Mihai Bostan 
email: bostan@cmi.univ-mrs.frmihai.bostan@univ-amu.fr
  
High magnetic field equilibria for the Fokker-Planck-Landau equation

Keywords: Finite Larmor radius approximation, Fokker-Planck-Landau equation, H-theorem AMS classification: 35Q75, 78A35, 82D10

The subject matter of this paper concerns the equilibria of the Fokker-Planck-Landau equation under the action of strong magnetic fields. Averaging with respect to the fast cyclotronic motion when the Larmor radius is supposed finite, leads to a integro-differential version of the Fokker-Planck-Landau collision kernel, combining perpendicular space coordinates (with respect to the magnetic lines) and velocity. We determine the equilibria of this gyroaveraged Fokker-Planck-Landau kernel and derive the macroscopic equations describing the evolution around these equilibria, in the parallel direction.

Introduction

We investigate the transport of charged particles under the action of strong magnetic fields, which is motivated by the magnetic confinement for tokamak plasmas. We neglect the self-consistent electromagnetic field, but we take into account the interactions between particles. The external electric field E = -∇ x Φ is fixed, and the external magnetic field writes

B ε = B(x) ε d(x), |d| = 1
where ε > 0 is a small parameter, destinated to converge to 0, in order to describe strong magnetic fields. The scalar function φ stands for the electric potential, B(x) > 0 is the rescaled magnitude of the magnetic field and d(x) denotes its direction.

The presence density f ε = f ε (t, x, v) ≥ 0 of a population of charged particles with mass m and charge q satisfies

∂ t f ε + v • ∇ x f ε + q m (E + v ∧ B ε ) • ∇ v f ε = Q(f ε , f ε ), (t, x, v) ∈ R + × R 3 × R 3 (1) 
f ε (0, x, v) = f in (x, v), (x, v) ∈ R 3 × R 3 .
(2)

Here Q denotes the Fokker-Planck-Landau collision kernel cf. [START_REF] Hazeltine | Plasma confinement[END_REF][START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. I Existence, uniqueness and smoothness[END_REF][START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. II H-theorem and applications[END_REF]]

Q(f, f )(v) = div v R 3 σ(|v -v |)S(v -v )[f (v )∇ v f (v) -f (v)∇ v f (v )] dv
where σ > 0 stands for the scattering cross section and S(w) = I -w⊗w |w| 2 is the orthogonal projection on the plane of normal w = 0. The interpretation of the density f ε is straightforward : the number of charged particles contained at time t inside the infinitesimal volume dxdv around the point (x, v) of the position-velocity phase space is given by f ε (t, x, v)dxdv. The equation [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF] describes the evolution of the density f ε due to the transport and to the particle interactions.

The behavior of (1), [START_REF] Bardos | Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation[END_REF] without collisions, when ε 0, is now well understood [START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF][START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyrokinetic approximation[END_REF][START_REF] Frénod | Application of the averaging method to the gyrokinetic plasma[END_REF][START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF][START_REF] Bostan | Transport of charged particles under fast oscillating magnetic fields[END_REF]. It reduces to homogenization analysis and can be solved using the concept of two-scale convergence [START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field[END_REF][START_REF] Frénod | The finite Larmor radius approximation[END_REF][START_REF] Frénod | Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates[END_REF].

Gyroaveraged collision operators have been proposed in [START_REF] Xu | Numerical simulation of ion-temperature-gradient-driven modes[END_REF][START_REF] Brizard | A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields[END_REF][START_REF] Brizard | Foundations of nonlinear gyrokinetic theory[END_REF][START_REF] Garbet | Neoclassical equilibrium in gyrokinetic simulations[END_REF]. The main difficulty lies on the relaxation of the distribution function towards a equilibrium. Many of these gyroaveraged collision operators fail to relax to equilibria, in particular those obtained by linearization around Maxwellians (which are not gyrokinetic equilibria, at least in the finite Larmor radius regime). Very recently, the averaging techniques developped in [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF] have been extended to the collisional framework.

Gyroaveraged collision kernels have been proposed for the relaxation Boltzmann operator, the Fokker-Planck and Fokker-Planck-Landau operators [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetized plasmas[END_REF][START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF][START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation[END_REF][START_REF] Bostan | Impact of strong magnetic fields on collision mechanism for transport of charged particles[END_REF].

There are mainly two asymptotic regimes describing the transport of charged particles under strong magnetic fields : the guiding center, and the finite Larmor radius approximations. In the guiding center approximation, the ratio between the perpendicular and parallel spatial lengths is much smaller (and thus neglected) with respect to the ratio between the cyclotronic period and the observation time unit. In this case, any Larmor circle reduces to its center. Therefore, the particle positions are left invariant at the cyclotronic time scale, the magnetic field becomes locally uniform, and the gyroaverage plays only in the perpendicular velocity space. For these reasons, the derivation of the guiding center approximation is relatively simple, and explicit models are available for general tridimensional magnetic geometry [START_REF] Bostan | Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF][START_REF] Bostan | Transport of charged particles under fast oscillating magnetic fields[END_REF][START_REF] Bostan | Impact of strong magnetic fields on collision mechanism for transport of charged particles[END_REF]. The situation is quite different for the finite Larmor radius approximation. In this case, we assume that the ratio between the perpendicular and parallel spatial lengths is small, remaining of the same order as the ratio between the cyclotronic period and the observation time unit

L ⊥ L = T c T obs = ε << 1.
The particles move on small Larmor circles, the position is not anymore left invariant at the cyclotronic scale, the magnetic field is no more locally uniform, and the gyroaverage combines now position and velocity. Think that the average of a particle position, which is the Larmor center, depends not only on the initial position, but also on the initial perpendicular velocity. This fact will impact a lot the structure of the Fokker-Planck-Landau kernel. Indeed, after average, the collision kernel will be not anymore local in space and the equilibria will be given by profile in velocity and perpendicular position.

The computations require much effort, and most of the times, the limit models are not completely explicit. Generally we start analyzing the case of uniform magnetic fields, eventually we generalize these results by linearization around the Larmor center (since the magnetic field does not change a lot along a Larmor radius). The finite Larmor radius regime provides a more realistic description for the tokamak plasmas.

In this paper we concentrate on the finite Larmor radius approximation. Assuming that the magnetic field is homogeneous and stationary

B ε = 0, 0, B ε
for some constant B > 0, the equation (1) becomes

∂ t f ε + 1 ε (v 1 ∂ x1 f ε + v 2 ∂ x2 f ε ) + v 3 ∂ x3 f ε + q m E • ∇ v f ε + ω c ε (v 2 ∂ v1 f ε -v 1 ∂ v2 f ε ) = Q(f ε , f ε ) (3)
where ω c = qB/m stands for the rescaled cyclotronic frequency. When ε is small, the density f ε writes as a combination between a dominant density f and corrections of orders ε, ε 2 , ...

f ε = f + εf 1 + ε 2 f 2 + ... (4) 
Plugging ( 4) into (3) and using the notations

x = (x 1 , x 2 ), v = (v 1 , v 2 ), ⊥ v = (v 2 , -v 1 ) yield T f := v • ∇ x f + ω c ⊥ v • ∇ v f = 0 (5) 
∂ t f + v 3 ∂ x3 f + q m E • ∇ v f + T f 1 = Q(f, f ) (6) 
. . .

where T is the linear operator defined in L 2 (R 3 × R 3 ) by

T u = div x,v (u b), b = (v, 0, ω c ⊥ v, 0), ω c = qB m
for any function u in the domain

D(T ) = {u(x, v) ∈ L 2 (R 3 × R 3 ) : div x,v (u b) ∈ L 2 (R 3 × R 3 )}.
At any time t the density f (t, •, •) remains constant along the flow (X, V )(s; x, v) associated to the

transport operator v • ∇ x + ω c ⊥ v • ∇ v dX ds = V (s), dX 3 ds = 0, dV ds = ω c ⊥ V (s), dV 3 ds = 0, (X, V )(0; x, v) = (x, v) (7) 
and therefore, at any time t, the density f (t, •, •) depends only on the invariants of ( 7)

f (t, x, v) = g t, x 1 + v 2 ω c , x 2 - v 1 ω c , x 3 , r = |v|, v 3 .
The time evolution for f comes by [START_REF] Bostan | Transport of charged particles under fast oscillating magnetic fields[END_REF], after eliminating f 1 . The antisymmetry of T ensures that the range of T is orthogonal to its kernel, which allows us to get rid of f 1 in (6) by taking the orthogonal projection onto ker T

Proj ker T ∂ t f + v 3 ∂ x3 f + q m E • ∇ v f = Proj ker T {Q(f, f )} , (t, x, v) ∈ R + × R 3 × R 3 . (8) 
Actually taking the orthogonal projection on ker T reduces to averaging along the characteristic flow of T in (7) cf. [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF]. This flow is T c = 2π ωc periodic and writes

V (s) = R(-ω c s)v, X(s) = x + ⊥ v ω c - ⊥ V (s) ω c , X 3 (s) = x 3 , V 3 (s) = v 3
where R(α) stands for the rotation of angle α

R(α) =   cos α -sin α sin α cos α   .
For any function u ∈ L 2 (R 3 × R 3 ), the average operator is defined by

u (x, v) = 1 T c Tc 0 u(X(s; x, v), V (s; x, v)) ds = 1 2π 2π 0 u x + ⊥ v ω c - ⊥ {R(α)v} ω c , x 3 , R(α)v, v 3 dα. ( 9 
)
We introduce the notation e iϕ for the R 2 vector (cos ϕ, sin ϕ). If the vector v writes v = |v|e iϕ , then α+ϕ) and the expression for u becomes

R(α)v = |v|e i(
u (x, v) = 1 2π 2π 0 u x + ⊥ v ω c - ⊥ {|v|e i(α+ϕ) } ω c , x 3 , |v|e i(α+ϕ) , v 3 dα = 1 2π 2π 0 u x + ⊥ v ω c - ⊥ {|v|e iα } ω c , x 3 , |v|e iα , v 3 dα.
The properties of the average operator ( 9) are summarized below (see Propositions 2.1, 2.2 in [START_REF] Bostan | Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF] for proof details). We denote by • the standard norm of L 2 (R 3 × R 3 ).

Proposition 1.1 The average operator is linear and continuous. Moreover it coincides with the orthogonal projection on the kernel of T i.e., u ∈ ker T and

R 3 R 3 (u -u )ϕ dvdx = 0, ∀ ϕ ∈ ker T . ( 10 
)
Remark 1.1 Notice that (X, V ) depends only on s and (x, v) and thus the variational characterization in [START_REF] Bostan | Impact of strong magnetic fields on collision mechanism for transport of charged particles[END_REF] holds true at any fixed (x 3 , v 3 ) ∈ R 2 . Indeed, for any ϕ ∈ ker T , (x

3 , v 3 ) ∈ R 2 we have R 2 R 2 (uϕ)(x, v) dvdx = 1 T c Tc 0 R 2 R 2 u(x, v)ϕ(X(-s; x, v), x 3 , V (-s; x, v), v 3 ) dvdxds = 1 T c Tc 0 R 2 R 2 u(X(s; x, v), x 3 , V (s; x, v), v 3 )ϕ(x, v) dvdxds = R 2 R 2 u (x, v)ϕ(x, v) dvdx.
We have the orthogonal decomposition of L 2 (R 3 ×R 3 ) into invariant functions along the characteristics [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetized plasmas[END_REF] and zero average functions

u = u + (u -u ), R 3 R 3 (u -u ) u dvdx = 0.
Notice that T = -T and thus the equality

• = Proj ker T implies ker • = (ker T ) ⊥ = (ker T ) ⊥ = Range T .
In particular Range T ⊂ ker • . Actually we show that Range T is closed, which will give a solvability condition for T u = w (cf. [START_REF] Bostan | Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation[END_REF], Propositions 2.2). A very useful result when averaging transport operators is given by the folowing commutation formula between divergence and average (cf. Proposition 3.3 [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF]).

Proposition 1.3 For any smooth field ξ = (ξ x , ξ v ) ∈ R 6 we have the equality

div x,v ξ = div x ξ x + ⊥ ξ v ω c + ξ v • ⊥ v |v| v ω c |v| -ξ v • v |v| ⊥ v ω c |v| + ∂ x3 ξ x3 + div v ξ v • ⊥ v |v| ⊥ v |v| + ξ v • v |v| v |v| + ∂ v3 ξ v3 .
In particular we have for any smooth field

ξ x ∈ R 3 div x ξ x = div x ξ x
and for any smooth field

ξ v ∈ R 3 div v ξ v = div x ⊥ ξ v ω c + ξ v • ⊥ v |v| v ω c |v| -ξ v • v |v| ⊥ v ω c |v| + div v ξ v • ⊥ v |v| ⊥ v |v| + ξ v • v |v| v |v| + ∂ v3 ξ v3 .
Coming back to [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF], on the one hand, averaging ∂ t + v 3 ∂ x3 + q m E • ∇ v leads to another transport operator. This is a straightforward consequence of the commutation formula between the divergence and average in Proposition 1.3. For the presentation clarity, the proof of this result is sketched in Appendix A.

Proposition 1.4 Assume that the electric field derives from a smooth potential i.e., E = -∇ x φ.

Then for any

f ∈ C 1 c (R 3 × R 3 ) ∩ ker T we have ∂ t f + v 3 ∂ x3 f + q m E • ∇ v f = ∂ t f + ⊥ E B • ∇ x f + v 3 ∂ x3 f + q m E 3 ∂ v3 f. (11) 
On the other hand, the average of the Fokker-Planck-Landau kernel i.e., Q (f, f

) := Q(f, f ) writes cf. Proposition 4.10 in [9] ω -2 c Q (f, f )(x, v) = (12) div ωcx,v R 2 R 3 4 i=1 f (x , x 3 , v )ξ i (x, v, x , v ) ⊗ ξ i (x, v, x , v )∇ ωcx,v f (x, v) dv dx -div ωcx,v R 2 R 3 4 i=1 f (x, v)ξ i (x, v, x , v ) ⊗ ε i ξ i (x , v , x, v)∇ ωcx ,v f (x , x 3 , v ) dv dx .
Up to our knowledge, the above averaged Fokker-Planck-Landau kernel has never been reported in the plasma physics literature, before [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation[END_REF]. Its calculation relies on gyroaveraging differential operators and velocity convolutions. Some results regarding the behavior of the gyroaverage with respect to velocity convolutions have been obtained in [START_REF] Bostan | Impact of strong magnetic fields on collision mechanism for transport of charged particles[END_REF] (in the framework of the guiding center approximation).

The operator in ( 12) is completely explicit. We indicate below the expressions for the vector fields entering it. Notice that their derivation is not of all trivial. The reader may refer to [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation[END_REF] for details.

Nevertheless, we are using these expressions in order to determine the equilibria of the averaged Fokker-Planck-Landau kernel.

The notation div ωcx,v stands for the divergence with respect to the variables ω c x and v (like that all variables entering the divergence are homogeneous). Here ε 1 = ε 2 = -1, ε 3 = ε 4 = 1 and the explicit formulae of the fields (ξ i ) 1≤i≤4 are given by

ξ 1 (x, v, x , v ) = {σχ} 1/2 r sin ϕ (v 3 -v 3 ) |z| |z| 2 + (v 3 -v 3 ) 2 (v, 0) |v| , ( ⊥ v, 0) |v| ξ 2 (x, v, x , v ) = {σχ} 1/2 r -r cos ϕ |z| (v, 0) |v| , ( ⊥ v, 0) |v| + ( ⊥ z, 0) |z| , 0 ξ 3 (x, v, x , v ) = {σχ} 1/2 r sin ϕ |z| ( ⊥ v, 0) |v| , - (v, 0) |v| ξ 4 (x, v, x , v ) {σχ} 1/2 = (r cos ϕ -r)(v 3 -v 3 ) |z| |z| 2 + (v 3 -v 3 ) 2 ( ⊥ v, 0) |v| , - (v, 0) |v| + (v 3 -v 3 ) (z,0) |z| , -|z|e 3 |z| 2 + (v 3 -v 3 ) 2 where v 3 , v 3 ∈ R, r = |v|, r = |v |, z = (ω c x + ⊥ v) -(ω c x + ⊥ v ), σ = σ |z| 2 + (v 3 -v 3 ) 2 , the angle ϕ ∈ (0, π) satisfies |z| 2 = r 2 + (r ) 2 -2rr cos ϕ, |r -r | < |z| < r + r and χ(r, r , z) = 1 {|r-r |<|z|<r+r } π 2 |z| 2 -(r -r ) 2 (r + r ) 2 -|z| 2 , r, r ∈ R + , z ∈ R 2 .
For every r, r ∈ R + , χ(r, r , z)dz is a probability measure on R 2

R 2 χ(r, r , z) dz = 1, r, r ∈ R + .
This measure characterizes the interaction between the Larmor circles of centers x 

+ ⊥ v ωc , x + ⊥ v
| < x + ⊥ v ω c -x + ⊥ v ω c < |v| + |v | |ω c | .
More exactly, the measure χ appears when averaging integrals with respect to v (see Proposition 4.2 in [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF]) for details)

R 3 f (x, v ) dv (x, v) = ω 2 c R 2 R 3 χ(r, r , z)f (x , x 3 , v ) dv dx for any f = f (x, v) ∈ ker T .
Clearly, the kernel Q in ( 12) is a integro-differential operator in (x, v) (observe that there is no derivative with respect to x 3 since ξ i x3 = 0, 1 ≤ i ≤ 4) and therefore will satisfy the mass, momentum and kinetic energy balances only globally in (x, v). Indeed, the averaged kernel writes as a divergence with respect to (x, v) and therefore there is no reason why its integral with respect to v vanishes. Only the integral with respect to (x, v) balances, assuming that the integrand has nice decay at infinity.

Similarly, the averaged Fokker-Planck-Landau kernel will decrease the entropy f ln f globally in (x, v).

Finally, combining [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF], [START_REF] Brizard | A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields[END_REF], [START_REF] Brizard | Foundations of nonlinear gyrokinetic theory[END_REF] leads to the following model for the dominant density f = lim ε 0 f ε in (4)

∂ t f + ⊥ E B • ∇ x f + v 3 ∂ x3 f + q m E 3 ∂ v3 f = Q (f, f ) (13) 
with

Q (f, f ) = ω 2 c div ωcx,v R 2 R 3 4 i=1 f (x , x 3 , v )ξ i (x, v, x , v ) ⊗ ξ i (x, v, x , v )∇ ωcx,v f (x, v) dv dx -ω 2 c div ωcx,v R 2 R 3 4 i=1 f (x, v)ξ i (x, v, x , v ) ⊗ ε i ξ i (x , v , x, v)∇ ωcx ,v f (x , x 3 , v ) dv dx .
We concentrate on the equilibria of Q , which are local in x 3 , but global in (x, v). For doing that we establish a H-theorem. Thanks to the H theorem satisfied by Q (see Theorem 2.1 for precise statements and notations), the positive equilibria of Q are determined by the constraints

ξ i • ∇ ln f -ε i (ξ i ) • ∇ ln f = 0, 1 ≤ i ≤ 4.
It happens that the densities above are parametrized by six quantities ρ > 0, u = (u 1 , u 2 , u 3 ) ∈

R 3 , K > 0, K + G > 0 ρ = R 2 R 3 f (x, v) dvdx, ρu = R 2 R 3 (ω c x + ⊥ v)f (x, v) dvdx, ρu 3 = R 2 R 3 v 3 f (x, v) dvdx ρK = R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 f (x, v) dvdx, ρG = R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f (x, v) dvdx
which are linear combinations of the moments of f with respect to the average collision invariants (cf.

Proposition 2.1)

1, ω c x + ⊥ v, v 3 , |v| 2 2 , |ω c x + ⊥ v| 2 -|v| 2 2 .
Clearly ρ represents the total number of particles in the phase space (x, v) and u 3 is the mean parallel velocity in (x, v). The mean perpendicular velocity do not enter the numbers parametrizing these equilibria. Indeed, any density f satisfying the constraint T f = 0 has zero mean perpendicular velocity

R 2 R 3 vf (x, v) dvdx = R 2 R 3 v f (x, v) dvdx = (0, 0).
The role of the mean perpendicular velocity is played by the displacement of the mean Larmor center over one cyclotronic period

u = 2π T c R 2 R 3 x + ⊥ v ωc f (x, v) dvdx R 2 R 3 f (x, v) dvdx
The moment in the definition of ρu is associated to the Larmor center x + ⊥ v ωc which is balanced by the kernel Q

R 2 R 3 x + ⊥ v ω c Q (f, f ) dvdx = 0.
The parameter K is related to the kinetic energy |v| 2 /2 which remains balanced by Q . The parameter

G corresponds to a new collision invariant (|ω c x + ⊥ v| 2 -|v| 2 )/2 i.e., R 2 R 3 |ω c x + ⊥ v| 2 -|v| 2 2 Q (f, f ) dvdx = 0
and characterizes the gyrokinetic framework. Indeed, in the absence of the magnetic field, that is if

ω c = 0, then u = (0, 0) and G vanishes.
The equilibria appear as Maxwellians of the form

f = ρω 2 c (2π) 5/2 µ 2 θ 3/2 µ-θ exp - |v| 2 + (v 3 -u 3 ) 2 2θ exp - |ω c x + ⊥ v -u| 2 -|v| 2 2µ ( 14 
)
where θ and µ are uniquely determined by imposing the moment equalities defining K and

G µθ µ -θ + θ 2 = K, µ - µθ µ -θ = G, µ > θ > 0.
At a first glance, these equilibria may appear very complicated. The point is that the average operator combine position and velocity in such a way that, at equilibrium, the particle density satisfy given profiles in velocity and perpendicular position.

Determining the equilibria of Q is a crucial issue for understanding the behavior of the tokamak plasmas, in the gyrokinetic approximation. The complete characterization of these equilibria is far to be obvious since they are no more local in space and depend on a larger set of parameters, including several new moments associated to new collision invariants. In particular we focus on the dissipation mechanisms, the main goal being the derivation of fluid models, much easier to understand and to simulate numerically. Once we have determined the equilibria of Q , we can search for the dynamics in (13) near local (in (t, x 3 )) equilibria. In other words we concentrate on strongly collisional regimes of ( 13) and we obtain a Euler type system of six equations and six unknowns in the parallel direction.

Up to our knowledge, this result has not been reported yet and represents a first research work in this direction. This Euler system represents a new hyperbolic model, enjoying new features, coming from the averaging process with respect to the fast cyclotronic motion. Its study could be very important for a better comprehension of classical fluid mechanics, combined with fast rotations or, more generally, when fast oscillations play an important role. For simplicity we discard here all technical difficulties related to the smoothness of the solution of ( 13), the validity of the Hilbert expansion we are using, etc. We restrict ourselves to formal computations and write down the expected macroscopic limit model in the parallel direction.

Theorem 1.1 Assume that the electric field is parallel and depends only on the time and the parallel space coordinate E = (0, 0, E 3 (t, x 3 )) and let f in ∈ ker T be a positive smooth density with rapid decay at infinity. For any τ > 0 the density f τ stands for the solution (assumed smooth and having nice decay at infinity) of the problem

∂ t f τ + v 3 ∂ x3 f τ + q m E 3 (t, x 3 )∂ v3 f τ = 1 τ Q (f τ , f τ ), (t, x, v) ∈ R + × R 3 × R 3 (15) f τ (t = 0, x, v) = f in (x, v) ≥ 0, (x, v) ∈ R 3 × R 3 .
Therefore the leading order term in the expansion

f τ = f + τ f 1 + ... (i.e., f = lim τ 0 f τ ) is a local equilibrium (see (14)) parametrized by the functions ρ = ρ(t, x 3 ) > 0, u = u(t, x 3 ), θ = θ(t, x 3 ) > 0, µ = µ(t, x 3 ) > θ(t,
x 3 ) > 0, which satisfy the system of conservation laws

∂ t ρ + ∂ x3 (ρu 3 ) = 0, ∂ t (ρu) + ∂ x3 (ρ(u 3 u + (0, 0, θ))) -ρ q m (0, 0, E 3 ) = 0, (t, x 3 ) ∈ R + × R ∂ t ρ µθ µ -θ + θ 2 + (u 3 ) 2 2 + ∂ x3 u 3 ρ µθ µ -θ + 3θ 2 + (u 3 ) 2 2 - q m E 3 ρu 3 =∂ t ρ µθ µ -θ + θ 2 + ∂ x3 ρu 3 µθ µ -θ + θ 2 + ρθ∂ x3 u 3 = 0, (t, x 3 ) ∈ R + × R ∂ t ρ µ - µθ µ -θ + ∂ x3 ρu 3 µ - µθ µ -θ = 0, (t, x 3 ) ∈ R + × R
and the initial conditions

ρ(0, x 3 ) = R 2 R 3 f in (x, v) dvdx, ρ(0, x 3 )u(0, x 3 ) = R 2 R 3 (ω c x + ⊥ v, v 3 )f in (x, v) dvdx ρ(0, x 3 ) µ(0, x 3 )θ(0, x 3 ) µ(0, x 3 ) -θ(0, x 3 ) + θ(0, x 3 ) 2 = R 2 R 3 |v| 2 + (v 3 -u 3 (0, x 3 )) 2 2 f in (x, v) dvdx ρ(0, x 3 ) µ(0, x 3 ) - µ(0, x 3 )θ(0, x 3 ) µ(0, x 3 ) -θ(0, x 3 ) = R 2 R 3 |ω c x + ⊥ v -u(0, x 3 )| 2 -|v| 2 2 f in dvdx.
The solution (ρ, u, θ, µ) also verifies

∂ t ρ ln ρ(µ -θ) µ 2 θ 3/2 + ∂ x3 ρu 3 ln ρ(µ -θ) µ 2 θ 3/2 = 0, (t, x 3 ) ∈ R + × R.
For numerical simulations it is useful to write simplified versions of the averaged Fokker-Planck-Landau kernel which preserve the equilibria and the relaxation property towards these equilibria.

The key point is to consider first order approximation near the equilibria, by neglecting all second order fluctuation terms around these equilibria. The averaged collision kernel Q being quadratic, the computation of the first order approximation L follows in a natural way, leading to a complete explicit formula. In particular we check that L has exactly the same equilibria as Q .

Theorem 1.2 For any positive density f = f (x, v) we denote by E f the equilibrium of Q having the same moments as f

R 2 R 3 (f -E f )ϕ(x, v) dvdx = 0, ϕ ∈ {1, ω c x + ⊥ v, v 3 , |v| 2 /2, (|ω c x + ⊥ v| 2 -|v| 2 )/2}. The linearized of Q (f, f ) around the equilibrium E f writes ω -2 c L(f ) = 4 i=1 div ωcx,v R 2 R 3 E f E f ξ i • ∇ f E f -ε i (ξ i ) • ∇ f E f ξ i dv dx .
Moreover, the following statements hold 1. For any two functions f = f (x, v), ϕ = ϕ(x, v) we have

R 2 R 3 L(f )ϕ dvdx = - ω 2 c 2 4 i=1 R 2 R 3 R 2 R 3 E f E f ξ i • ∇ f E f -ε i (ξ i ) • ∇ f E f × ξ i • ∇ϕ -ε i (ξ i ) • ∇ ϕ dv dx dvdx. ( 16 
)
2. For any positive density f we have the inequality

R 2 R 3 f E f L(f ) dvdx ≤ 0 ( 17 
)
with equality iff

ξ i • ∇ f E f -ε i (ξ i ) • ∇ f E f = 0, 1 ≤ i ≤ 4.
3. The positive equilibria of L are the positive equilibria of

Q f > 0, L(f ) = 0 ⇔ f = E f .
As usual, it is possible to further simplify the average Fokker-Planck-Landau operator, using its BGK approximation L BGK = -(f -E f ), whose behavior regarding the equilibria is very similar to that of Q (see Theorem 5.1).

Our paper is organized as follows. In Section 2 we investigate the main properties of the average Fokker-Planck-Landau collision operator. In particular we characterize its equilibria, thanks to a H type theorem. These equilibria are computed in Section 3. They are special Maxwellians depending on six parameters, which correspond to six moments. Section 4 is devoted to the fluid model near gyrokinetic equilibria, when the collisions dominate the transport. Simplified versions of the averaged Fokker-Planck-Landau collision operator are studied in the last section (the linearized around equilibria and the BGK approximation). Some technical proofs and computations have been postponed

to the Appendix.

The averaged Fokker-Planck-Landau collision operator

In this section we present the main properties of the operator Q (f, f ) := Q(f, f ) , whose expression [START_REF] Brizard | Foundations of nonlinear gyrokinetic theory[END_REF] has been obtained in [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation[END_REF] for any density f = f (x, v) satisfying the constraint T f = 0. The main goal is how to determine the equilibria of Q . These equilibria are local in x 3 (since Q is local in

x 3 ) and we expect that they are special Maxwellians depending on the velocity v, but also on the perpendicular spatial coordinates x 1 , x 2 . We will see that the set of these equilibria is parametrized by six numbers

ρ(x 3 ) = R 2 R 3 f (x, v) dvdx (18) ρ(x 3 )u(x 3 ) = R 2 R 3 (ω c x + ⊥ v)f (x, v) dvdx (19) ρ(x 3 )u 3 (x 3 ) = R 2 R 3 v 3 f (x, v) dvdx (20) ρ(x 3 )K(x 3 ) = R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 f (x, v) dvdx (21) ρ(x 3 )G(x 3 ) = R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f (x, v) dvdx. ( 22 
)
Clearly u 3 represents the mean parallel velocity, u/ω c is the mean Larmor circle center and K represents the temperature. Notice that the mean perpendicular velocity vanishes for any density satisfying the constraint T f since

R 2 R 3 vf (x, v) dvdx = R 2 R 3 v f (x, v) dvdx = (0, 0).
Therefore the mean perpendicular velocity will not enter the parameter family characterizing the equilibria. The interpretation of the quantity in [START_REF] Levermore | Entropic convergence and the linearized limit for the Boltzmann equation[END_REF] comes by observing that the Larmor circle power with respect to the mean Larmor center u/ω c is

x + ⊥ v ω c - u ω c 2 - |v| 2 |ω c | 2
and thus 2G/ω 2 c is the mean Larmor circle power with respect to the mean Larmor center. The quantities in ( 18), ( 19), ( 20), ( 21), [START_REF] Levermore | Entropic convergence and the linearized limit for the Boltzmann equation[END_REF] are the moments of f with respect to the functions in the set

C = 1, ω c x + ⊥ v, v 3 , |v| 2 + (v 3 -u 3 ) 2 2 , |ω c x + ⊥ v -u| 2 -|v| 2 2 .
All the functions in C are balanced by Q . This is a consequence of the balances satisfied by Q and the definition of Q , as the average of Q.

Proposition 2.1 For any function f = f (x, v) ∈ ker T we have

R 2 R 3 Q (f, f ) dvdx = 0, R 2 R 3 (ω c x + ⊥ v, v 3 ) Q (f, f ) dvdx = (0, 0, 0) R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 Q (f, f ) dvdx = 0 R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 Q (f, f ) dvdx = 0.
Proof. Observe that any function ϕ ∈ C belongs to ker T , since it depends only on the invariants of T , that is only on ω c x + ⊥ v, x 3 , |v|, v 3 . Therefore, for any such function we can write, thanks to Remark 1.1

R 2 R 3 ϕ Q (f, f ) dvdx = R 2 R 3 ϕ Q(f, f ) dvdx = R 2 R 3 ϕ Q(f, f ) dvdx. ( 23 
)
Notice also that any function ϕ ∈ C writes as a linear combination of 1, v, |v| 2 /2, with coefficients depending only on x. Therefore the mass, momentum and kinetic energy balances of the Fokker-Planck-Landau kernel guarantee that

R 3 ϕ(x, v) Q(f, f ) dv = 0, x ∈ R 3 . ( 24 
)
Our conclusion follows from ( 23) and [START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyrokinetic approximation[END_REF].

We are looking now for the equilibria of Q . The crucial point is to establish a H type theorem for the kernel Q . Most of the results in the sequel are valid for all densities f , not necessarily in the kernel of T , but with respect to some particular extension of Q to the space of all densities f . It happens that the good choice is to define Q (f, f ) by the same formula as in [START_REF] Brizard | Foundations of nonlinear gyrokinetic theory[END_REF]. The particular structure of the fields (ξ i ) 1≤i≤4 allows us to obtain the following characterization of the kernel Q in the distribution sense cf. Proposition 4.11 [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation[END_REF].

Theorem 2.1 Consider two functions f = f (x, v) > 0, ϕ = ϕ(x, v) (not necessarily in the kernel of T ).
1. For any x 3 ∈ R we have

R 2 R 3 Q (f, f )ϕ dvdx = - ω 2 c 2 × ( 25 
)
4 i=1 R 2 R 3 R 2 R 3 f f (ξ i • ∇ ln f -ε i (ξ i ) ∇ ln f )(ξ i • ∇ϕ -ε i (ξ i ) ∇ ϕ ) dv dx dvdx where f = f (x, v), f = f (x 1 , x 2 , x 3 , v ) ∇ϕ = ∇ ωcx,v ϕ(x, v), ∇ ϕ = ∇ ωcx ,v ϕ(x 1 , x 2 , x 3 , v ) ξ i = ξ i (x 1 , x 2 , v, x 1 , x 2 , v ), (ξ i ) = ξ i (x 1 , x 2 , v , x 1 , x 2 , v).
2. For any positive density f we have the inequality

R 2 R 3 ln f Q (f, f ) dvdx ≤ 0 with equality iff ξ i • ∇ ln f -ε i (ξ i ) • ∇ ln f = 0, 1 ≤ i ≤ 4. ( 26 
)
3. The positive equilibria of the averaged Fokker-Planck-Landau kernel i.e., f > 0, Q (f, f ) = 0 are the positive functions verifying (26).

Proof. 1. Notice that for any 1 ≤ i ≤ 4 we have ξ i • (e 3 , 0) = 0 and therefore the operator div ωcx,v acts only in (x 1 , x 2 , v). Thus, for any fixed x 3 ∈ R we can perform integration by parts with respect to (x 1 , x 2 , v).

R 2 R 3 Q (f, f )ϕ dvdx = - 4 i=1 ω 2 c R 2 R 3 R 2 R 3 f f (27) × (ξ i • ∇ϕ)(ξ i • ∇ ln f ) -ε i (ξ i • ∇ϕ)((ξ i ) • ∇ ln f ) dv dx dvdx.
Performing the change of variables (

x 1 , x 2 , v ) ↔ (x 1 , x 2 , v) yields R 2 R 3 Q (f, f )ϕ dvdx = - 4 i=1 ω 2 c R 2 R 3 R 2 R 3 f f (28) × ((ξ i ) • ∇ ϕ )((ξ i ) • ∇ ln f ) -ε i ((ξ i ) • ∇ ϕ )(ξ i • ∇ ln f ) dvdx dv dx .
Combining ( 27), (28) one gets by Fubini theorem

R 2 R 3 Q (f, f )ϕ dvdx = - ω 2 c 2 4 i=1 R 2 R 3 R 2 R 3 f f T i dv dx dvdx
where

T i = ξ i • ∇ϕ -ε i (ξ i ) • ∇ ϕ ξ i • ∇ ln f -ε i (ξ i ) • ∇ ln f , 1 ≤ i ≤ 4.
2. Applying [START_REF] Xu | Numerical simulation of ion-temperature-gradient-driven modes[END_REF] with ϕ = ln f yields

R 2 R 3 ln f Q (f, f ) dvdx = - ω 2 c 2 4 i=1 R 2 R 3 R 2 R 3 f f × ξ i • ∇ ln f -ε i (ξ i ) • ∇ ln f 2 dv dx dvdx ≤ 0, x 3 ∈ R with equality iff ξ i • ∇ ln f -ε i (ξ i ) • ∇ ln f = 0, 1 ≤ i ≤ 4.
3. Consider f a positive equilibrium of Q . Therefore we have the equality

R 2 R 3 ln f Q (f, f ) dvdx = 0
and by the previous assertion we deduce (26). Conversely, let f be a positive density satisfying (26).

Then, for any function ϕ we have, thanks to (25)

R 2 R 3 ϕ Q (f, f ) dvdx = 0 implying that Q (f, f ) = 0.
Remark 2.1 It is remarkable that the extension we have considered for Q (to the space of all positive densities) still satisfies the balances stated in Proposition 2.1. This can be checked directly, thanks to [START_REF] Xu | Numerical simulation of ion-temperature-gradient-driven modes[END_REF], verifying that for any ϕ ∈ C

ξ i • ∇ϕ -ε i (ξ i ) • ∇ ϕ = 0, 1 ≤ i ≤ 4.
Actually, as ξ i • ∇x 3 = ξ i • (e 3 , 0)/ω c = 0, 1 ≤ i ≤ 4, it is enough to do it for the functions

1, ω c x + ⊥ v, v 3 , |v| 2 2 , |ω c x + ⊥ v| 2 -|v| 2 2 .
For example, let us verify that

ξ i • ∇ |v| 2 2 -ε i (ξ i ) • ∇ |v | 2 2 = 0, 1 ≤ i ≤ 4.
The above condition is trivially satisfied for i ∈ {1, 2}. For i = 3 we have

ξ 3 • ∇ |v| 2 2 -ε 3 (ξ 3 ) • ∇ |v | 2 2 = -{σχ} 1/2 r sin ϕ |z| r + {σχ} 1/2 r sin ϕ |z| r = 0.
Finally, when i = 4 we obtain

ξ 4 • ∇ |v| 2 2 -ε 4 (ξ 4 ) • ∇ |v | 2 2 = {σχ} 1/2 - (r cos ϕ -r)(v 3 -v 3 )r + |z| 2 v 3 |z| |z| 2 + (v 3 -v 3 ) 2 + (r cos ϕ -r )(v 3 -v 3 )r + |z| 2 v 3 |z| |z| 2 + (v 3 -v 3 ) 2 = {σχ} 1/2 v 3 -v 3 |z| |z| 2 + (v 3 -v 3 ) 2 r 2 + (r ) 2 -2rr cos ϕ -|z| 2 = 0. Remark 2.2
The previous balances follow also by the argument below. Any local (in x) Maxwellian

f (x, v) = exp(α(x)|v| 2 + β(x) • v + γ(x)) which belongs to ker T is a equilibrium for Q , since Q (f, f ) = Q(f, f ) = 0 = 0.
We deduce by the third statement of Theorem 2.1 that

ξ i • ∇ϕ -ε i (ξ i ) • ∇ ϕ = 0, 1 ≤ i ≤ 4 for any function ϕ(x, v) = α(x)|v| 2 + β(x) • v + γ(x)
in the kernel of T , and in particular for the functions

1, ω c x + ⊥ v, v 3 , |v| 2 2 , |ω c x + ⊥ v| 2 -|v| 2 2 = ω 2 c |x| 2 -2ω c ( ⊥ x • v) 2 .
We conclude by the first statement in Theorem 2.1.

3 The equilibria of the averaged Fokker-Planck-Landau collision operator

We determine now the positive equilibria of Q by solving (26) for any 1 ≤ i ≤ 4. We recall that 

ψ 1 = x 1 + v 2 ω c , ψ 2 = x 2 - v 1 ω c , ψ 3 = x 3 , ψ 4 = |v|, ψ 5 = v 3 is a family of independent invariants for T = v • ∇ x + ω c ⊥ v • ∇ v .
ξ 2 • ∇ ln f + (ξ 2 ) • ∇ ln f = 0 (30)
are those of the form

f (x, v) = exp α(x 3 ) 2 x + ⊥ v ω c 2 + β(x 3 ) • x + ⊥ v ω c + λ(x 3 , |v|, v 3 )
for some functions α : R → R,

β = (β 1 , β 2 ) : R → R 2 , λ : R × R + × R → R.
Solving for i = 3 in (26), we will determine the particular form of the function λ(x 3 , |v|, v 3 ).

Proposition 3.3

The positive densities satisfying (29), (30) and

ξ 3 • ∇ ln f -(ξ 3 ) • ∇ ln f = 0 (31)
are of the form

f (x, v) = exp α(x 3 ) 2 x + ⊥ v ω c 2 + β(x 3 ) • x + ⊥ v ω c + γ(x 3 ) |v| 2 2 + µ(x 3 , v 3 )
for some functions α, γ : R → R, β : R → R 2 , µ : R 2 → R.

It remains to determine the function µ(x 3 , v 3 ). This will be done by solving (26) with i = 4, and we deduce that µ is a quadratic function of v 3 , with coefficients depending on x 3 .

Proposition 3.4

The positive densities satisfying (29), ( 30), (31) and

ξ 4 • ∇ ln f -(ξ 4 ) • ∇ ln f = 0 (32)
are of the form

f (x, v) = exp α(x 3 ) 2 x + ⊥ v ω c 2 + β(x 3 ) • x + ⊥ v ω c + γ(x 3 ) |v| 2 2 + γ(x 3 ) + α(x 3 ) ω 2 c (v 3 ) 2 2 + δ(x 3 )v 3 + η(x 3 )
for some functions α, γ, δ, η : R → R, β : R → R 2 .

We present now an alternative proof of the results stated in Propositions 3.1, 3.2, 3.3, 3.4. This approach does not require neither the exact computation of the averaged Fokker-Planck-Landau collision kernel, nor the resolution of (26).

Proposition 3.5 The positive densities f in the kernel of T satisfying Q (f, f ) = 0 are of the form

ln f (x, v) = α(x 3 ) 2 x + ⊥ v ω c 2 + β(x 3 ) • x + ⊥ v ω c + γ(x 3 ) |v| 2 2 (33) + γ(x 3 ) + α(x 3 ) ω 2 c (v 3 ) 2 2 + δ(x 3 )v 3 + η(x 3 )
for some functions α, γ, δ, η : R → R, β : R → R 2 .

Proof. Clearly any positive density f in (33) is a Maxwellian satisfying the constraint T f = 0 and

Q (f, f ) = Q(f, f ) = 0 = 0.
Conversely, let us consider a positive density f satisfying T f = 0, Q (f, f ) = 0 and observe that for

any x 3 ∈ R we can write 0 = R 2 R 3 ln f Q (f, f ) dvdx = R 2 R 3 ln f Q(f, f ) dvdx = R 2 R 3 ln f (x, v) Q(f (x, •), f (x, •))(v) dvdx ≤ 0
since for any x = (x, x 3 ) we have the inequality

R 3 ln f (x, v) Q(f (x, •), f (x, •))(v) dv ≤ 0. ( 34 
)
We deduce that for any x = (x, x 3 ) we have equality in (34), which implies that f (x, •) is a local Maxwellian i.e.,

ln f (x, v) = A(x) ω 2 c |v| 2 2 + B(x) • ⊥ v ω c + δ(x)v 3 + C(x)
for some functions A, B 1 , B 2 , δ, C : R 3 → R. We have to determine the structure of the previous functions, such that the constraint T f = 0 holds true. Observe that

0 = T ln f = v • ∇ x A ω 2 c |v| 2 2 - ∂ x ⊥ B : v ⊗ v ω c -B • v + v • ∇ x δ v 3 + v • ∇ x C.
Clearly, the third (higher) order term in velocity vanishes, saying that ∇ x A = 0, or equivalently

A = A(x 3 ) and - ∂ x ⊥ B : v ⊗ v ω c -B • v + v • ∇ x δ v 3 + v • ∇ x C = 0.
Similarly δ = δ(x 3 ) and the second order term in v vanishes

∂ x ⊥ B : v ⊗ v = 0 implying that ∂ x ⊥ B is antisymmetric ∂ x1 B 2 = ∂ x2 B 1 = 0, ∂ x1 B 1 = ∂ x2 B 2 , ∇ x C = B.
We obtain immediately that there is a function α = α(x 3 ) such that

∂ x1 B 1 (x 1 , x 3 ) = α(x 3 ) = ∂ x2 B 2 (x 2 , x 3 )
and thus B = β(x 3 ) + α(x 3 )x for some functions β = (β 1 (x 3 ), β 2 (x 3 )). The function C writes

C(x) = β(x 3 ) • x + α(x 3 ) |x| 2 2 + η(x 3 )
and finally

ln f (x, v) = A(x 3 ) ω 2 c |v| 2 2 + β(x 3 ) • x + ⊥ v ω c + α(x 3 )x • ⊥ v ω c + δ(x 3 )v 3 + α(x 3 ) |x| 2 2 + η(x 3 ) = α(x 3 ) 2 x + ⊥ v ω c 2 + β(x 3 ) • x + ⊥ v ω c + A(x 3 ) -α(x 3 ) ω 2 c |v| 2 2 + A(x 3 ) ω 2 c (v 3 ) 2 2 + δ(x 3 )v 3 + η(x 3 ).
We have obtained for ln f the form in (33), taking γ(x 3 ) = (A(x 3 ) -α(x 3 ))/ω 2 c .

It is easily seen that any equilibrium of the averaged Fokker-Planck-Landau kernel can be written

ln f (x, v) = α(x 3 ) ω 2 c |ω c x + ⊥ v| 2 -|v| 2 2 + β(x 3 ) ω c • (ω c x + ⊥ v) + γ(x 3 ) + α(x 3 ) ω 2 c |v| 2 2 + δ(x 3 )v 3 + η(x 3 )
and appears as a linear combination (with coefficients depending on x 3 ) of functions which are balanced by Q , globally in (x, v)

R 2 R 3 Q dvdx = 0, R 2 R 3 (ω c x + ⊥ v, v 3 ) Q dvdx = (0, 0, 0) R 2 R 3 |v| 2 2 Q dvdx = 0, R 2 R 3 |ω c x + ⊥ v| 2 -|v| 2 2 Q dvdx = 0.
Clearly, up to a factor depending on x 3 , the equilibrium f writes

f ∼ exp - |v| 2 + (v 3 -u 3 (x 3 )) 2 2θ(x 3 ) exp - |ω c x + ⊥ v -u(x 3 )| 2 -|v| 2 2µ(x 3 )
for some functions u(x 3 ) = (u 1 , u 2 , u 3 )(x 3 ), θ(x 3 ), µ(x 3 ), or equivalently as a product of three Maxwellians

f ∼ 1 2π µθ µ-θ exp - |v| 2 2 µθ µ-θ 1 (2πθ) 1/2 exp - (v 3 -u 3 ) 2 2θ 1 2πµ exp - |ω c x + ⊥ v -u| 2 2µ .
Motivated by the above considerations, we parametrize the equilibria of Q by six functions ρ, u = (u 1 , u 2 , u 3 ), θ, µ, as announced by ( 14). It will be very useful, for the moment computations, to introduce the following representation for such equilibria. These decomposition will be the starting point for many development involving the moments, the entropy, ...

f (x, v) = ρ(x 3 )ω 2 c (2π) 5/2 µ 2 θ 3/2 µ-θ exp - |v| 2 + (v 3 -u 3 (x 3 )) 2 2θ(x 3 ) exp - |ω c x + ⊥ v -u(x 3 )| 2 -|v| 2 2µ(x 3 ) (35) = ρ(x 3 ) 2π µθ µ-θ exp - |v| 2 2 µθ µ-θ 1 (2πθ) 1/2 exp - (v 3 -u 3 (x 3 )) 2 2θ × ω 2 c 2πµ exp - |ω c x + ⊥ v -u(x 3 )| 2 2µ .
For integrability reasons we assume that µ > θ > 0. The functions ρ, u, θ, µ are uniquely determined by the moments of f with respect to

1, ω c x + ⊥ v, v 3 , |v| 2 2 , |ω c x + ⊥ v| 2 -|v| 2 2 . Proposition 3.6 For any (ρ, u 1 , u 2 , u 3 , K, G) ∈ R 6 , ρ > 0, K > 0, K + G > 0 there is a unique local (in x 3 ) equilibrium f = f (x, v) for Q satisfying R 2 R 3 f dvdx = ρ, R 2 R 3 (ω c x + ⊥ v, v 3 )f dvdx = ρu R 2 R 3 |v| 2 2 f dvdx = ρ (u 3 ) 2 2 + ρK, R 2 R 3 |ω c x + ⊥ v| 2 -|v| 2 2 f dvdx = ρ |u| 2 2 + ρG.
Proof. We are searching for a positive local equilibrium f = f (x, v) parametrized by ρ, ũ, θ, µ. For any dimension d and real number T > 0, the notation M d T (w) stands for the Maxwellian of temperature

T in R d M d T (w) = 1 (2πT ) d/2 exp - |w| 2 2T , w ∈ R d .
For simplicity we drop the index d, but the reader should keep in mind that the Maxwellian dimension is that of the variable taken as argument. The equilibrium f writes, cf. ( 35)

f (x, v) = ρM µθ µ-θ (v) M θ (v 3 -ũ3 ) ω 2 c M µ (ω c x + ⊥ v -ũ).
Clearly, integrating first with respect to x for any fixed v and performing the change of variable

ω 2 c dx = d(ω c x + ⊥ v -ũ) yield R 2 R 3 f (x, v) dvdx = ρ
and thus ρ = ρ. Similarly

R 2 R 3 (ω c x + ⊥ v)f dvdx = R 2 R 3 (ω c x + ⊥ v -ũ + ũ)f dvdx = R 2 R 3 ũf dvdx = ρũ R 2 R 3 v 3 f dvdx = R 2 R 3 (v 3 -ũ3 + ũ3 )f dvdx = R 2 R 3 ũ3 f dvdx = ρũ 3 .
Therefore ũ = u and the parameters (ũ1,ũ2) ωc , ũ3 appear as the mean Larmor center and the mean parallel velocity of the local equilibrium f (x, v). It remains to determine θ and µ. On the one hand notice that

R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 f (x, v) dvdx = R 2 R 3 |v| 2 2 f dvdx - R 2 R 3 (u 3 ) 2 2 f dvdx = ρK and R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f (x, v) dvdx = R 2 R 3 |ω c x + ⊥ v| 2 -|v| 2 2 f dvdx - R 2 R 3 |u| 2 2 f dvdx = ρG.
On the other hand, using several times the formula

R d |w| 2 M T (w) dw = T R d |w| 2 M 1 (w) dw = -T R d w • ∇ w M 1 (w) dw = T d (36) yields 1 ρ R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 f dvdx (37) = R 2 R 3 |v| 2 2 M µθ µ-θ (v) M θ (v 3 -u 3 ) ω 2 c M µ (ω c x + ⊥ v -u) dvdx + R 2 R 3 M µθ µ-θ (v) (v 3 -u 3 ) 2 2 M θ (v 3 -u 3 ) ω 2 c M µ (ω c x + ⊥ v -u) dvdx = µθ µ -θ + θ 2 and 1 ρ R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f dvdx (38) = R 2 R 3 M µθ µ-θ (v) M θ (v 3 -u 3 ) |ω c x + ⊥ v -u| 2 2 ω 2 c M µ (ω c x + ⊥ v -u) dvdx - R 2 R 3 |v| 2 2 M µθ µ-θ (v) M θ (v 3 -u 3 ) ω 2 c M µ (ω c x + ⊥ v -u) dvdx = µ - µθ µ -θ .
We are done if we prove that there is a unique solution θ, µ satisfying µ > θ > 0, for the system

µθ µ -θ + θ 2 = K, µ - µθ µ -θ = G.
We solve with respect to ν := µ θ > 1 which can be expressed in terms of S :

= G K . Indeed, ν satisfies 2ν ν -2 3ν -1 = µ -µθ µ-θ µθ µ-θ + θ 2 = G K = S > -1 or equivalently 2(ν -1) 2 -3S(ν -1) -2(S + 1) = 0.
The above equation of the unknown (ν -1) has one positive and one negative root, since their product is -(S + 1) = -G+K K < 0. Then the ratio ν = µ θ > 1 is given by ν = 4 + 3S + 9S 2 + 16(S + 1) 4 .

Combining with the equation θ 2 + µ = K + G we obtain

θ = K + G 1/2 + ν > 0, µ = νθ = ν K + G 1/2 + ν > θ. Remark 3.1 Any positive density f (x, v) satisfies R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 f dvdx + R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f dvdx = R 2 R 3 |ω c x + ⊥ v -u| 2 + (v 3 -u 3 ) 2 2 f dvdx > 0 which justifies the hypothesis K + G > 0.

The fluid model near gyrokinetic equilibria

In this section we investigate the fluid approximation of the model ( 13) when the collision mechanism dominates the transport. Clearly we are interested on regimes close to gyrokinetic equilibria. For simplicity we neglect the perpendicular electric field and we assume that the parallel electric field depends only on (t, x 3 ) and thus E 3 = E 3 . The equation ( 13) becomes

∂ t f τ + v 3 ∂ x3 f τ + q m E 3 (t, x 3 )∂ v3 f τ = 1 τ Q (f τ , f τ ), (t, x, v) ∈ R + × R 3 × R 3 (39)
and we intend to analyse the asymptotic behavior for small τ . Formally we have

f τ = f + τ f 1 + τ 2 f 2 + ... (40) 
Following the standard arguments which allow us to derive the Euler equations starting from the kinetic description when the collisions dominate the transport [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation[END_REF][START_REF] Levermore | Entropic convergence and the linearized limit for the Boltzmann equation[END_REF][START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF], we determine the leading order term in the expansion (40) by the conditions

Q (f, f ) = 0, R 2 R 3 {∂ t f + v 3 ∂ x3 f + q m E 3 ∂ v3 f }ϕ(x, v) dvdx = 0, (t, x 3 ) ∈ R + × R
for any average collision invariant ϕ of the family

1, ω c x + ⊥ v, v 3 , |v| 2 2 , |ω c x + ⊥ v| 2 -|v| 2 2 .
For any (t,

x 3 ) ∈ R + × R, the density (x, v) → f (t, x, x 3 , v
) is a local gyrokinetic equilibrium and writes, cf. ( 35)

f (t, x, v) = ρ(t, x 3 )M µθ µ-θ (v) M θ (v 3 -u 3 (t, x 3 )) ω 2 c M µ (ω c x + ⊥ v -u(t, x 3 )) (41)
for some functions ρ, u = (u 1 , u 2 , u 3 ), θ, µ depending on (t, x 3 ). The microscopic density f is determined by its moments whose evolution comes by imposing the balances corresponding to each collision invariant. Using the collision invariant ϕ = 1 leads to the continuity equation

∂ t ρ + ∂ x3 (ρu 3 ) = 0, (t, x 3 ) ∈ R + × R. ( 42 
)
In order to obtain the other conservation laws in Theorem 1.1 we need essentially to compute the first and second order moments, together with their fluxes (see Appendix A for details). 

f (x, v) = ρ(x 3 )M µθ µ-θ (v) M θ (v 3 -u 3 (x 3 )) ω 2 c M µ (ω c x + ⊥ v -u(x 3 ))
we have

R 2 R 3 v 3 (ω c x + ⊥ v, v 3 )f (x, v) dvdx = ρ(u 3 u, (u 3 ) 2 + θ)
and 

R 2 R 3 (ω c x + ⊥ v, v 3 )∂ v3 f dvdx = (0, 0, -ρ).
f (x, v) = ρ(x 3 )M µθ µ-θ (v) M θ (v 3 -u 3 (x 3 )) ω 2 c M µ (ω c x + ⊥ v -u(x 3 ))
we have

R 2 R 3 v 3 |v| 2 + (v 3 -u 3 ) 2 2 f (x, v) dvdx = ρu 3 µθ µ -θ + θ 2 R 2 R 3 v 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f (x, v) dvdx = ρu 3 µ - µθ µ -θ R 2 R 3 v 3 |v| 2 + (v 3 -u 3 ) 2 2 ∂ x3 f (x, v) dvdx = ∂ x3 ρu 3 µθ µ -θ + θ 2 + ρθ∂ x3 u 3 R 2 R 3 v 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 ∂ x3 f dvdx = ∂ x3 ρu 3 µ - µθ µ -θ R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 ∂ v3 f (x, v) dvdx = R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 ∂ v3 f dvdx = 0.
We will also need to compute the macroscopic entropy R 2 R 3 f ln f dvdx and its parallel flux 

R 2 R 3 v 3 f ln f dvdx
f (x, v) = ρ(x 3 )M µθ µ-θ (v) M θ (v 3 -u 3 (x 3 )) ω 2 c M µ (ω c x + ⊥ v -u(x 3 ))
we have

R 2 R 3 f ln f dvdx = ρ ln ρ ω 2 c (2π) 5/2 µ 2 θ 3/2 µ-θ - 5 2 ρ and R 2 R 3 v 3 f ln f dvdx = ρu 3 ln ρ ω 2 c (2π) 5/2 µ 2 θ 3/2 µ-θ - 5 2 ρu 3 .
We are ready to derive the macroscopic limit model stated in Theorem 1.1 for strong collisional regimes in the gyrokinetic framework.

Proof. (of Theorem 1.1)

We have already deduced the continuity equation (42), appealing to the collision invariant ϕ = 1.

Using the collision invariants ω

c x + ⊥ v, v 3 yields ∂ t R 2 R 3 (ω c x + ⊥ v)f dvdx + R 2 R 3 v 3 (ω c x + ⊥ v)∂ x3 f dvdx + q m E 3 R 2 R 3 (ω c x + ⊥ v)∂ v3 f dvdx = 0 ∂ t R 2 R 3 v 3 f dvdx + R 2 R 3 (v 3 ) 2 ∂ x3 f dvdx + q m E 3 R 2 R 3 v 3 ∂ v3 f dvdx = 0.
Thanks to Lemma 4.1 one gets

∂ t (ρu) + ∂ x3 (ρu 3 u) = 0 (43) ∂ t (ρu 3 ) + ∂ x3 [ρ((u 3 ) 2 + θ)] - q m E 3 ρ = 0. ( 44 
)
Appealing now to the collision invariant

|v| 2 +(v3-u3) 2 2 yields R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 ∂ t f dvdx + R 2 R 3 v 3 |v| 2 + (v 3 -u 3 ) 2 2 ∂ x3 f dvdx (45) + q m E 3 R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 ∂ v3 f dvdx = 0.
Notice that (37) allows us to write

R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 ∂ t f dvdx = ∂ t R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 f dvdx - R 2 R 3 (u 3 -v 3 )∂ t u 3 f dvdx = ∂ t ρ µθ µ -θ + θ 2
and therefore, thanks to Lemma 4.2, (45) reduces to

∂ t ρ µθ µ -θ + θ 2 + ∂ x3 ρu 3 µθ µ -θ + θ 2 + ρθ ∂ x3 u 3 = 0. ( 46 
)
The previous equation can be written in conservative form, replacing the collision invariant

|v| 2 +(v3-u3) 2 2 by |v| 2 2 .
In this case we have

R 2 R 3 |v| 2 2 f dvdx = R 2 R 3 |v| 2 + (v 3 -u 3 ) 2 2 f dvdx + R 2 R 3 (u 3 ) 2 2 f dvdx = ρ µθ µ -θ + θ 2 + (u 3 ) 2 2 R 2 R 3 v 3 |v| 2 2 f dvdx = u 3 R 2 R 3 |v| 2 2 f dvdx + R 2 R 3 u 3 (v 3 -u 3 ) 2 f dvdx = u 3 ρ µθ µ -θ + 3θ 2 + (u 3 ) 2 2 R 2 R 3 |v| 2 2 ∂ v3 f dvdx = - R 2 R 3 v 3 f dvdx = -ρu 3 .
We obtain

∂ t R 2 R 3 |v| 2 2 f dvdx + ∂ x3 R 2 R 3 v 3 |v| 2 2 f dvdx + q m E 3 R 2 R 3 |v| 2 2 ∂ v3 f dvdx = 0 or equivalently ∂ t ρ µθ µ -θ + θ 2 + (u 3 ) 2 2 + ∂ x3 u 3 ρ µθ µ -θ + 3θ 2 + (u 3 ) 2 2 - q m E 3 ρu 3 = 0.
Finally, the last collision invariant

|ωcx+ ⊥ v-u| 2 -|v| 2 2 gives R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 ∂ t f dvdx + R 2 R 3 v 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 ∂ x3 f dvdx (47) + q m E 3 R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 ∂ v3 f dvdx = 0.
Using (38) we deduce that

R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 ∂ t f dvdx = ∂ t R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f dvdx - R 2 R 3 (u -ω c x -⊥ v) • ∂ t uf dvdx = ∂ t ρ µ - µθ µ -θ
and Lemma 4.2 applied to the other terms in (47) implies

∂ t ρ µ - µθ µ -θ + ∂ x3 ρu 3 µ - µθ µ -θ = 0. ( 48 
)
We write the balance of the microscopic entropy f ln f and we deduce a new conservation law (in other words we construct a macroscopic entropy). Indeed, multiplying (39) by 1 + ln f τ yields after integration with respect to (x, v)

∂ t R 2 R 3 f τ ln f τ dvdx + ∂ x3 R 2 R 3 v 3 f τ ln f τ dvdx = 1 τ R 2 R 3 (1 + ln f τ ) Q (f τ , f τ ) dvdx (49) = 1 τ R 2 R 3 ln f τ Q (f τ , f τ ) dvdx.
But thanks to Theorem 2.1 we know that for any (t, x 3 ) ∈ R + × R and τ > 0

R 2 R 3 ln f τ Q (f τ , f τ ) dvdx ≤ 0
and therefore, passing formally to the limit when τ 0 in (49) implies

∂ t R 2 R 3 f ln f dvdx + ∂ x3 R 2 R 3 v 3 f ln f dvdx ≤ 0. (50) 
By Lemma 4.3 we know that

R 2 R 3 f ln f dvdx = ρ ln ρ ω 2 c (2π) 5/2 µ 2 θ 3/2 µ-θ - 5 2 ρ R 2 R 3 v 3 f ln f dvdx = ρu 3 ln ρ ω 2 c (2π) 5/2 µ 2 θ 3/2 µ-θ - 5 2 ρu 3
and (50) reduces to

∂ t ρ ln ρ ω 2 c (2π) 5/2 µ 2 θ 3/2 µ-θ - 5 2 ρ + ∂ x3 ρu 3 ln ρ ω 2 c (2π) 5/2 µ 2 θ 3/2 µ-θ - 5 2 ρu 3 ≤ 0.
Combining with the continuity equation (42), we obtain the entropy inequality

∂ t ρ ln ρ µ 2 θ 3/2 µ-θ + ∂ x3 ρu 3 ln ρ µ 2 θ 3/2 µ-θ ≤ 0. (51) 
When the solution (ρ, u, θ, µ) is smooth, the reader can check by standard computations, similar to those used when dealing with the Euler equations, that the inequality in (51) becomes equality, being a consequence of the previous conservation laws (42), ( 43), ( 44), ( 46), (48).

5 Linearization of the averaged Fokker-Planck-Landau operator Another important issue is the derivation of a simplified averaged Fokker-Planck-Landau operator, when the density is close to the equilibrium. The natural way to do it is to neglect the second order fluctuations around the equilibrium, which makes sense for example in the strongly collisional regime. The key point is that the resulting simplified kernel still keeps the main features of the original averaged Fokker-Planck-Landau kernel. For any positive density f = f (x, v) we denote by E f the equilibrium of Q having the same moments as f

R 2 R 3 (E f -f ) dvdx = 0, R 2 R 3 (ω c x + ⊥ v, v 3 )(E f -f ) dvdx = 0 R 2 R 3 |v| 2 2 (E f -f ) dvdx = 0, R 2 R 3 |ω c x + ⊥ v| 2 -|v| 2 2 (E f -f ) dvdx = 0. Proof. (of Theorem 1.2)
We assume that f is close to E f and by neglecting the terms of order (f -E f ) 2 one gets the first order approximation, denoted by L(f )

ω -2 c Q (f, f ) = ω -2 c Q (f, f ) -ω -2 c Q (E f , E f ) (52) = 4 i=1 div ωcx,v R 2 R 3 {f (x , v )ξ i (x, v, x , v ) ⊗ ξ i (x, v, x , v )∇ ωcx,v f (x, v) -E f (x , v )ξ i (x, v, x , v ) ⊗ ξ i (x, v, x , v )∇ ωcx,v E f (x, v)} dv dx - 4 i=1 div ωcx,v R 2 R 3 {f (x, v)ξ i (x, v, x , v ) ⊗ ε i ξ i (x , v , x, v)∇ ωcx ,v f (x , v ) -E f (x, v)ξ i (x, v, x , v ) ⊗ ε i ξ i (x , v , x, v)∇ ωcx ,v E f (x , v )} dv dx ≈ 4 i=1 div ωcx,v R 2 R 3 {E f ξ i ⊗ ξ i ∇(f -E f ) + (f -E f )ξ i ⊗ ξ i ∇E f } dv dx - 4 i=1 div ωcx,v R 2 R 3 {E f ξ i ⊗ ε i (ξ i ) ∇ (f -E f ) + (f -E f )ξ i ⊗ ε i (ξ i ) ∇ E f } dv dx =: ω -2 c L(f ).
We have used the notations

f = f (x, v), f = f (x , v ), E f = E f (x, v), E f = E f (x , v ) ξ i = ξ i (x, v, x , v ), (ξ i ) = ξ i (x , v , x, v), ∇ = ∇ ωcx,v , ∇ = ∇ ωcx ,v .
Since E f is an equlibrium, we know by Theorem 2.1 that

ξ i • ∇ ln E f -ε i (ξ i ) • ∇ ln E f = 0, 1 ≤ i ≤ 4
and therefore

E f ξ i ⊗ ξ i ∇(f -E f ) -(f -E f )ξ i ⊗ ε i (ξ i ) ∇ E f = (53) = E f E f ξ i ⊗ ξ i ∇(f -E f ) E f - f -E f E f ξ i ⊗ ε i (ξ i ) ∇ ln E f = E f E f ξ i ⊗ ξ i ∇(f -E f ) E f - f -E f E f ξ i ⊗ ξ i ∇ ln E f = E f E f ξ i ⊗ ξ i ∇ f -E f E f = E f E f ξ i ⊗ ξ i ∇ f E f .
Similarly one gets

(f -E f )ξ i ⊗ ξ i ∇E f -E f ξ i ⊗ ε i (ξ i ) ∇ (f -E f ) = (54) = E f E f f -E f E f ξ i ⊗ ξ i ∇ ln E f -ξ i ⊗ ε i (ξ i ) ∇ (f -E f ) E f = E f E f f -E f E f ξ i ⊗ ε i (ξ i ) ∇ ln E f -ξ i ⊗ ε i (ξ i ) ∇ (f -E f ) E f = -E f E f ξ i ⊗ ε i (ξ i ) ∇ f -E f E f = -E f E f ξ i ⊗ ε i (ξ i ) ∇ f E f .
Combining (52), ( 53), (54) leads to the following expression for the first order approximation of Q near equilibrium

ω -2 c L(f ) = 4 i=1 div ωcx,v R 2 R 3 E f E f ξ i ⊗ ξ i ∇ f E f -ξ i ⊗ ε i (ξ i ) ∇ f E f dv dx (55) = 4 i=1 div ωcx,v R 2 R 3 E f E f ξ i • ∇ f E f -ε i (ξ i ) • ∇ f E f ξ i dv dx .
We justify now the properties of L.

1. Integrating by parts with respect to (x, v) we obtain

R 2 R 3 L(f )ϕ dvdx = - 4 i=1 ω 2 c R 2 R 3 R 2 R 3 E f E f × (ξ i • ∇ϕ) ξ i • ∇ f E f -ε i (ξ i • ∇ϕ) (ξ i ) • ∇ f E f dv dx dvdx.
Performing the change of variables (x , v ) ↔ (x, v) yields

R 2 R 3 L(f )ϕ dvdx = - 4 i=1 ω 2 c R 2 R 3 R 2 R 3 E f E f × ((ξ i ) • ∇ ϕ ) (ξ i ) • ∇ f E f -ε i ((ξ i ) • ∇ ϕ ) ξ i • ∇ f E f dvdx dv dx .
Combining the above equalities gives

R 2 R 3 L(f )ϕ dvdx = - ω 2 c 2 4 i=1 R 2 R 3 R 2 R 3 E f E f S i dv dx dvdx
where

S i = ξ i • ∇ϕ -ε i (ξ i ) • ∇ ϕ ξ i • ∇ f E f -ε i (ξ i ) • ∇ f E f , 1 ≤ i ≤ 4.
2. It comes immediately by taking ϕ = f /E f in (16).

3. If f is a positive equilibrium of Q , we have f = E f and therefore L(f ) = 0. Conversely, assume that f is a positive equilibrium of L. Then we have equality in [START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field[END_REF], saying that

ξ i • ∇ f E f -ε i (ξ i ) • ∇ f E f = 0, 1 ≤ i ≤ 4. ( 56 
)
We consider the Hilbert space L 2 E f = {g(x, v) : R 2 R 3 g 2 /E f dvdx < +∞} endowed with the scalar product

(g, h) L 2 E f = R 2 R 3 gh E f dvdx, g, h ∈ L 2 E f
and the linear operator l f given by

ω -2 c l f (g) = 4 i=1 div ωcx,v R 2 R 3 E f E f ξ i • ∇ g E f -ε i (ξ i ) • ∇ g E f ξ i dv dx .
Obviously f -E f belongs to the kernel of l f . By the first statement we deduce that

(l f (g), h) L 2 E f = - ω 2 c 2 4 i=1 R 2 R 3 R 2 R 3 E f E f ξ i • ∇ g E f -ε i (ξ i ) • ∇ g E f × ξ i • ∇ h E f -ε i (ξ i ) • ∇ h E f dv dx dvdx
saying that l f is symmetric with respect to the scalar product (•,

•) L 2 E f
. Moreover, it is easily seen that

g ∈ ker l f iff ξ i • ∇ ln exp g E f -ε i (ξ i ) • ∇ ln exp g E f = 0, 1 ≤ i ≤ 4. (57) 
Thanks to Proposition 3.4, (57) implies that g ∈ ker l f iff g/E f = ln exp(g/E f ) is a linear combination of the collision invariants

1, ω c x + ⊥ v, v 3 , |v| 2 2 , |ω c x + ⊥ v| 2 -|v| 2 2 .
In particular, since f and E f have the same moments with respect to the above collision invariants, for any g ∈ ker l f one gets

(f -E f , g) L 2 E f = R 2 R 3 (f -E f ) g E f dvdx = 0 saying that f -E f ∈ (ker l f ) ⊥ . Finally f -E f ∈ ker l f ∩ (ker l f ) ⊥ = {0} and thus f = E f .
The first order approximation of Q near equilibria (see ( 55)) inherits all the properties of Q , nevertheless its structure remains complex. Using L instead of Q requires almost the same computational effort. A classical way to circumvent these efforts relies on the BGK approximation of Q , which writes

L BGK = -(f -E f ).
The properties of the BGK operator associated to Q are summarized below.

Theorem 5.1 1. For any f = f (x, v) and ϕ = ϕ(x, v) > 0 we have

R 2 R 3 L BGK (f ) ln ϕ dvdx = - R 2 R 3 (f -E f )(ln ϕ -ln E ϕ ) dvdx.
2. For any positive density f we have the inequality

R 2 R 3 L BGK (f ) ln f dvdx ≤ 0 with equality iff f = E f . 3. The positive equilibria of L BGK are the positive equilibria of Q f > 0, L BGK (f ) = 0 ⇔ f = E f .
Proof.

1. For any ϕ > 0, ln E ϕ is a linear combination of the collision invariants

1, ω c x + ⊥ v, v 3 , |v| 2 2 , |ω c x + ⊥ v| 2 -|v| 2 2 .
By the definition of E f we have

R 2 R 3 (f -E f ) ln E ϕ dvdx = 0 implying that R 2 R 3 L BGK (f ) ln ϕ dvdx = - R 2 R 3 (f -E f ) ln ϕ dvdx = - R 2 R 3 (f -E f )(ln ϕ -ln E ϕ ) dvdx.
2. Taking ϕ = f > 0 in the previous statement, we obtain

R 2 R 3 L BGK (f ) ln f dvdx = - R 2 R 3 (f -E f )(ln f -ln E f ) dvdx ≤ 0 with equality iff f = E f . 3. Clearly L BGK (f ) = 0 iff f -E f = 0.
A Proofs of Propositions 1. By the linearity of the average operator we obtain

∂ t f + v 3 ∂ x3 f + q m E • ∇ v f = ∂ t f + v 3 ∂ x3 f + q m E • ∇ v f .
It is easily seen that ∂ t and ∂ x3 commute with the average operator and thus, taking into account that f ∈ ker T one gets

∂ t f = ∂ t f = ∂ t f, v 3 ∂ x3 f = v 3 ∂ x3 f = v 3 ∂ x3 f = v 3 ∂ x3 f. Observe that T (f φ) = f v • ∇ x φ = -f v • E and thus f v • E = 0. Thanks to Proposition 1.3 one gets E • ∇ v f = div v {f E} = div x f ⊥ E ω c + T f ⊥ v • E ω c |v| 2 + ∂ v3 f E 3 = div x f ⊥ E ω c + ∂ v3 {f E 3 } implying that q m E • ∇ v f = div x f ⊥ E B + q m ∂ v3 {f E 3 }.
Using again Proposition 1.3 we deduce that ∂ v3 and div x commute with the average operator, implying that

∂ v3 E 3 = ∂ v3 E 3 = 0, div x ⊥ E = div x ⊥ E = 0
and our statement follows.

Proof. (of Proposition 3.1) Observe that

(v, 0) |v| , ( ⊥ v, 0) |v| • ∇ ωcx,v = T ω c |v| and (v , 0) |v | , ( ⊥ v , 0) |v | • ∇ ωcx ,v = T ω c |v | where T = v • ∇ x + ω c ⊥ v • ∇ v . Therefore (29) writes {σχ} 1/2 r sin ϕ (v 3 -v 3 ) |z| |z| 2 + (v 3 -v 3 ) 2 T ln f ω c |v| + {σχ} 1/2 r sin ϕ (v 3 -v 3 ) |z| |z| 2 + (v 3 -v 3 ) 2 T ln f ω c |v | = 0 which reduces to T ln f r 2 = T ln f (r ) 2 , if |r -r | < |z| < r + r , v 3 = v 3 . (58) 
We claim that T ln f depends only on the invariants of T i.e., T ln f (x, v) = T ln f (y, w)

for any (x, v), (y, w) ∈ R 6 such that

ω c x + ⊥ v = ω c y + ⊥ w, x 3 = y 3 , |v| = |w|, v 3 = w 3 . (59) 
Take (x, v), (y, w) verifying (59) and (x , v ) ∈ R 6 such that

v 3 = v 3 , |v| |ω c | - |v | |ω c | < x + ⊥ v ω c -x + ⊥ v ω c < |v| |ω c | + |v | |ω c | meaning that the Larmor circles of centers x + ⊥ v /ω c , x + ⊥ v/ω c and radii |v |/|ω c |, |v|/|ω c | have
non empty intersection. We also have

w 3 = v 3 , |w| |ω c | - |v | |ω c | < y + ⊥ w ω c -x + ⊥ v ω c < |w| |ω c | + |v | |ω c | and (58) implies T ln f (x, v) |v| 2 = T ln f |v | 2 = T ln f (y, w) |w| 2 .
As |v| = |w|, we deduce that T ln f (x, v) = T ln f (y, w) for any (x, v), (y, w) verifying (59), and therefore T ln f remains constant along the characteristic flow of T . Thus

T ln f = T ln f = Proj ker T T ln f = 0 and finally ln f and f belongs to the kernel of T .

In the sequel we will need the following easy lemma.

Lemma A.1 Let F = F (y, p) : R 2 × R m → R 2 be a smooth field satisfying [F (y , p ) -F (y, p)] • ⊥ (y -y) = 0, y, y ∈ R 2 , p, p ∈ R m . ( 60 
)
Then there is α

∈ R, β ∈ R 2 such that F (y, p) = αy + β, (y, p) ∈ R 2 × R m .
Proof.

Observe that F does not depend on p. Indeed, taking y = y + hz, p = p + hq we have

[F (y + hz, p + hq) -F (y, p) h • ⊥ z = 0.
Letting h → 0 we obtain

[∂ y F (y, p)z + ∂ p F (y, p)q] • ⊥ z = 0, y, z ∈ R 2 , p, q ∈ R m .
Replacing z by tu with t ∈ R , u ∈ R 2 , one gets

(t ∂ y F (y, p)u + ∂ p F (y, p)q) • ⊥ u = 0.
Passing to the limit when t → 0, we deduce that

∂ p F (y, p)q • ⊥ u = 0, u ∈ R 2 , q ∈ R m
and thus ∂ p F = 0, saying that F (y, p) = F 0 (y), with F 0 (y) = F (y, 0).

Taking y = y + hz, h ∈ R , z ∈ R 2 in (60) we obtain [F 0 (y + hz) -F 0 (y) h • ⊥ z = 0.
Passing to the limit when h → 0 yields

(∂ y F 0 (y) z) • ⊥ z = 0, y, z ∈ R 2 which is equivalent to R(π/2)∂ y F 0 (y) : z ⊗ z = 0, y, z ∈ R 2 .
Therefore R(π/2)∂ y F 0 (y) is antisymmetric, saying that

∂ y1 F 0 1 (y) = ∂ y2 F 0 2 (y) = α, ∂ y2 F 0 1 (y) = ∂ y1 F 0 2 (y) = 0, y ∈ R 2 .
Notice that

∂ y1 α = ∂ y1 ∂ y2 F 0 2 = ∂ y2 ∂ y1 F 0 2 = 0, ∂ y2 α = ∂ y2 ∂ y1 F 0 1 = ∂ y1 ∂ y2 F 0 1 = 0 saying that α is constant. Finally we have ∇ y {F 0 1 -αy 1 } = (0, 0) = ∇ y {F 0 2 -αy 2 }
and thus there is

β = (β 1 , β 2 ) ∈ R 2 such that F 0 (y) = αy + β, y ∈ R 2 .
Finally one gets

f (x, v) = exp(g(ψ(x, v), x 3 , |v|, v 3 )) = exp α(x 3 ) 2 x + ⊥ v ω c 2 + β(x 3 ) • x + ⊥ v ω c + λ(x 3 , |v|, v 3 ) . Proof. (of Proposition 3.3) We introduce the field b 4 • ∇ x,v = - ⊥ v ωc|v| • ∇ x + v |v| • ∇ v . We have ξ 3 • ∇ ln f = -{σχ} 1/2 r sin ϕ |z| b 4 • ∇ x,v ln f and (ξ 3 ) • ∇ ln f = -{σχ} 1/2 r sin ϕ |z| (b 4 ) • ∇ x ,v ln f .
Thanks to Proposition 3.1 we have

ln f (x, v) = g ψ 1 = x 1 + v 2 ω c , ψ 2 = x 2 - v 1 ω c , x 3 , r = |v|, v 3
and by direct computations one gets We have

∇ x ln f (x, v) = ∇ ψ g(ψ, x 3 , |v|, v 3 ), ∇ v ln f = - ⊥ ∇ ψ g ω c + v |v| ∂ r g.
v 3 (ω c x + ⊥ v)f = u 3 (ω c x + ⊥ v)f + ρM µθ µ-θ (v) (v 3 -u 3 )M θ (v 3 -u 3 ) × ω 2 c M µ (ω c x + ⊥ v -u)
and thus

R 2 R 3 v 3 (ω c x + ⊥ v)f (x, v) dvdx = ρu 3 u.
It is easily seen, thanks to (36), that

R 2 R 3 (v 3 ) 2 f dvdx = R 2 R 3 (v 3 -u 3 + u 3 ) 2 f dvdx = R 2 R 3 (v 3 -u 3 ) 2 f dvdx + ρ(u 3 ) 2
= ρ((u 3 ) 2 + θ).

Clearly we have, integrating by parts

R 2 R 3 (ω c x + ⊥ v)∂ v3 f dvdx = (0, 0), R 2 R 3 v 3 ∂ v3 f dvdx = -ρ.
Proof. (of Lemma 4.2)

Clearly

R 2 R 3 (v 3 -u 3 ) |v| 2 + (v 3 -u 3 ) 2 2 f (x, v) dvdx = 0
and thus (37) yields

R 2 R 3 v 3 |v| 2 + (v 3 -u 3 ) 2 2 f (x, v) dvdx = R 2 R 3 u 3 |v| 2 + (v 3 -u 3 ) 2 2 f (x, v) dvdx = ρu 3 µθ µ -θ + θ 2 .
Similarly, thanks to (38) we obtain

R 2 R 3 v 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f (x, v) dvdx = R 2 R 3 u 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f (x, v) dvdx = ρu 3 µ - µθ µ -θ .
It is easily seen that

R 2 R 3 v 3 |v| 2 + (v 3 -u 3 ) 2 2 ∂ x3 f (x, v) dvdx -∂ x3 R 2 R 3 v 3 |v| 2 + (v 3 -u 3 ) 2 2 f dvdx = - R 2 R 3 v 3 (u 3 -v 3 )∂ x3 u 3 f dvdx = R 2 R 3 (v 3 -u 3 ) 2 f (x, v) dvdx ∂ x3 u 3 = ρθ ∂ x3 u 3 and R 2 R 3 v 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 ∂ x3 f dvdx -∂ x3 R 2 R 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 f dvdx = - R 2 R 3 v 3 (u -ω c x -⊥ v) • ∂ x3 u f dvdx = R 2 R 3 (v 3 -u 3 )(ω c x + ⊥ v -u) • ∂ x3 u f dvdx = 0.
Therefore we obtain

R 2 R 3 v 3 |v| 2 + (v 3 -u 3 ) 2 2 ∂ x3 f dvdx = ∂ x3 ρu 3 µθ µ -θ + θ 2 + ρθ ∂ x3 u 3 and R 2 R 3 v 3 |ω c x + ⊥ v -u| 2 -|v| 2 2 ∂ x3 f dvdx = ∂ x3 ρu 3 µ - µθ µ -θ .
Proof. (of Lemma 4.3)

By direct computation one gets 

R 2 R 3 f ln f dvdx = R 2 R 3

Proposition 1 . 2

 12 The restriction of T to ker • is one to one map onto ker • . Its inverse belongs to L(ker • , ker • ) and we have the Poincaré inequality u ≤ 2π |ω c | T u , ω c = qB m = 0 for any u ∈ D(T ) ∩ ker • .

Proposition 3 . 1

 31 We start solving the equation (26) which corresponds to i = 1. Then we restrict this set of solutions by imposing successively the equation (26) with i = 2, i = 3 and i = 4. It is the only place where we use the explicit form of the vector fields (ξ i ) 1≤i≤4 , entering the expression of Q . These computations are a little bit tedious, but finally they will provide the product of Maxwellians realizing the equilibria of Q , parametrized by the moments ρ, u, K, G. Moreover, we should pay attention to the fact that the probability measure χ enters as a factor any vector field (ξ i ) 1≤i≤4 and therefore each equality in (26) is non trivial only on the support of χ, that is, only for pairs of Larmor circles having non empty intersection. All these proofs are postponed to Appendix A. For another proof, which avoid the explicit computation of the vector fields (ξ i ) 1≤i≤4 , we refer to Proposition 3.5. For simplicity we do not care about the regularity of the solutions. All the derivatives are understood in the classical sense and we are looking for smooth solutions. The positive densities satisfyingξ 1 • ∇ ln f + (ξ 1 ) • ∇ ln f = 0 (29)are those in the kernel of T .Proposition 3.2 The positive densities satisfying (29) and

Lemma 4 . 1

 41 For any local gyrokinetic equilibria cf. (35)

Lemma 4 . 2

 42 For any local gyrokinetic equilibria cf. (35)

Therefore b 4 • 2 + β(x 3 )+ ⊥ v ω c 2 +

 4232 ∇ x,v is the derivative with respect to r = |v| b 4 • ∇ x,v ln f = -g = ∂ r g and (31) reduces to∂ r g(ψ, x 3 , r, v 3 ) r = ∂ r g (ψ , x 3 , r , v 3 ) r , |r -r | |ω c | < |ψ -ψ | < (r + r ) |ω c | . Replacing (ψ , r , v 3 ) by small perturbations of (ψ, r, v 3 ) such that |r-r |/|ω c | < |ψ -ψ | < (r+r )/|ω c |hold true, we deduce immediately that ∂rg r depends only on x 3 and thus∂ r g(ψ, x 3 , r, v 3 ) = rγ(x 3 ).By Proposition 3.2 we know thatg = ln f = α(x 3 ) |ψ| 2 • ψ + λ(x 3 , r, v 3 ) implying that ∂ r λ = rγ(x 3 ). Finally λ(x 3 , r, v 3 ) = γ(x 3 ) r 2 2 + µ(x 3 , v 3 ) saying that f (x, v) = exp α(x 3 ) 2 x β(x 3 ) • x + ⊥ v ω c + γ(x 3 ) |v| 2 2 + µ(x 3 , v 3 ) .

Proof. (of Proposition 3. 4 ) 2 c 2 c 2 c u 3 2 c∂ 2 c v 3 + 2 c v 3 + 2 c(v 3 ) 2 2 +

 422232232322 The formula of the vector field ξ 4 allows us to writeξ 4 • ∇ ln f = -{σχ} 1/2 (r cos ϕ -r)(v 3 -v 3 ) |z| |z| 2 + (v 3 -v 3 ) 2 b 4 • ∇ x,v ln f + {σχ} 1/2 v 3 -v 3 |z| |z| 2 + (v 3 -v 3 ) 2 z ω c • ∇ x ln f -{σχ} 1/2 |z| |z| 2 + (v 3 -v 3 ) 2 ∂ v3 ln f and (ξ 4 ) • ∇ ln f = -{σχ} 1/2 (r cos ϕ -r )(v 3 -v 3 ) |z| |z| 2 + (v 3 -v 3 ) 2 (b 4 ) • ∇ x ,v ln f + {σχ} 1/2 v 3 -v 3 |z| |z| 2 + (v 3 -v 3 ) 2 z ω c • ∇ x ln f -{σχ} 1/2 |z| |z| 2 + (v 3 -v 3 ) 2 ∂ v 3 ln f .By Proposition 3.1 we haveln f (x, v) = g(ψ(x, v), x 3 , |v|, v 3 )and by Proposition 3.3 we know thatb 4 • ∇ x,v ln f |v| = ∂ r g r = γ(x 3 ).Therefore (32) reduces toγ(x 3 )(v 3 -v 3 )[r(r -r cos ϕ) + r (r -r cos ϕ)] + v 3 -v 3 ω c z • (∇ x ln f -∇ x ln f ) -|z| 2 (∂ v3 ln f -∂ v 3 ln f ) = 0 when |r -r | < |z| < r + r . Taking into account that r(r -r cos ϕ) + r (r -r cos ϕ) = r 2 + (r ) 2 -2rr cos ϕ = |z| 2we obtain for any |r -r| < |z| < r + r γ(x 3 )(v 3 -v 3 ) + v 3 -v 3 ω c |z| z |z| • (∇ x ln f -∇ x ln f ) = ∂ v3 ln f -∂ v 3 ln f . (64) But ∇ x ln f = ∇ ψ g = α(x 3 )ψ(x, v) + β(x 3 ), implying that z ω c |z| 2 • (∇ x ln f -∇ x ln f ) = α(x 3 ) ωand therefore (64) is equivalent to∂ v3 g(ψ, x 3 , r, v 3 ) -∂ v 3 g(ψ , x 3 , r , v 3 ) = (v 3 -v 3 ) γ(x 3 ) + α(x 3 ) ω 2 c , |r -r | |ω c | < |ψ -ψ | < r + r |ω c | .We introduce the function G(ψ, x 3 , r, v 3 ) = ∂ v3 g(ψ, x 3 , r, v 3 ) and let us considerh, s ∈ R , u ∈ R 2 \ {(0, 0)}, u 3 ∈ R ψ = ψ + hu, r = r + hs, v 3 = v 3 + hu 3 such that |h| |s| |ω c | < |h| |u| < 2r + hs |ω c | .We deduce thatG(ψ + hu, x 3 , r + hs, v 3 + hu 3 ) -G(ψ, x 3 , r, v 3 ) h = u 3 γ(x 3 ) + α(x 3 ) ω which implies ∇ ψ G • u + ∂ r G s + ∂ v3 G -γ(x 3 ) -α(x 3 ) ω = 0, |s| |ω c | < |u| saying that ∇ ψ G = (0, 0), ∂ r G = 0, ∂ v3 G = γ(x 3 ) + α(x 3 ) ω and v3 g(ψ, x 3 , r, v 3 ) = G(ψ, x 3 , r, v 3 ) = γ(x 3 ) + α(x 3 ) ω δ(x 3 ).The previous equality allows us to determine the function µ= µ(x 3 , v 3 ) in the expression of g = ln f g(ψ, x 3 , r, v 3 ) = α(x 3 ) |ψ| 2 2 + β(x 3 ) • ψ + γ(x 3 ) |v| 2 2 + µ(x 3 , v 3 ).Taking the derivative with respect to v 3 yields γ(x 3 ) + α(x 3 ) ω δ(x 3 ) = ∂ v3 g = ∂ v3 µ and therefore µ(x 3 , v 3 ) = γ(x 3 ) + α(x 3 ) ω δ(x 3 )v 3 + η(x 3 ).Proof. (of Lemma 4.1)

ln ρ ω 2 c(2π) 5 /2 µ 2 θ 3 2 + (v 3 -2µ f dvdx = ρ ln ρ ω 2 cρ ln ρ ω 2 c

 2532322 u 3 ) 2 2θ -|ω c x + ⊥ v -u| 2 -|v| 2 (2π) 5/2 µ 2 θ 3/2 (2π) 5/2 µ 2 θ 3/2

  associated to any local gyrokinetic equilibrium f (see Appendix A for details). For any local gyrokinetic equilibrium cf. (35)
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Proof. (of Proposition 3.2)

We have

Thus (30) becomes

Since the positive density f satisfies (29), ln f belongs to ker T and thus there is a function

Observe that

and therefore (61) reduces Nevertheless we can proceed as in the proof of Lemma A.1, taking h ∈ R small enough, s, u 3 ∈ R,

Therefore (62) holds true, implying that

where G(ψ, x 3 , r, v 3 ) = ∇ ψ g(ψ, x 3 , r, v 3 ). Letting h → 0 we deduce that G depends only on ψ and x 3

Coming back to (63) we obtain

and we deduce by Lemma A.1 that