Shape derivatives for minima of integral functionals - Archive ouverte HAL
Article Dans Une Revue Mathematical Programming Année : 2014

Shape derivatives for minima of integral functionals

Résumé

For Ω varying among open bounded sets in R n , we consider shape functionals J(Ω) defined as the infimum over a Sobolev space of an integral energy of the kind Ω [f (∇u) + g(u)], under Dirichlet or Neumann conditions on ∂Ω. Under fairly weak assumptions on the integrands f and g, we prove that, when a given domain Ω is deformed into a one-parameter family of domains Ω ε through an initial velocity field V ∈ W 1,∞ (R n , R n), the corresponding shape derivative of J at Ω in the direction of V exists. Under some further regularity assumptions, we show that the shape derivative can be represented as a boundary integral depending linearly on the normal component of V on ∂Ω. Our approach to obtain the shape derivative is new, and it is based on the joint use of Convex Analysis and Gamma-convergence techniques. It allows to deduce, as a companion result, optimality conditions in the form of conservation laws.
Fichier principal
Vignette du fichier
shape_derivatives.pdf (404.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01127679 , version 1 (07-03-2015)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Ilaria Fragalà, Ilaria Lucardesi, Guy Bouchitté. Shape derivatives for minima of integral functionals. Mathematical Programming, 2014, pp.27. ⟨10.1007/s10107-013-0712-6⟩. ⟨hal-01127679⟩
291 Consultations
224 Téléchargements

Altmetric

Partager

More