
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Runtime Verification: the Application Perspective?

Yliès Falcone1, Lenore D. Zuck2

1 University of Grenoble I (UJF), Laboratoire d’Informatique de Grenoble, e-mail: ylies.falcone@ujf-grenoble.fr
2 University of Illinois at Chicago, e-mail: lenore@cs.uic.edu

The date of receipt and acceptance will be inserted by the editor

Abstract. In the past decade, Runtime Verification (RV) has
gained much focus, from both the research community and
practitioners. RV combines a set of theories, techniques and
tools aiming towards efficient analysis of systems’ executions
and guaranteeing their correctness using monitoring techniques.
Major challenges in RV include characterizing and formally
expressing requirements that can be monitored, offering in-
tuitive and concise specification formalisms, and monitoring
specifications efficiently for functional and non-functional be-
havior. In spite of the major strides made in recent years,
much effort is still needed to make RV an attractive and viable
methodology for industrial use and to apply it to wider ap-
plication domains, such as security, bio-health, power micro-
grids.

This special issue of STTT proposes extended versions of
four papers that have been selected from the Runtime Verifi-
cation track at ISoLA 2012 [10].

Introduction

Static methods can guarantee program correctness. They are,
however, not always applicable to a variety of systems and
properties. Often the size of the system renders static methods
prohibitively expensive. Systems to which static techniques
are applied are those where correctness is to be proven un-
der all circumstances, such as safety critical systems. In con-
trast, many “real-life” systems may be occasionally faulty,
especially when the fault is not catastrophic (or even very ex-
pensive) and the system can recover from it. Similarly, static
techniques are applicable to systems that are built top down
and are often applied at the design stages. In contrast, many
“real-life” systems are developed ad-hoc so that their prop-
erties are not always known à priori, yet, they may be learnt

? The work of the second author was funded in part by NSF award CCF-
0916438.

during the system’ execution. For these and many other rea-
sons, RV offers an interesting alternative to static methods.

In the past decade, Runtime Verification (RV) has gained
much focus from both research community and practition-
ers [13,8,12,9,4,5]. RV combines a set of theories, techniques
and tools aiming towards efficient analysis of systems’ exe-
cutions and guaranteeing their correctness using monitoring
techniques. While some of the techniques used in RV are
have been applied in several areas, mainly by the testing com-
munity, it had only recently became a a first-class citizen in
the formal-method community after a 2001 workshop (now
a conference), carrying the name runtime verification, which
was initiated by Klaus Havelund (who authors in this special
issue of STTT) and Grigore Rosu.

This issue of STTT presents some new directions in RV.
Two papers focus on the exploration of the expressiveness-
efficiency spectrum [1], that is, the observed duality between
the expressiveness of the specification language and the re-
source consumption made by runtime monitors. They support
the common conjecture that the more expressive the specifi-
cation formalism is, the more complex (and resource consum-
ing) the associated monitoring algorithm is.

The other two papers focus on statistical model-checking
(see [14]), which augments runtime verification with statis-
tics. When one has access to several executions of the system
under scrutiny, statistical model-checking allows to comple-
ment runtime verification of properties by using models of
stochastic behavior to model the uncertainty of a system and
to better assess the overall correctness of the system by apply-
ing statistical inference to reason on several execution traces.



The Expressiveness/Efficiency Spectrum

On Piggyback Runtime Monitoring of Object-Oriented Pro-
grams (Hallé et al.)

The work in [6] proposes an original approach to the quest for
expressive and efficient runtime monitors. It relies on the ob-
servation that when monitoring Java programs, many of the
properties on the usage of data structures (usually addressed
in benchmarks) are already monitored by the object instances
at runtime. More precisely, the authors study the extent that
the fields of an object carry information that can be piggy-
backed by a monitor to take a decision on the satisfaction of
the property under verification. The authors also address the
general question of how a monitor can use the information
in the object’s member fields. They empirically evaluate the
benefit of piggyback monitoring and highlight the benefits of
their approach.

Rule-based Runtime Verification Revisited (Havelund)

Inspired by the RETE algorithm ([2]), [7] proposes to re-
visit rule-based monitoring. While rule-based RV employs
somewhat less efficient runtime monitors, it offers for a con-
cise and elegant expression of specifications. In both RV and
artificial intelligence, a rule is specified by a collection of
facts, or events, that trigger some actions. The paper shows
that the RETE algorithm can be made an efficient solution
to the event-matching problem, and thus to the problem of
(efficiently) dispatching events carrying data value to the re-
lated monitor instances. It also shows how to adapt and op-
timize RETE for monitoring purposes. An implementation
of the modified RETE is proposed in the Scala-based tool
LOGFIRE, whose performance is compared to state-of-the-
art ruled-based systems.

Statistical Model Checking: Augmenting Runtime Verifi-
cation with Statistics

Statistical Model Checking QoS Properties of Systems with
SBIP (Nouri et al.)

The work in [11] proposes SBIP — a stochastic extension
of the Behavior Interaction Priority (BIP) framework which
is an expressive and rigorous component-based design flow
for the hierarchical construction of systems. Adding stochas-
tic features to BIP allows to better assess the correctness of
the system as well as to model uncertainty stemming from
faults or assumptions on the runtime platform. As [11] shows,
SBIP allows to combine the results from different executions
with statistical inference algorithms so as to add confidence
measurement on the satisfaction of properties. To overcome
the restrictions of using statistical model checking, the au-
thors propose to consider properties expressed in Bounded
Linear Temporal Logic and to eliminate the non-determinism

in the system by randomizing transitions. Two case studies
conducted with SBIP are presented.

Scheduleability of Herschel-Planck Revisited Using Statisti-
cal Model Checking (David et al.)

The work in [3] proposes a scheduleability analysis of Herschel-
Planck satellite system using symbolic model checking and
statistical model checking. The paper shows the complemen-
tarity of these techniques for proving that a run is either re-
alizable or that a deadline violation exists. It is demonstrated
that statistical model checking improves performance analy-
sis by providing response times when a system is schedule-
able, and probability of deadline violation otherwise.

Acknowledgment

We would like to thank the organizing committees of ISoLA
2012 for setting up such a successful event, the programme
committee and reviewers of the conference and the special
issue of STTT for helping with the selection of papers, and
all authors who contributed to the track. We would especially
like to thank the authors for providing us with such excellent
papers, and the referees for their diligent work.

References

1. Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger,
and David Rydeheard. Quantified event automata: Towards ex-
pressive and efficient runtime monitors. In FM 2012: 18th In-
ternational symposium on Formal Methods, Paris, France, Au-
gust 27-31, 2012, volume 7436 of Lecture Notes in Computer
Science, pages 65–79, 2012.

2. Howard Barringer, David E. Rydeheard, and Klaus Havelund.
Rule systems for run-time monitoring: from Eagle to RuleR. J.
Log. Comput., 20(3):675–706, 2010.

3. Alexandre David, Kim G. Larsen, Axel Legay, and Marius
Mikučionis. Schedulability of herschel-planck revisited using
statistical model checking. In STTT, 2014.

4. Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.
Runtime verification of safety-progress properties. In Saddek
Bensalem and Doron Peled, editors, Runtime Verification, 9th
International Workshop, RV 2009, Grenoble, France, June 26-
28, 2009. Selected Papers, volume 5779 of Lecture Notes in
Computer Science, pages 40–59. Springer, 2009.

5. Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on
runtime verification. In Manfred Broy, Doron Peled, and Georg
Kalus, editors, Engineering Dependable Software Systems, vol-
ume 34 of NATO Science for Peace and Security Series, D: In-
formation and Communication Security, pages 141–175. IOS
Press, 2013.

6. Sylvain Hallé, Jason Vallet, and Raphaël Tremblay-Lessard. On
piggyback runtime monitoring of object-oriented programs. In
STTT, 2014.

7. Klaus Havelund. Rule-based runtime verification revisited. In
STTT, 2014.

2



8. Klaus Havelund and Allen Goldberg. Verify your runs. In
Bertrand Meyer and Jim Woodcock, editors, VSTTE, volume
4171 of Lecture Notes in Computer Science, pages 374–383.
Springer, 2005.

9. Martin Leucker and Christian Schallhart. A brief account of
runtime verification. Journal of Logic and Algebraic Program-
ming, 78(5):293–303, may/june 2008.

10. Tiziana Margaria and Bernhard Steffen, editors. Proceedings of
the 5th International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation, ISoLA 2012, Ami-
randes, Heraclion, Crete, October 15-18, 2012, Lecture Notes
in Computer Science. Springer, 2012.

11. Ayoub Nouri, Saddek Bensalem, Benoit Delahaye Mar-
ius Bozga, Cyrille Jegourel, and Axel Legay. Statistical model
checking qos properties of systems with SBIP. In STTT, 2014.

12. Amir Pnueli and Aleksandr Zaks. PSL Model Checking and
Run-Time Verification Via Testers. In Jayadev Misra, Tobias
Nipkow, and Emil Sekerinski, editors, FM, volume 4085 of
Lecture Notes in Computer Science, pages 573–586. Springer,
2006.

13. Runtime Verification. http://www.runtime-verification.org,
2001-2012.

14. Høakan L. S. Younes. Verification and Planning for Stochas-
tic Processes with Asynchronous Events. PhD thesis, Carnegie
Mellon, 2005.

3


