(yij)

ĥ(y)

∣∣∣ ≤ 2J ′ ĝ(xij)ĥ(xij)

ĥ(x)
· d(x, y)α. (5.7)

Therefore by (5.6), the second sum in (5.5) is bounded by

K∑
j=1

N∑
i=1

f(yij)

ĥ(yij)

ĝ(xij)ĥ(xij)

ĥ(x)
· 2J ′d(x, y)α ≤ 2J ′ĥ−1

∗ ∥f∥∞d(x, y)α,

where ĥ∗ is the essential lower bound of ĥ given by Sublemma 5.3.

By using Assumption T′′(e), the third sum in (5.5) is bounded by

K∑
j=1

∞∑
i=N+1

f(yij)

ĥ(yij)

ĝ(xij)ĥ(xij)

ĥ(x)
≤ ĥ−2

∗ ∥ĥ∥∞∥f∥∞ ·K ′bεm+α

=ĥ−2
∗ ∥ĥ∥∞Cb∥f∥B ·K ′bεmd(x, y)α = CbK

′bεm1 ĥ
−2
∗ ∥ĥ∥∞∥f∥Bd(x, y)α,

where Cb is given in Lemma 4.1 which depends on ε0.

Hence the result of part (1) holds with DH = Cbĥ
−1
∗ (2J ′+K ′bεm1 ĥ

−1
∗ ∥ĥ∥∞).

Part (ii) and (iii) can be proved by using the same estimates with the same

adjustments as in the proof of Lemma 4.2.

Sublemma 5.3. There is a ĥ∗ > 0 such that ĥ(x) ≥ ĥ∗ for ν-a.e. x ∈ X̂.

Proof. By Lemma 3.1 in [Ss], there is a ball Bε(z) ⊂ X̂ such that Einf
Bε(x)

ĥ ≥ ĥ−

for some constant ĥ− > 0. By Assumption T′′(c′), there is Ñ > 0 such that

T ÑBε(z) ⊃ X. Then for any x ∈ X̃, there is y0 ∈ Bε(z) such that T Ñy0 = x.

Since | detDT | is bounded above, we have g∗ := inf{g(y) : y ∈ X} > 0. Hence,

for ν̂-almost every x,

ĥ(x) = (PÑ ĥ)(x) =
∑

T Ñy=x

ĥ(y)
Ñ−1∏
i=0

g(T iy) ≥ ĥ(y0)
Ñ−1∏
i=0

g(T iy0) ≥ ĥ−g
Ñ
∗ .

The result follows with ĥ∗ = ĥ−g
Ñ
∗ .

Sublemma 5.4. Let ε0 be as in Lemma 4.2. Then there exists Jĥ > 0 and

ε∗ ∈ (0, ε0] such that for any x, y ∈ VI with d(x, y) ≤ ε∗, I ∈ I,

ĥ(x)

ĥ(y)
≤ eJĥd(x,y)

α

.
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Proof. Since ĥ is the unique fixed point of P̂, we know that ĥ = limn→∞ P̂n1X̂ ,

where the convergence is in L1(ν̂). Now we consider the sequence fn := P̂n1X̂ .

We will prove that there is Jĥ > 0 and ε∗ ∈ (0, ε0] such that for any n ≥ 0,

for any x, y ∈ VI , I ∈ I, with d(x, y) ≤ ε∗,

fn(y)

fn(x)
≤ eJĥd(x,y)

α

. (5.8)

Clearly (5.8) is true for n = 0 since f0(x) = 1 for any x. We assume that it

is true up to fn−1. Consider fn.

Note that fn/ĥ = (1/ĥ)P̂n(h · 1X̂/ĥ) = L̂n(1X̂/ĥ), where L̂ is a normalized

transfer operator defined by L̂(f) = (1/ĥ)P̂(ĥf). Then there are f∗ ≥ ĥ∗/ĥ
∗

and f∗ ≤ ĥ∗/ĥ∗ such that f∗ ≤ fn(x) ≤ f∗ for every x ∈ X̂ and n ≥ 0, where

ĥ∗ and ĥ∗ are the essential upper and lower bound of ĥ respectively. Let also

set: g∗ = infx f1(x) = infx
∑K

j=1

∑∞
i=0 ĝ(xij).

Let us set again b = 1. Then put J > 0 as in Assumption T′′(e). Let us take

Jĥ > 2Jsα/(1− sα) so that we have (Jĥ + J)sα ≤ Jĥ(1 + sα)/2. Then we take

ε∗ ∈ (0, ε0] small enough such that for any ε ∈ [0, ε∗],

eJĥ(1+sα)εα/2 +
f∗K ′bεm+α

f∗(g∗ −K ′bεm+α)
≤ eJĥε

α

.

For any x, y in the same VI with d(x, y) =: ε ≤ ε∗, we choose N = N(ε) as in

Assumption T′′(e). Let us denote with [fn]N (x) =
∑K

j=1

∑N
i=0 ĝ(xij)fn−1(xij)

and {fn}N (x) = fn(x)− [fn]N (x) =
∑K

j=1

∑∞
i=N+1 ĝ(xij)fn−1(xij). We have

[fn]N (y)

[fn]N (x)
=

∑K
j=1

∑N
i=0 ĝ(yij)fn−1(yij)∑K

j=1

∑N
i=0 ĝ(xij)fn−1(xij)

≤ sup
1≤j≤K;0<i≤N

eJd(xij ,yij)
α

eJĥd(xij ,yij)
α

≤ e(J+Jĥ)s
αd(x,y)α ≤ eJĥ(1+sα)εα/2.

We also get

{fn}N (y) =
K∑
j=1

∞∑
i=N+1

ĝ(yij)fn−1(yij) ≤ f∗
K∑
j=1

∞∑
i=N+1

ĝ(yij) ≤ f∗K ′bem+α.

On the other hand,

[fn]N (x) =
K∑
j=1

∞∑
i=N+1

ĝ(yij)fn−1(yij) ≥ f∗

K∑
j=1

N∑
i=1

ĝ(yij) ≥ f∗(g∗ −K ′bem+α).

By the choice of ε∗, we obtain

fn(y)

fn(x)
≤ [fn]N (y) + {fn}N (y)

[fn]N (x)
≤ eJĥ(1+sα)εα/2 +

f∗K ′bεm+α

f∗(g∗ −K ′bεm+α)
≤ eJĥε

α

.

This means (5.8) for n since we have set ε = d(x, y).
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Lemma 5.5. There exists a constant CR > 0 such that ∥Rn∥B ≤ CRd
m/(m+α)
n

for all n > 0.

If, moreover, T satisfies Assumption T′′(e′), then ∥Rn∥B ≤ CRdn for all

n > 0.

Proof. Since Ri =
∑

j Rij , we only need to prove the results for Rij .

Let sij(x) be the norm of ||DT̂−1
ij (x)||, and sij = max{si,j(x) : x ∈ Bε0(Q0)}.

Note that {τ > i} ⊂ T−1V for all large i. We may suppose that i is sufficiently

large so that Bsijε1(Uij) ⊂ T̂−1
ij V .

Take f ∈ B with ∥f∥B = 1.

By using (4.20) and (4.21), we apply arguments similar to (4.22) and get

∥Rijf∥1 =

∫
Uij

|f |dν̂ ≤ ∥f∥∞ν̂(Uij) ≤ Cbν̂(Q0)dij∥f∥B. (5.9)

Next, we consider |Rijf |B. Note that for any I ∈ I, f |VI ∈ Hα(VI ,H) for

some H ≤ ∥f∥B. So osc
(
f/ĥ, Bsε(·)

)
≤ 2αsαεαH ≤ 2αsαεα∥f∥B. Note that

Sublemma 5.4 implies osc
(
ĥ, Bε(x)

)
≤ 2αJ ′

ĥ
εα for all x with Bε(x) ∈ VI for

some J ′
ĥ
≥ Jĥ > 0. By Proposition 3.2(3) in [Ss],

osc
(
f, Bsijε(·)

)
≤ osc

(
f/ĥ, Bsijε(·)

)
ĥ∗+osc

(
ĥ, Bsijε(·)

)
∥f∥∞/ĥ∗ ≤ b1ε

α∥f∥B,

where b1 = 2α(Hĥ∗ + J ′
ĥ
Cbh

−1
∗ )sαij . By arguments similar to (4.20) and (4.21),∫

Rij osc
(
f, Bsijε(·))dν̂ =

∫
Uij

osc
(
f, Bsijε(·))dν̂

≤b1εα∥f∥Bν̂(Uij) ≤ b1ε
αdij ν̂(Q0)∥f∥B ≤ a1ε

αdij∥f∥B,
(5.10)

where a1 = b1ν(Q0). Also,

ν̂
(
T̂−1
ij Bε(∂T̂Uij)

)
=

∫
Bε(∂T̂Uij)

ĝdν̂ ≤ dij · ν̂
(
Bε(∂U0)

)
≤ dij · b2ε,

for some b2 > 0 independent of ε. Hence,

Gij(x, ε, ε0) = 2dij · b2ε/ν̂(B(1−s)ε0(x)) ≤ a2dijε, (5.11)

where a2 = 2b2/ν̂(B(1−s)ε0(x)). Note that
∫
osc(f,Bε0(xij))dν̂ ≤ εα0 |f |Q, and

∥f∥1 + εα0 |f |Q ≤ ∥f∥Q ≤ ∥f∥B. So for any ε ∈ (0, ε0] and i < N(ε), we use

(4.15), (5.10), (5.9) and (5.11) to get

|Rijf |Q ≤
[
(1 + ζεα)a1 + 2ζCbν(Q0) + 2(1 + ζεα)a2ε

1−α
]
dij∥f∥B

≤C ′
2dij∥f∥B,

where C ′
2 = (1 + ζεα)a1 + 2ζCbν(Q0) + 2(1 + ζεα)a2ε

1−α.
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For ε ∈ (0, ε0] and i > N(ε), by Assumption T′′(e) we have dij ≤ bεm+α.

Hence, ε−a ≤ (b−1dij)
−α/(m+α). So by (4.16), we have

|Rijf |Q ≤2(γmε
m
0 )−1 · ∥f∥Q · ε−α · dij

≤2(γmε
m
0 )−1bα/(m+α)d

1−α/(m+α)
ij ∥f∥Q = C ′′

2 d
m/m+α
ij ∥f∥B,

(5.12)

where C ′′
2 = 2(γmε

m
0 )−1bα/(m+α). Therefore we get that |Rijf |Q ≤ C2d

m/m+α
i ,

where C2 = max{C ′
2, C

′′
2 }.

Now we consider |Rijf |H. As in the proof of Lemma 5.2, for any x, y ∈ Uij ,∣∣∣Rijf(x)

ĥ(x)
− Rijf(y)

ĥ(y)

∣∣∣ ≤∣∣∣ ĝ(xij)f(xij)
ĥ(x)

− ĝ(yij)f(yij)

ĥ(y)

∣∣∣
=
ĝ(xij)ĥ(xij)

ĥ(x)

∣∣∣f(xij)
ĥ(xij)

− f(yij)

ĥ(yij)

∣∣∣
+
|f(yij)|
ĥ(yij)

∣∣∣ ĝ(xij)ĥ(xij)
ĥ(x)

− ĝ(yij)ĥ(yij)

ĥ(y)

∣∣∣.
(5.13)

Note that
∣∣∣f(xij)/ĥ(xij) − f(yij)/ĥ(yij)

∣∣∣ ≤ |f |Hd(xij , yij)α ≤ ∥f∥Bsαijd(x, y)α.

Also, ĝ(xij)ĥ(xij)/ĥ(x) ≤ (ĥ∗/ĥ∗)dij . Then the first term in the right hand side

of (5.13) is bounded by a3dij∥f∥Bd(x, y)α, where a3 = (ĥ∗/ĥ∗)s
α
ij .

Let us take ε = d(x, y); if i ≤ N(ε), then by (5.7),

|ĝ(xij)ĥ(xij)/ĥ(x)− ĝ(yij)ĥ(yij)/ĥ(y)| ≤ 2J ′(ĥ∗/ĥ∗)dijd(x, y)
α.

Since f(yij)/ĥ(yij) ≤ ∥f∥∞/ĥ∗ ≤ Cbĥ
−1
∗ ∥f∥B, the last term in (5.13) is bounded

by a4dij∥f∥Bd(x, y)α, where a4 = 2CbJ
′(ĥ∗/ĥ2∗). Therefore we obtain |Rijf |H ≤

C ′
3dij∥f∥B, where C ′

3 = b1 + b2.

If i ≥ N(ε), then by the first inequality of (5.13), the left side of the inequality

is bounded by max{ĝ(xij)f(xij)/ĥ(x), ĝ(yij)ĥ(yij)/ĥ(y)} ≤ dij∥f∥∞/ĥ∗. By

the same arguments as for (5.12) we can get that

|Rijf |H≤ε−αdij∥f∥∞/ĥ∗ ≤ Cbĥ
−1
∗ bα/(m+α)d

m/(m+α)
ij ∥f∥B= C ′′

3 d
m/(m+α)
ij ∥f∥B,

where C ′′
3 = Cbĥ

−1
∗ bα/(m+α)∥f∥B. Then we conclude that |Rijf |H ≤ C3d

m/(m+α)
ij ∥f∥B,

where C3 = max{C ′
3, C

′′
3 }.

The conclusion of the first part follows by setting CR = C1 + C2 + C3.

If T satisfies Assumption T′′(e′), then we can regard N(ε) = ∞ for any

ε > 0. Hence we get ∥Rijf∥B ≤ CRdij∥f∥B with CR = C1 + C2 + C ′
3.
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