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ABSTRACT In [3], Cotton and Ellis utilised the convolutive NMF algo-

rithm for non-overlapping event detection. A comparisorswa
In this paper, we propose a method for modeling and classify- made between convolutive NMF (which learns spectro-teaipor
ing acoustic scenes using temporally-constrained ghifiriant basis matrices) with a frame-based approach using Melsecy
probabilistic latent component analysis (SIPLCA). SIPL&R be  cepstral coefficients (MFCCs). Experiments performed catabt
used for extracting time-frequency patches from specamgrin collected under the CHIL project, consisting of 16 differenent
an unsupervised manner. Component-wise hidden MarkovIsiode classes, showed that a combination of the convolutive NMEesy
are incorporated to the SIPLCA formulation for enforcingﬁe and the frame-based system y|e|ded the best results. Itdsheu
poral constraints on the activation of each acoustic compbn  noted that the convolutive NMF algorithm is closely relatedhe
The time-frequency patches are converted to cepstral cieefts shift-invariant probabilistic latent component analyt&PLCA)
in order to provide a compact representation of acoustitteve  a|gorithm that is used in the present paper.
within a scene. Experiments are made using a corpus of tr@in s In some cases, the salient events that characterise the scen
tion recordings, classified into 6 scene classes. Resudts giat are not known a priori, or may be hard to learn from trainintada
the proposed model is able to model salient events withireaesc  qye to the large discrepancy between two acoustic reaizatf

and outperforms the non-negative matrix factorizatioroafgm  the same event. For example, in the last decades a wide rénge o
for the same task. In addition, it is demonstrated that theeais  scientific projects designed and put into service massiveitore
temporal constraints can lead to improved performance. ing devices based on hydrophone or microphone dlramong

this vast amount of data, one can seek for known acoustidgven
or alternatively try to discover events of unknown type. Tateer
leads us to an unsupervised formulation of the scene déscrip
problem, where we have only a few loose assumptions about the
events of interest and we want the algorithm to be able t@ekin

an unsupervised manner the events that semantically deste
scene.

Following this approach, Cauchil[4] proposed a method for
classifying auditory scenes in an unsupervised manneg sparse
non-negative matrix factorization. After extracting spacbasis
vectors from acoustic scenes, each basis is converted iRto0Q\d
for compactness. A distance metric is defined for measuheg t
difference between extracted dictionaries from differecgénes.
Evaluation is performed on a corpus of 66 recordings takem fr
several train station§[[5], originally created for a petoepstudy
on acoustic scene categorisation, resulting in six acosstne
classes. Experiments made by comparing the sparse NMF with
a bag-of-features approach from [6] showed that the NMF-algo
rithm is able to successfully extract salient events witliracous-
tic scene.

In the present paper, we build upon this work and propose a
method for modeling and classifying acoustic scenes in &u-un
pervised manner using shift-invariant probabilistic medeThe
shift-invariant probabilistic latent component analy§8PLCA)
algorithm [7] is used in order to extract time-frequencyibasa-
trices from log-frequency spectrograms. In addition, @oathm
is proposed for incorporating temporal constraints to . EA

1. INTRODUCTION

The problem of modeling acoustic scenes is one of the mosét cha
lenging tasks in the computational auditory scene analZASA)
field [1]]. It is closely related to the problem of detectinglamas-
sifying acoustic events within a scene, and has numerougapp
tions in audio processing. In the case of scene categanisati
characterization, we are interested in specifying therenment

of the recording, which is informed by the types of eventd tha
are present within the scene of interest. The problem iscélpe
challenging in the case of a real-world scenario with anmitéd
set of events which could also overlap in time. It should beedo
that event detection and scene categorisation is easilg\arhby
humans, even in the case of multiple overlapping events.

The literature in this domain is quite vast and we shall now
describe two references that consider a technical appttbaths
close to the one considered in this paper. Mesaros etlal.ré2] p
posed a system for sound event detection which employediprob
bilistic latent semantic analysis (PLSA) for separating detect-
ing overlapping events. PLSA (or PLCA, as called in this work
is a factorization technique closely linked to non-negativatrix
factorization (NMF). The system was tested in a supervised s
nario using a dataset of 103 recordings classified into Xerdifit
scenes, containing events from 61 classes.

* The first author is funded by a Westfield Trust research ststign

(Queen Mary University of London) and performed part of thisk while algorithm using component-wise hidden Markov models (HNMMs
visiting IRCAM. The second author is partly funded by ANR-1303-
005-01 1See for an examplét t p: // ww. nept unecanada. ca
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These temporal constraints control the occurrence of eeahisa
tic event within a scene using on/off HMMs. The extractedetim
frequency basis matrices are afterwards converted to a agmp
representation using cepstral coefficients. A distanceicristde-
fined for comparing the extracted dictionaries betweeredfiit
acoustic scenes. Evaluation is performed on the same tafase
train station recordings as inl[4]. Results using rankind elas-
sification measures show that the proposed SIPLCA modeis out
perform state-of-the art approaches for the same expetimach
as non-negative matrix factorizatianl [4] and a bag-of-feanap-
proach with Gaussian mixture modéls [6]. In addition, ithewn
that incorporating temporal constraints regarding thvatbon of
acoustic scenes, as well as incorporating sparsity contstran
the same activation can lead to more informative basis v&eted
thus to improved performance.

The outline of the paper is as follows. The shift-invariarttp
abilistic latent component analysis method is present&keition
[@. Sectio B presents the proposed temporally-constrairestél
and the computation of the distance between acoustic sc€hes
employed dataset of train station soundscapes, the dtitiset-
rics, and the experimental results compared to other sfatige-
art methods are shown in Sectfdn 4. Finally, conclusionsliaen
and future directions are indicated in Secfidn 5.

2. SHIFT-INVARIANT PLCA

Shift-invariant probabilistic latent component analy&8PLCA)
was proposed in[7] for extracting shifted structures froom-n
negative data. It is a convolutive extension of the prolistisl
latent component analysis (PLCA) algorithm, that was psego
by Smaragdis et al._[8]. As PLCA can be viewed as a probaigilist
formulation of the non-negative matrix factorization (NMedgo-
rithm, SIPLCA can be viewed as a probabilistic formulatidmhe
convolutive NMF algorithm[[9] using the Kullback-Leibleiver-
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Figure 1: SIPLCA applied to a sequence of footsteps= 2).
Top left: input CQT spectrogram, right: extracted basis ricafs,
bottom: extracted component activations.

e Maximization step:

Zw,t,f VthP(Z7 T|UJ, t)

P = 3
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Zt Ve tP(Zy T|w7t)
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@rl2) = S P T D) )
Voi4r Pz, Tlw, t + 7
Pl = et TETET)

Zt,wﬂ- VWJ‘FTP(Z% T|UJ, t+ T)

Equation [(2) is computed through the model[df (1) using Bayes
theorem and expresses the posterior of the unknown vasiatsts

gence as a cost function. SIPLCA has been used in the past folthe known data. The unknown matrices are initialized witidam

pitch tracking [10] and automatic transcription of polypimmu-
sic [11].

The SIPLCA algorithm can support the extraction of a one-
dimensional basis from a spectrogram or the extraction whe-t
frequency patch. In the present work, we will employ theelatt
SIPLCA model for extracting 2-dimensional basis matricEke
model takes as an input a normalized spectrogtam and ap-
proximates it as a bivariate distributid?(w, ¢), wherew is the
frequency index andthe time index.P(w, t) is decomposed as a
series of time-frequency patches convolved over time. Thdah
is formulated as follows:

Vot & P(w,t) Z P(2)P(w,T|z) % P(t|2)

> P(2)>  Plw,T|2)P(t—7]2) (1)

where P(w, 7|%) is the time-frequency patch for theth compo-
nent, P(z) is the component prior, ané(t|z) is the activation

values. The update rules of (Z}(5) are iterated until cogerece.
An example of the SIPLCA algorithm is given in Fig] 1, where
SIPLCA is applied to a recording of footsteps with= 2. The
activationsP(t|z) of the footsteps are clearly seen as spikes.

In [13], sparsity constraints are applied to the model in or-
der to provide as meaningful solutions as possible. Thesipar
constraints are applied using antropic priot, by modifying the
update equations in the maximization step. In the presenk,wo
we will encourage sparsity on the component activafiti|z) in
order to derive informative basis matrices.

3. PROPOSED METHOD

3.1. Motivation

The motivation behind the model proposed in this paper isto i
clude another level of temporality, which controls the appace
of the time-frequency patches in a recording. These terhpora
straints can be supported by incorporating HMMs within tHeLE A

for each component. The unknown model parameters can be estimodel. Ideally, the component activation function woulchco

mated using the expectation-maximization (EM) algorit@@]{
e Expectation step:

P(z2)P(w,7|2)P(t — T|2)
2.2 P()P(w,]2) P(t - 7|2)

P(z,T|w,t) = (2)

DAFX-

sist of zeros in case of inactivity and ones at the time instan
where an event would appear. Each HMM can represent a cer-
tain component, which would be represented using a twe;stat
on/off model. This on/off model would serve as an event iattic
function, which would enforce temporal constraints in thelia
tory scene activation matrix. Thus, in this case we propasaval
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model which supports time-frequency patches for auditegne where

characterization and also controls the temporal sucaes§ithese ) ) )
scenes. P(q?)2) = Pi(z,q,”) o (g )ﬁ (@)

This work will extend the temporally-constrained convilet Z ) P.(%,q )) Z e y ()8 (g?)
probabilistic model for pitch detection presented [inl [1«hich (11)

utilised shift-invariance over log-frequency for spedtratead of
performing shift-invariance over time for time-frequertzysis as
in this work. These models which combine spectral facttiora
techniques with HMMs were first introduced in_[15], where the a1(q1)
non-negative HMM algorithm was proposed.

andat( ) Be(q <Z)) are the forward and backward variables for
thez-th HMM [L7], which can be computed recursively:

P(z1]q1)P(q1)
ary1(qer1) = <ZP(Qt+1|Qt)at(Qt))'Pt+1(zt+1|Qt+1)

3.2. HMM-constrained Shift-invariant PLCA at
12
This proposed temporally-constrained model takes as iamat- (12)
malized spectrograri,, , and decomposes it as a series of time- B
frequency patches. Also produced is a component activatian Pr(ar) =
trix, as well as component priors. The activation of a eacustic Bilq) = Z Be+1(qe+1)P(qe+1]q) Pe1 (Ze41]qe41)
component is controlled via a 2-state HMM. The model can be de1
formulated as: (13)
(2)
Vir m P(w,t) Z P(z ZP(M’TM wr P(t]2)P(q;”[t) The second term of[9) can be computed using Bayes’ theorem:
a”
(6) P(z7lg", . at? o, t) = P(z, 7w, t) =

where q{” is the state sequence for theth component,z = P(2)P(w,7)2)P(t — |2)

2. Slncez = P(¢?|t) = 1, we can revert to the non- .3 P(2)P(w,7|2)P(t — 7]2)[t) (14)

temporally constralned model of the previous section. Tihuke . . . -
() _ Finally, the posterior for the component transition maisigiven
model, the desired source activation is given®{g|t) P(q,”’ =

1]2). by:

The activation sequence for each component is constrasied u Pi(qt, qt4+112) =
ing a corresponding HMM, which is based on the produced sourc

e o P P,
activationP(z,t) = P(z)P(t|z). In terms of the activations, the ae(qe) (qt;'qt)ﬁt“(q”l) t(z'}?'qt“) (15)
component-wise HMMs can be expressed as: Eczt,¢1t+1 e (qe) P(qet1]q:) Brva (qe1) Pe(zeg1lqi1)
P(q (z) P( (z) (z) Py (= ) 7 For theMaximizationstep, the update rules for estimating the
; H (@51 la H t(zla: ™ unknown parameters are:
q z
wherez refers to the sequence of activations for a given compo- P2) > ot Z (z)Vw tP(z,7,q ( )7 e 7th)|w t) (16)
nentz, P(¢\*) is the prior probabilit is the tran- z)=
z, P(q;”) p p Y»P(Qt+1|q (22 . ZzWTtZ -y VoiP(z, T, Q§1)7~~~7Qtz)|w t)
sition matrix for thez-th component, and’(z¢|q;”’) is the ob-
servation probability £, refers to the activation at fram@. The E E \VuP(z, 7 <1) <Z)|w t)
observation probability for an active component is definsidgia P(w,7|2) = t g T o
sigmoid curve: Dt ZqEZ)VWP(z a", .. g P |w,t)
() _ 1 17)
(Zt|q ) 1 +67P(z’t)7)\ ( ) P( | ) Zw,T Zqiz)VHJ’t‘f’T (Z T, qg )7"'7th)|L"J t+7—)
) A t|z) = —
where is a parameter that controls the component activation (a S S o Vieiir P2, 7, aV Pt +7)
high value will lead to a low observation probability, leaglito an (18)

‘off” state). The formulation of the observation functiandgimilar

- o (2)
to the one used for multiple note trackinglin [16]. > Plg 7qt+1 z)

19
As in the model of Section] 2, the unknown parameters in the Plala™) = ) @ Y, P, 4, 12) (19)
model can be estimated using the EM algorithm [12]. ForBke
pectationstep, we compute the posterior for all the hidden vari- P(¢?) = pl(q§ )|z) (20)
ables: =
W - wherezq£z> = eqa) ~--eq<z>. Eg. [20) updates the compo-
P(zmq 7 |20, t) = nent prior using the posterior of eg.{11). Thus, the updgtae
P(qt(l),-.-,qtz)l %) P(z, T|q(1) ...,qt(z) w, 1) 9) tions of the proposed model are a combination of_ the SIPLC_A
. o ) ] update rules and the forward-backward HMM algorithm. The fi-
Since we are utilising independent HMMs, the joint probighfbr nal event activation is given by the activation for each corgmnt
all hidden source states is given by: given by the model and the probability for an active statetifier
z corresponding component:
Pq”,....q72) H (@”12) (10)

P(z,t,q;” = 1) = P(z)P(t]2)P(q” = 1]t)  (21)
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AUDIO Vot PROPOSED Wi | CONVERSIONTO | DISTANCE D(t,m)

R cQT .

MODEL CEPSTRUM COEFS COMPUTATION

T
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Figure 2:Diagram for the proposed acoustic scene classificatioresyst

1 2 3 4 5 we employ the formula presented [n[19]:
X 1\ 7
ci = ; log(wlk]) cos <z (k - 5) }) (22)
i wherei = 1,...,13. Each vector of cepstral coefficients is then

normalized to the range [0,1] region. Thus, the first coeffiti
that corresponds to the DC component of the signal is drapped
Finally, for each time-frequency basis, the coefficienéssarmmed
together over time, thus resulting in a single vector regméiag a
basis.

For computing the distance between a sceaed a scenen,
we employ the same steps aslin [4]. Firstly, we compute the ele
ment wise distance between a bddig(r), r = 1,..., R and the
nearest basis of dictionafy,,:

dr(l,m) = i, [IWi(r) = W (5)]] (23)

i

The final distance between two acoustic scenes is defined as:
R
D(l,m) =Y _d.(I,m) + dr(m,1) (24)
r=1
Equation [[(Z4) is formulated in order for the distance meaer
As in the SIPLCA model of Sectidd 2, sparsity constraints are tween two scenes to be symmetric. In the end, the acoustiesce
applied toP(t|z) using the entropic prior of [13] in order to obtain  distance matrixD is used for evaluation.
a sparse component activation. In [fih. 3, extracted tiregefency We acknowledge that quantifying the distance between two
basis matrices can be seen, from a recording employed fbr eva basis vectors by considering the Euclidean distance of timee
uation (described in Sectidd 4) using the proposed methdll wi average most probably leads to a loss of descriptive poweunf
z = 5. Components corresponding to different acoustic events model. This choice is made for tractability purposes. llder
can be seen in the figure. For all the experiments performtdsn the corpus used in this study and 50 bases per item, builtiag t
paper, the length of each basis has been set to 400ms. matrix D involves comparing aboud® bases. Finding an efficient
way of considering the time axis during the distance contpmrta
is left for future research.

Figure 3: Extracted time-frequency basis matrices using the pro-
posed model.

3.3. Acoustic Scene Distance

4. EVALUATION
For computing the distance between acoustic scenes, wedirst
pute the constant-Q transforii [18] of each 44.1 kHz recgrdin 4-1. Dataset

with a log-frequency resolution of 5 bins per octave and an 8- For the acoustic scene classification experiments we erglthe
octave span with 27.5 Hz set as the lowest frequency. The stepqataset created by J. Tardiéli [5]. The dataset was origineg
size is set to 40 ms. Afterwards, time-frequency basis w&gri  ated for a perceptual study on free- and forced-choice réeog
are extracted using the proposed HVMM-constrained SIPL@&-al  tjon of acoustic scenes by humans. It contains 66 44.1 kHg file
rithm of Sectioi 3.2 with? = {10, 25, 50} bases and = 0.005 recorded in 6 different train stations (Avignon, Bordeauiile
(the value was set after experimentation). Sparsity wasreed Flandres, Nantes, Paris Est, Rennes). Each file is clasgified
to P(t|z) using an entropic prior method 6f [13] with sparsity pa- 5 ‘space’, which corresponds to the location this file wasneed:
rameter valuesH = {0,0.1,0.2,0.5}. In all cases the length of  pjatforms, halls, corridors, waiting room, ticket officeBpps. The
each basis is set to 400 ms. recordings contain numerous overlapping acoustic everaking
For each basi® = P(w, 7|z), very small values are replaced ~ even human scene classification a nontrivial task. In Taptael
by the median value ofi’. Afterwards, a vector of 13 cepstral class distribution for the employed dataset can be seemniditian

coefficients is computed for each basis frame, in order wtrgsa to the ground truth included for each recording, an additisnene
compact representation for computational speed purpbsesder label is included as a result of the forced-categorisat&negptual
to convert a vectow[k](k = 1, ..., K) into cepstral coefficients,  study performed ir[5].

DAFX-4
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\ Scene
[ No. Samples]

| Platform [ Hall | Corridor [ Waiting | Ticket Office | Shop |
0 | 16| 12 | 13 | 0 | 5 |

Table 1: Class distribution in the employed dataset of acoustic
scenes.

4.2. Evaluation metrics

For evaluation, we employed the same set of metrics that were

used in[[4] for the same experiment, namely the mean average p
cision (MAP), the 5-precision, and the classification aacyrof a
nearest neighbour classifier. The MAP and 5-precision owe#ie
utilised for ranked retrieval results, where in this caseréinking
is given by the values of the distance matfix MAP is able to
provide a single-figure metric across recall levels and estiibe
the global behaviour of the system. It is computed using the a
erage precision, which is the average of the precision bdaior

the set of topn documents existing after each relevant document .

is retrieved. The 5-precision is the precision at rank 5 ¢hidor-
responds to the number of samples in the smallest classghwhi
describes the system performance at a local scale.

Regarding the classification accuracy metric, for each rbw o
D we apply thek-nearest neighbour classifier with 11 neighbours,
which corresponds to the average number of samples per class

4.3. Results

Acoustic scene classification experiments were perfornghogu
the SIPLCA algorithm ofi[[7] and the proposed SIPLCA algarith
with temporal constraints (TCSIPLCA). Comparative resalte
also reported using a bag-of-frames (BOF) approach_ lof [6] re
ported in [4]. The BOF method computes several audio feature
which are fed to a Gaussian mixture model (GMM) classifiee Th
NMF method of [4] was also implemented and tested. Resudts ar
also compared with the human perception experiment regpante
[5]. Experiments were performed using different dictionsizes

R and sparsity parametesg] (details on the range of values can
be seen in Sectidn 3.3).

[ Classifier | MAP | 5-Precision]

[ Human Perception [5] [ 062 ] 073 ]
Random 0.25 0.18
BOF [6] 0.24 0.18
NMF (R = 50, sH = 0.99) 0.32 0.29
SIPLCA (R = 25,sH = 0.2) 0.33 0.35
TCSIPLCA (R =25,sH =0.2) | 0.34 0.36

Table 2:Best MAP and 5-precision results for each model.

0.34 -
——F— R=10

0331 -+ - -R=2 7

-

- R=50 - =T

<
=

0.20F —

0.28 |-

0.27 -

0.26 L L !
0 0.2

Figure 4: Acoustic scene classification results (MAP) using the
SIPLCA algorithm with different sparsity parameters andtid-

nary size R).

When using a dictionary size @& = 50, the performance of the
proposed method is slightly decreased. Thus, selectingpghm-
priate number of components is important in the performanfce
the proposed method, since using too many components wadl le
to a parts-based representation which in the unsupervessveill
lead to non representative dictionaries. Likewise, selgtbo few

The best results using each employed classifier are presente bases will lead to a less descriptive model of the input digna

in Tabld2. It can be seen that the proposed temporally-ainsd
SIPLCA model outperforms all other classifiers using both-me
rics, apart from the human forced categorisation experinitine
proposed method slightly outperforms the standard SIPLIgé-a
rithm, which in turn outperforms the NMF algorithm. It carsal

Regarding classification accuracy using 11-nearest neigsb
results are shown in Tadlé 3. Again, the TCSIPLCA method out-
performs all the other automatic approaches. In this casever,
the NMF approach froni [4] outperforms the SIPLCA algorithm
by 0.5%. For the TCSIPLCA algorithm, the best performance is

be seen that the BOF method is clearly not suitable for sueh ex again reported fos H = 0.2, while for the NMF approach the best

periment, since the audio features employed in this methed a
more appropriate for non-overlapping events, whereas dlesdt
that is utilised contains concurrent events. However ritlmaseen
that the human categorisation experiment from [5] outperoall
other approaches.

More detailed results for the SIPLCA algorithm using difer
ent sparsity parameter values and a different number chebet

performance is reported fatH = 0. It should also be noted that
regarding dictionary size, the best results are reporte® fe- 50.
Detailed classification results using the SIPLCA and TCRIRL
methods can be seen in Figurés 6 @hd 7, respectively.

It should also be noted that some experiments were performed
by selecting only basis vectors that correspond to a spatsaa
tion P(¢|z). In the PLCA domain, the sparseness criterion can be

bases R) can be seen in Fid.] 4. It can be seen that in all cases, given by maximizing thd> norm as in[[20], due to the fact that

enforcing sparsity improves performance. It can also ba Hest
the best performance is reported fBr= 25, although the per-
formance of the system usinB = 50 improves when greater
sparsity onP(t|z) is encouraged. Detailed results for the pro-

all elements of the activation matrix take values betweemd a
1. However, the performance of the SIPLCA and TCSIPLCA al-
gorithms in fact decreased slightly when selecting onlylihsis
vectors that corresponded to the sparsest activationss i3$ue

posed TCSIPLCA method can be seen in Fify. 5, using different may be addressed in the future by enforcing sparsity onlyete ¢

dictionary sizes and sparsity values. It can be seen thatetier-
mance reaches a peak wheH = 0.2, for the case oR = 25.

tain components that represent salient events and kedmngst
of the components (which could represent noise) withoubrenf

DAFX-5
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- [ Classifier | Accuracy % |
il X [ Human Perception [5] [ 548% |
0341 . iw Al Random 16.6%

BOF [6] 19.7%
NMF (R = 50, sH = 0) 34.1%
SIPLCA (B = 25,sH = 0.5) 33.6%
TCSIPLCA (R = 50,sH = 0.2) 35.0%

Table 3:Best classification accuracy for each model.

35 -

0.1 0.2 0.5 34 -

sH ——+—— R=10 B o
33 4 - _R=2 //*””'7 .
Figure 5: Acoustic scene classification results (MAP) using the | e 7 ’

TCSIPLCA algorithm with different sparsity parameters afick
tionary size R).

Accuracy’%

ing sparsity.

5. CONCLUSIONS

In this work we proposed a method for modeling and classifyin E2h o~ o S
acoustic scenes using shift-invariant probabilistic rodth The sH

shift-invariant probabilistic latent component analyalgorithm
was utilised for learning time-frequency basis matricegfan in-
put acoustic signal in an unsupervised manner. An algoritlas
proposed for incorporating temporal constraints to theLEW
model using hidden Markov models, in order to constrain tie a
vation of each event in the signal. In the classificationestagch ~ samples of non-overlapping acoustic events. Also, an iadait
extracted time-frequency basis is converted into a compect sparseness constraint could be imposed in the activatitmxyia
tor of cepstral coefficients for computational speed puepo§he  order to control the number of overlapping components piteise
employed dataset consisted of recordings taken from sestgh ~ the signal (instead of enforcing sparsity as in the presenk)vin

Figure 6:Classification accuracy’) using the SIPLCA algorithm
with different sparsity parameters and dictionary sizd).(

scenes at different train stations. Comparative expetisneere addition, instead of using a first-order Markov model for @aing
performed using a standard non-negative matrix factodzap- temporal constraints, a more complex algorithm which wded
proach, as well as a bag-of-frames algorithm which is based o able to model the duration of each event, such as a semi-Marko
computing audio features. Results show that using shitriant model [21] can be employed. Finally, finding an efficient wdy o
models for learning time-frequency basis matrices impsalas- comparing extracted time frequency patches is also impbrta
sification performance. Moreover, incorporating temparah- this respect, we believe that lower bounding approachetetdy-

straints in the SIPLCA model as well as enforcing sparsity-co hamic time warping (DTW) technique are of interest[22].
straints in the component activation resulted in improviegsifi-
cation performance.
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