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SAMPLING LOCAL PROPERTIES OF ATTRACTORS

VIA EXTREME VALUE THEORY

Davide Faranda ∗ Jorge Milhazes Freitas † Pierre Guiraud ‡

Sandro Vaienti §

January 7, 2015

Abstract

We provide formulas to compute the coefficients entering the affine scaling needed
to get a non-degenerate function for the asymptotic distribution of the maxima of some
kind of observable computed along the orbit of a randomly perturbed dynamical system.
This will give information on the local geometrical properties of the stationary measure.
We will consider systems perturbed with additive noise and with observational noise.
Moreover we will apply our techniques to chaotic systems and to contractive systems,
showing that both share the same qualitative behavior when perturbed.

1 Introduction

A general problem in dynamical systems theory is to give a quantitative characterization
of the limiting invariant sets like attractors or repellers, whose properties are essential to
understand the behavior of complex systems. In the last years, the results of the Extreme
Value Theory (EVT) have brought new techniques that allow to quantify the geometrical
and dynamical properties of a certain class of systems. In the case of absolutely continuous
invariant measures (acim), precise analytical results can be obtained in terms of classical
Extreme Value Laws (EVLs) and depend on the fulfillment of general mixing conditions and
on the observables considered [1, 2, 3, 4]. In fact, those observable are designed in such a way
that extreme events are equivalent to detect the recurrence of an orbit in a neighborhood of
a given point in the phase space. A collection of such events, under appropriate renormal-
ization, is distributed according to one of the three classical EVLs, namely the Gumbel, the
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Frechet and the Weibull distributions. The values of the normalizing constants are linked
to the local behavior of the measure and, provided the dynamics is chaotic and the measure
is absolutely continuous, they depend only on the number of extremes extracted and on
the phase space dimension. Several difficulties arise whenever singular invariant measures
are considered. In [5, 6] this problem was addressed almost numerically and a few analytic
results have been exhibited in [7, 4, 8, 9].

Let us now explain in detail where the just indicated problem is and how we could deal
with it by introducing random perturbations: this will constitute the first main contribution
of this paper. At this regard we need to come back to basics and introduce the theory. Let
us therefore suppose that (Yn)n∈N is a sequence of real-valued random variables defined
on the probability space (Ψ,P). We will be interested in the distribution of the maximum
Mn := max{Y0, Y1, . . . , Yn−1} when n→∞. It is well known that the limiting distribution
is degenerate unless one proceed to a suitable re-scaling of the levels of exceedances. The
precise formulation is the following: we have an Extreme Value Law for (Mn)n∈N if there is
a non-degenerate distribution function H : R → [0, 1] with H(0) = 0 and, for every τ > 0,
there exists a sequence of levels (un(τ))n∈N such that

lim
n→∞

nP(Y0 > un)→ τ, (1.1)

and for which the following holds:

lim
n→∞

P(Mn ≤ un)→ 1−H(τ).

The motivation for using a normalizing sequence (un)n∈N satisfying (1.1) comes from
the case when (Yn)n∈N are independent and identically distributed. In this i.i.d. setting, it
is clear that P(Mn ≤ u) = (F (u))n, being F (u) the cumulative distribution function for the
variable u. Hence, condition (1.1) implies that

P(Mn ≤ un) = (1− P(Y0 > un))n ∼
(

1− τ

n

)n
→ e−τ ,

as n→∞. Note that in this case H(τ) = 1− e−τ is the standard exponential distribution
function. Let us now choose the sequence un = un(y) as the one parameter family un =
y/an + bn, where y ∈ R and an > 0, for all n ∈ N. Whenever the variables Yi are i.i.d.
and for some constants an > 0, bn ∈ R, we have P(an(Mn − bn) ≤ y) → G(y), where
the convergence occurs at continuity points of G, and G is non-degenerate, then Gn will
converge to one of the three EVLs: Gumbel, Fréchet or Weibull. The law obtained depends
on the the common distribution of the random variables, F .

When Y0, Y1, Y2, . . . are not independent, the standard exponential law still applies
under some conditions on the dependence structure. These conditions will be stated in
detail later and they are usually designated by D2 and D′; when they hold for (Yn)n∈N
then there exists an extreme value law for Mn and H(τ) = 1 − e−τ , see Theorem 1
in [10]. We want to stress that these two conditions alone do not imply the existence
of an extreme value law; they require, even to be checked, that the limit (1.1) holds.
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It turns out that for the kind of observables we are going to introduce, and which are
related to the local properties of the invariant measure, the limit (1.1) is difficult to
prove when the invariant measure is not absolutely continuous, since one needs the
exact asymptotic behavior of that measure on small balls. Instead it turns out that
whenever the system is randomly perturbed, the limit (1.1) is more accessible and in
particular it will be given by a closed formula in terms of the strength of the noise, see
Proposition 1 and 2 below. Moreover that formula could be used in a reversed way (in
the following we call this procedure inverting the technique) : since the sequence (un)n∈N
is now uniquely determined for any n, a numerical sampling for (un)n∈N which provides
convergence to the extreme value law, will bring information on the local geometrical prop-
erties of the stationary measure: this approach was successfully used, for instance, in [11, 6].

We already showed in a preceding article [18] that random perturbations of regular
systems, in particular rotations, induce the appearance of extreme value laws since the
perturbed systems acquires a chaotic behavior. We pursue, and this is the second main
issue of this paper, the same objective here by considering two different kinds of stochastic
perturbations of (piecewise) contracting maps. The first will be given by additive noise and
in this case our analysis will be mostly numerical. The second one will be a sort of (rare)
random contamination of a deterministic orbit, and in this case we will announce and state
complete analytic results for the determination of the limit (1.1) first, and for the successive
checking of the conditions D2 and D′.

2 Random dynamical systems

In this section we will introduce the two ways of perturbing a given dynamical system, the
random transformations and the observational noise.

2.1 Random transformations

Let us consider a sequence of i.i.d. random variables (Wk)k∈N with values (ωk)k∈N in a space
Ωε and with common probability distribution θε. Let X ⊂ Rd be a compact set equipped
with the Lebesgue measure m defined on the Borel σ-algebra, and (fω)ω∈Ωε a family of
measurable transformations such that fω : X → X for all ω ∈ Ωε

1. Given a point x ∈ X
and a realization ω = (ω1, ω2, . . . ) ∈ ΩN

ε of the stochastic process (Wk)k∈N, we define the
random orbit of x as the sequence (fnω (x))n∈N, where

f0
ω(x) = x and fnω (x) = fωn ◦ fωn−1 ◦ · · · ◦ fω1(x) ∀n ≥ 1.

The transformations fω will be considered as stochastic perturbations of a deterministic
map f , in the sense that they will be taken in a suitable neighborhood of f whose size will

1In the following when we will refer to a dynamical system (X, f, µ) we will mean that f is defined on
X and preserves the Borel probability measure µ; if we will write (X, f), this will simply correspond to the
action of f on X.
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be determined by the value of ε, see below. We could therefore define a Markov process on
X with transition function

Lε(x,A) =

∫
Ωε

1A(fω(x))dθε(ω), (2.1)

where A ∈ X is a measurable set, x ∈ X and 1A is the indicator function of the set A. A
probability measure µε is called stationary if for any measurable set A we have:

µε(A) =

∫
X
Lε(x,A)dµε(x).

We call it an absolutely continuous stationary measure (acsm), if it has a density with
respect to the Lebesgue measure.

Given a map f : X → X, we will consider two kind of random perturbations. The first
one is the additive noise, which corresponds to the family (fω)ω∈Ωε of random transforma-
tions defined by

fω(x) = f(x) + ω ∀x ∈ X.

In this case each ω belong to the hypercube Ωε ⊂ Rd of side 2ε centered at zero, and equipped
with the measure θε = m

(2ε)d
1Ωε , which is the normalized Lebesgue measure restricted to

Ωε. For these perturbations, some additional assumptions may be necessary to ensure that
the image of each fω is included in X.

Notice that for additive noise,

Lε(x,A) = θε(ω ∈ Ωε : f(x) + ω ∈ A) ≤ m(A)

(2ε)d
(2.2)

which implies that if the stationary measure exists for such random transformations, it is
absolutely continuous w.r.t. the Lebesgue measure on the ambient space. In the paper [15]
Benedicks and Viana proved that for additive noise the stationary measure exists and is
unique for the Hénon map. The same remains true for the Lozi map and these two maps
will be studied in Sections 5.1 and 5.2.

The second kind of random transformations we will consider have been introduced by
Lasota and Mackey (see [14], for instance) and correspond to randomly applied stochastic
perturbations. They consist in operating an aleatory reset of the initial condition of the
dynamical system (X, f) at each failure of a Bernoulli random variable: if (xn)n∈N denotes
the successive states of such a random dynamical systems, then at each time n ∈ N we have
xn+1 = f(xn) with probability (1 − ε) and xn+1 = ξn with probability ε, where ξn is the
realization of a random variable with value in X. This kind of perturbation corresponds to
the family (fω)ω∈Ωε of random transformations defined by

fω(x) = ηf(x) + (1− η)ξ ∀x ∈ X, (2.3)
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where ω = (η, ξ) is a random vector with value in Ωε = {0, 1} ×X. The two components
η and ξ of ω are independent and η is a Bernoulli variable with the probability of being 0
equal to ε, while ξ is a random variable that we will suppose Lebesgue-uniformly distributed
on X. The joint distribution θε of these two components is the product of the Bernoulli
measure with weights (1− ε, ε) and the uniform measure on X.

We notice that in this case the transition function Lε(x, ·) will give a singular measure
for any x, since for any measurable set A

Lε(x,A) = θε(fω(x) ∈ A) = εm(A) + (1− ε)δf(x)(A)

2.2 Observational noise

A different type of perturbation is the observational noise. Here, the noise affects the
observations (yn)n∈N of the orbits of a dynamical systems (X, f), but does not affect the
dynamics itself. Precisely, it consists in replacing the orbit (fn(x))n∈N of a point x ∈ X, by
the sequence (yn)n∈N defined by

yn = fn(x) + εξn ∀n ∈ N,

where ε > 0 and (ξn)n∈N is a sequence of i.i.d random vectors, which take values in the
hypercube of Rd centered at 0 and of side 2, Ω1 := {u ∈ Rd; |u|i ≤ 1 i = 1, . . . , i}, and
with common distribution θ, which we choose absolutely continuous with density ρ ∈ L∞m ,
namely dθ(ξ) = ρ(ξ)dm(ξ), with

∫
Ω1
ρ(ξ)dm(ξ) = 12.

3 Level sets for the EVL

In the following we consider a dynamical system (X, f, µ) perturbed with the noises intro-
duced in the previous section. In order to study the extreme value statistics, we define a
stochastic process (Yn)n∈N by composing a given observable φ : X → R respectively with:

• random transformations, that is Yn = φ ◦ fnω for all n ∈ N. In this case (Yn)n∈N will

be a stationary process if we consider the probability P = µε× θNε , which corresponds
to the annealed situation where we average over the initial condition and over the
realization of the noise.

• observational noise, that is Yn = φ ◦ (fn + εξn) for all n ∈ N. In this case (Yn)n∈N will
be a stationary process if P = µ × θN, where µ is the invariant measure for f . This
measure is defined on the product space X ×ΩN

1 with the product σ-algebra. A point
in this space will be the couple (x, ξ := {ξ0, ξ1, · · · , ξn, · · · }) ∈ X × ΩN

1 .

2Each ξ is a vector with d components; all these components are independent and distributed with
common density ρ′; the product of such marginals ρ′’s gives ρ.
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In both cases we will chose the observable φ(x) = − log ||x− z||, where || · || is the euclidean
norm on X and z a point of X. As we anticipated in the Introduction, such an observable
is related to recurrence in small sets, since the distribution of the maximum of the random
observable φ ◦ fkω , k = 0, . . . , n− 1 up to the level un, coincides with the distribution of the
first entrance of the random orbit into the ball B(z, e−un) centered at z and of radius e−un

We now state the two conditions which ensure weak dependence of the process and
which allow to get the limiting distribution of the maxima.

Condition[D2(un)] We say that D2(un) holds for the sequence Y0, Y1, . . . if for all `, t and
n,

|P (Y0 > un ∩max{Yt, . . . , Yt+`−1 ≤ un})− P(Y0 > un)P(M` ≤ un)| ≤ γ(n, t),

where γ(n, t) is decreasing in t for each n, and nγ(n, tn)→ 0 when n→∞ for some sequence
tn = o(n).

Now, let (kn)n∈N be a sequence of integers such that

kn →∞ and kntn = o(n). (3.1)

Condition[D′(un)] We say that D′(un) holds for the sequence Y0, Y1, Y2, . . . if there exists
a sequence (kn)n∈N satisfying (3.1) and such that

lim
n→∞

n

bn/knc∑
j=1

P(Y0 > un, Yj > un) = 0. (3.2)

As we said in the Introduction when these two conditions hold for (Yn)n∈N then there
exists an extreme value law for Mn and H(τ) = 1− e−τ , but provided that the limit (1.1)
is true.

When Y0, Y1, Y2, . . . are not independent, exceedances of high thresholds may have a
tendency to appear in clusters, which creates the appearance of a parameter ϑ in the
exponential law, called the Extremal Index. We say that Y0, Y1, . . . has an Extremal Index
(EI) 0 ≤ ϑ ≤ 1 if we have an EVL for Mn with H̄(τ) = e−θτ for all τ > 0. We can say
that, the EI is that measures the strength of clustering of exceedances in the sense that,
most of the times, it can be interpreted as the inverse of the average size of the clusters of
exceedances. In particular, if θ = 1 then the exceedances appear scattered along the time
line without creating clusters. The conditions D2 and D′ stated above are useful to check
the existence of an extreme value law corresponding to an EI equal to 1. In [20] the authors
established a connection between the existence of an EI less than 1 and periodic behaviour
and they gave conditions like D2 and D′ which they called Dp and D′p. Since we are not
going to investigate in detail the EI here, we simply observe that the role of balls will be
now taken by annuli, in the sense that the limit law corresponding to no entrances up to
time n into the ball {Y0 ≤ un} is equal to the limit law corresponding to no entrances into
the annulus {Y0 > un, Yp ≤ un} up to time n, where p is the period of the periodic point z.
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The next results address the question of finding the scaling sequence (un)n∈N in the case
where it is affine un = y

an
+ bn; we will see that under suitable assumptions on the noise,

the limit (1.1) is actually an equality at each level n and it provides τ = e−y. We begin
with the following result proved in [18]

Proposition 1 Let us consider the dynamical systems (X,B, µ, f), where X is a compact
set in Rd, and µ is a probability invariant measure on the sigma-algebra B. We perturb it
with observational noise and we consider the associated process Xn(x, ξ) := − log(||fnx +
εξn) − z||) endowed with the probability P = µ × θN. We suppose moreover that θ is the
Lebesgue measure measure on S. Then the linear sequence un := y/an + bn defined in (1.1)
verifies3

an = d and bn =
1

d
log

(
n Kd µ(B(z, ε))

(2ε)d

)
.

where Kd is the volume on the unit hypersphere in Rd. We presented in [11] class of
systems for which the conditions D2 and D′, ensuring the existence of the Gumbel law,
could be explicitly checked. In these cases, the result given by the preceding proposition
shows that the sequence (bn)n∈N is determined by the measure of the ball centered at the
point z and with positive radius ε. Singular measures behaves often as µ(B(z, ε)) ≈ εD

where D is an estimation of the fractal dimension of µ at the point z. Of course D is
not the dimension itself, which is obtained in the limit of vanishing ε, but, inverting the
technique, its value could be obtained by sampling the bn at a fixed intensity for the noise
and in order to get the Gumbel’s law. The numerical results presented in the next sections
show that the values of D provided by this method are in good agreement with the true
Hausdorff dimension of the measure.

An analogous result can be obtained for random transformation given by additive noise
fω(x) = f(x) + ω, where ω is now chosen in the hypercube Ωε ⊂ Rd of side 2ε centered at
zero, and equipped with the measure θε = m

(2ε)d
1Ωε . We remind that in this case µε is the

stationary measure and P = µε × θN is the product measure.

Proposition 2 Let us consider the dynamical systems (X,B, f), where X is a compact set
in Rd. We perturb it with random transformations admitting the stationary measure µε. We
consider the associated process Xn(x, ω) := − log(||fnω (x)− z||) endowed with the probability

P = µε × θNε . Then a suitable normalising linear sequence un := y/an + bn is given by:

an = d; bn =
1

d
log

(
nKd µε(f

−1(B(ζ, ε))

(2ε)d

)
,

Proof:

3We notice that since we are now considering the probability measure on an hypercube, the formulae in
[11] should be modified according those presented here by adding the factors 2d and Kd in the logarithm.
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Mimicking the proof of the previous proposition and using stationarity we set

un :=
1

d
log

(
nKd µε(f

−1(B(ζ, ε))

(2ε)dτ

)
Using stationarity of µε we can write:

nP(X0 > un) = mP(X1 > un) = nP({(x, ω) : |f(x) + ω − ζ| < e−um})

= n

∫∫
1B(ζ−f(x),e−um )(ω)1Ωεdθ

N(ω)dµε(x)

=

∫
nθε(B(ζ − f(x), e−um) ∩ Ωε)dµε(x)

Now, by definition of un and the fact that θε = m
(2ε)d

1Ωε we have:

nθε

(
B(ζ − f(x), e−um) ∩ Ωε

)
≤ n 1

(2ε)d
m(B(ζ − f(x), e−um)) =

nKd e−d un

(2ε)d

=
τ

µε(f−1(B(ζ, ε))
≤ Cε,

where Cε > 0 depends on ε but not on m. Then, can apply Lebesgue’s dominated conver-

gence theorem to the sequence functions hn(x) = nθε

(
B(ζ − f(x), e−un) ∩ Ωε

)
. Note that

since Lebesgue measure is translation invariant, we can write

lim
n→∞

hn(x) = lim
n→∞

nKd e−d un

(2ε)d
1B(ζ,ε)(f(x)) =

τ

µε(f−1(B(ζ, ε))
1f−1(B(ζ,ε))(x),

because θε(Ωε) = 1 and if |ζ−f(x)| > ε the intersection B(ζ−f(x), e−un)∩Ωε is eventually
empty (which explains the indicator on the rhs).

It follows then by Lebesgue’s dominated convergence theorem that:

lim
n→∞

nP(X0 > un) =

∫
lim
n→∞

nθNε (B(ζ − f(x), e−un) ∩ Ωε)dµε(x)

=

∫
τ

µε(f−1(B(ζ, ε))
1f−1(B(ζ,ε))(x)dµε(x) = τ.

Hence, limn→∞ P(Mm ≤ um) = e−τ . Moreover, since un := y/an + bn, taking y = − log(τ),
and an, bn as in the statement of the proposition, then limn→∞ P(an(Mn−bn) ≤ y) = e−e−y

,
which is the Gumbel distribution. �

Remark 1 We observe that we can only do this computations because θ behaves exactly
as the Lebesgue measure. Moreover and by (2.2) the stationary measure will be absolutely
continuous; in this case the inverse technique will not give any interesting information on
the local dimension of the stationary measure, which will be integer; instead we could use
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the existence of the limiting Gumbel law to detect the support of such a measure and how it
depends on the intensity of the noise. Moreover we could compare the additive noise with
the observational noise at different values of the noise to see how they affect the orbits of
the original system: we will report on these numerical computations in the next sections.

4 Contractive maps: randomly applied stochastic perturba-
tion

We study in this section and in the next one extreme value theory for contractive maps
perturbed in two different ways. For the first class of perturbed maps, we will state rigorous
results concerning the computations of the scaling coefficients an, bn and of conditions D2

and D′. Moreover we will exhibit a point with an extremal index less than one.
We will succesively perturb contractive maps with additional noise giving in this case
numerical evidence of existence of extreme value laws and of extremal indices: this will be
done in Section 5.

We consider here the random perturbation introduced in (2.3), which were used in
[14] as an illustration of the theory of constrictive transfer operators. This theory is
an alternative to the standard treatment of the Perron-Frobenius operator based on
quasi-compactness. In our present case the Perron-Frobenius operator admits a very
explicit representation and this will allow us to to find an expression for the levels sequence
(un)n∈N as well as verify the conditions D2(un) and D′(un).

Let us therefore consider the map f defined on the unit interval I = [0, 1] by4

S(x) = αx, α ∈ (0, 1).

We perturb it according to eq. (2.3) giving rise to the family of random maps defined for
each n ≥ 1 by

fωn(x) = ηnS(x) + (1− ηn)ξn, ∀x ∈ I,
where ωn = (ηn, ξn).

In order to obtain the stationary measure µε, let us introduce the random Koopman
operator Uε : L∞ → L∞ defined for all φ ∈ L∞5 by

Uεφ(x) :=

∫
φ(fω(x))dθε.

4We use here this map instead of S(x) = αx+β to simplify the computations; the theory and the results
remain the same provided α+ β ≤ 1 and the map is therefore well defined over all the interval. Otherwise,
namely if α+β > 1, we should consider a discontinuous map over the interval, and the techniques developed
in this paper should be modified. We believe this will lead to more elaborated statistical properties and we
deserve to investigate them in the future.

5From now on L1 and L∞ will be referred to the Lebesgue measure m and the integral with respect to
the latter will be denote as

∫
(·) dx.
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The random transfer operator Pε is the adjoint operator of Uε; if we denote P the
transfer operator associated to f and ψ =

∫
ψ(y)dy, with ψ ∈ L1, then we have

Pεψ(x) = (1− ε)Pψ(x) + εψ. (4.1)

The stationary measure µε verifies
∫
φ(x)dµε =

∫
Uεφ(x)dµε and in our case is given by

µε = hεm where hε ∈ L1 is a density such that hε = Pεhε. Such a density exists and is
given by [14]:

hε = ε
∞∑
k=0

(1− ε)kP k1. (4.2)

Our next step will be to get directly the linear scaling parameters an and bn, allowing to
prove the convergence towards the Gumbel’s law of the maxima of the process Xn(x, ω) :=
− log(|fnω (x)− z|). We first observe that the density hε could be explicitely computed and
reads for the the map f(x) = αx with 0 < α < 1 [21]:

hε(x) = ε

p−1∑
k=0

(1− ε)k

αk
∀x ∈ (αp, αp−1], p ≥ 1.

Notice that the density is bounded for (1− ε) < α.
To find a sequence (un)n∈N satisfying (1.1) we need to compute nP(X0 > un).

Proposition 3 [21] Let τ > 0, y = − ln(τ) and un = y
an

+ bn with

an = 1 and bn = log

(
2nε

p−1∑
k=0

(1− ε)k

αk

)
∀n ∈ N,

If:
(i) z 6= 0 on the interval but not in the countably many discontinuity points of hε, namely
z /∈ ∪j∈N{αj};
(ii) p ≥ 1 such that z ∈ (αp, αp−1) and n is large enough such that the ball B(z, e−un) ⊂
(αp, αp−1), then:

nP(X0 > un) = τ

The next step will be to check the conditions D2(un) and D′(un). To verify condition
D2(un) we need to show that for specifics observables φ ∈ L∞ and ψ ∈ L1 the correlation

Corm(φ, ψ, n) :=

∣∣∣∣∫ Unε (φ(x))ψ(x)dµε −
∫
φ(x)dµε

∫
ψ(x)dµε

∣∣∣∣∣∣∣∣∫ ∫ φ(fnω (x))ψ(x)dµεdθ
N
ε −

∫
φ(x)dµε

∫
ψ(x)dµε

∣∣∣∣ (4.3)

decay sufficiently fast with n. At this regard we have:
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Proposition 4 [21] If φ ∈ L∞ and ψ ∈ L1 ∩ L∞, then

Corm(φ, ψ, n) ≤ 2(1− ε)n||φ||L∞ ||ψhε||L1 .

We notice that condition D2 requires that ψ and φ are characteristic functions of measurable
sets. Condition D′ needs to control short returns in the ball around z. We can prove that
it holds for z 6= 0 and the proof is basically based on the fact that the image of the ball
does not intersect the ball itself for large n. Instead, whenever z = 0 an extremal index
appears on the limiting law for the distribution of the maxima. We summarised it into the
next proposition

Proposition 5 [21] For the map S(x) = αx, α ∈ (0, 1) perturbed with the noise (2.3), and
by considering the observable X0(x) = − log(|x− z|), conditions D2 and D′ hold.
If z = 0, conditions Dp(un), D′p(un) (introduced in [20]) hold which implies the existence of
an extremal index less than 1, that is given by ε.

5 Numerical computations

This chapter contains a comparison between the numerical effects of random transformations
and observational noise on two famous attractors. The starting point of our analysis will
be the fact that by perturbing the map with additive and uniform noise, then the linear
scaling parameter bn of the Extreme Value Theory is expected to behave as

bn ∼
1

d
log(nεD−d). (5.1)

where d is the ambient space dimension and D the the Hausdorff dimension of the stationary
measure. Since the stationary measure will be smooth (see (2.2)), the quantity bn will only
depend on the phase space dimension. The situation is completely different if we perturb
with observational noise, because in this case the above formula remains true with D as an
estimator of the Haudsdorff dimension of the invariant (SRB) measure.

5.1 Lozi map

Let’s consider the Lozi map:

xt+1 = yt + 1− a|xt|
yt+1 = bxt

(5.2)

for which we consider the classical set of parameter a = 1.7 and b = 0.5. Young proved
the existence of the SRB measure for the Lozi map and found the value D = 1.40419
for the Hausdorff dimension of the measure by computing the Lyapunov exponents and
using a Kaplan-Yorke like formula. The experiments we performed consist of computing 30
realizations of the maps perturbed with observational and additive noise. Again, we fit the
maxima of the observable

w = − log(dist(~xt, ~ζ))
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to the Gumbel distribution by using the L-moments procedure and compare the values of
bn obtained experimentally to the theoretical ones stated in Eq. 5.1 (see [18] for details
on the inference procedure). We report in Fig. 1 the results for three different bin lengths
n = 1000, 10000, 30000. For all the computations we fix the number of maxima to perform
the fit equal to 1000 which has been proven to be a reasonable value in [19]. Agreement
with the theoretical bn represented by the solid straight lines, is found for small values of
p which means for large ε, since ε = 10−p . This is true only for the observational noise.
In fact, for the random transformation, at p = 1, points escape from the attractor and
the statistics diverge. For lower noise intensities p > 1, the bn have the same behavior for
both random transformations and the observational noise: first they follow the theoretical
prediction (solid line) for perturbed systems. Then, when the noise intensity is low, they
approach a plateau which corresponds to the deterministic limit. This plateaus is achieved
at higher noise intensities for shorter time series (n = 1000, the blu lines), whereas if we
consider the dynamics for longer times (n = 30000) we can follow the prediction to lower
intensities of the noise p ' 3.

Let’s now produce a map of the bn (Fig. 2) and of the distance from the Gumbel law
6 (Fig. 3) when the noise intensity p is changed. In this case we will study local results,
which depend on the point ζ chosen and on the intensity of the noise. Let’s begin with the
analysis of bn ( Fig. 2). The value n = 1000 is fixed for all the figures, what we change
is the type of perturbation (left panels for the observational noise and right panels for
random transformations) and the intensity of the noise (Upper panels: p=1; Central panels
p = 3; Lower panels p = 5). This means that the intensity of the noise decreases from the
top to the bottom of the figures given that ε = 10−p. A first remarkable difference is the
divergence of the values of bn for the random transformations at p = 1. We have already
seen this in the previous analysis but here we can remark that this effect is ζ-dependent
as we obtain a spectrum of different bn. The values of bn are, instead, rather uniform for
decreasing noise intensities p = 3 and p = 5 and show a substantial identity between the
observational noise and the random transformations.

Similar conclusions hold for the analysis of distances from the Gumbel law reported in
Fig. 3. Here for p = 1 (top panels) the observational noise (left) show that all the points
have more or less well converged to the Gumbel law (0 values) whereas great divergences
appear for the random transformations (right). The differences become less and less evident
as far as the noise intensity is decreased (p=3 central panels and p = 5 lower panels). In
the weak noise limit, one can clearly see that there are points which converge better to the
Gumbel law and points that have a worst convergence (remind that m is fixed to be 1000
independently on the point chosen). Remarkably, not many differences appear between
observational noise and random transformations when the noise is small (p=3) and in the
deterministic limit p = 5.

6computed as deviations of the shape parameter of the EVLs fit from the expected one
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5.2 Hénon map

Similar results can be found also for the Hénon map:

xt+1 = yt + 1− ax2
t

yt+1 = bxt
(5.3)

for which we have taken the classical parameters a = 1.4 and b = 0.3. Analytical
results are harder to get and estimations of the dimensions are known only numeri-
cally [17]. We perform the same analysis as for the lozi maps, reporting the results
in Figs. 4-5. Results follow the ones found for the Lozi map: for the observational
noise, fits converge better to the Gumbel law whereas diverge for the additive noise
(respectevely Top-Left and Top-Right panels of Fig. 5). The same happens for the
bn. As it is happen for the Lozi dynamics, large additive noise let the system escape
from the Hénon attractor causing divergent extreme value laws. For smaller values
of the noise (central and bottom panels of Figs. 4 and 5), distances from the Gumbel
law increase depending on the point ζ chosen and values of bn attain the deterministic limit.

We can summarise the analysis for the Lozi and Hénon map as follows: in the limit
of small noise, no substantial differences appear between the random transformations and
the observational noise. However, for large noise (or even for average noise but if we wait
enough time) we observe jumps outside the attractors for the random transformations
which we do not observe for the observational noise, as we are forced to stay close
to the attractor. Remarkably, the observational noise is more stable than the random
transformation and by using it one can obtain an excellent convergence to the Gumbel law
at large noise intensity without risking to escape from the attractor, as instead it happens
for the random transformations.

We can therefore suggest a general strategy to study strange attractors by using the
observational noise. In fact, for large noise intensities we can obtain better fit to the Gumbel
law and retain the information on the local properties of the measure in the expression of
bn. The distance from the Gumbel law will be an indication on how good is our fit and
therefore on how good are the estimates of the value of the local dimension inferred by bn.

5.3 Piecewise contracting maps with additive noise

Until now, the existence of an EVL has been principally established for expansive maps and
rotations of the circle perturbed with additive noise [13, 18]. We have shown in Section 4
that pure contractions can also admit an EVL, provided they are suitably perturbed. Here
we discuss the case of additive noise applied to piecewise contracting maps already studied,
e.g. in [16, 12].

The simplest piecewise contracting map is defined on the unit interval I (or the circle,
also denoted I), by

f(x) = αx+ β mod 1 ∀x ∈ I, (5.4)
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where α and β belong to (0, 1). If α + β > 1, then S is discontinuous at the point γ =
(1−β)/α (when considered as a map of the interval) and each restriction of S to one of the
open interval [0, γ) and [γ, 1) is a contraction. It has been shown that for generic values of
the parameters α and β, any orbit of S is attracted by a periodic orbit, whose period can
be arbitrarily big (depending on the parameters). On the other hand, for an uncountable
number of pairs (α, β) the attractor is a Cantor set supporting a minimal dynamics.

When perturbing with additive noise, we should consider random orbits (xn)n∈N satis-
fying

xn+1 = f(xn) + ωn mod 1 ∀n ∈ N, (5.5)

where f(x) = αx + β for all x ∈ I, and the quantities (ωn)n≥1 are i.i.d. random variables
with values in a small interval, say in Ωε := [−ε, ε], 0 < ε < 1, with a common distribution
θε given by a density g, namely dθε(ω) = g(ω)dω, with

∫ ε
−ε g(ω)dω = 1. We notice that

whenever I is the (unit) interval, even if α + β < 1, the strength of the noise, namely ε,
should be small enough in such a way the image of I is still in I. This problem disappears
provided we take the mod-1 operation.

It is easy to check that the random Perron-Frobenius operator Pε introduced in the
previous section, now acts on the L1 real valued functions (w.r.t. the Lebesgue measure m)
ψ on I as

Pεψ(x) =

∫
I
ψ(y)g(x− f(y))dm(y) (5.6)

If we now add the additional assumption that the first moment of g is finite, then the
operator Pε becomes weakly constrictive according to the definition proposed in [14]. We
defer to [14] for the precise definition; what is important to retain here is that there exists r
measurable functions gi with disjoint supports which are cyclically permutated by P, namely
Pεgi = gw(i), where {w(1), . . . , w(r)} is a permutation of {1, . . . , r}. Moreover if ψ ∈ L1

then Pnε ψ converges in the L1 norm to
∑r

i=1 gwn(i)

∫
ψ(x)ki(x)dx, where {wn(1), . . . , wn(r)}

is a permutation of {1, . . . , r}, and the ki are suitable L∞ functions. The last two items
justify the appellation of asymptotically aperiodic given to the sequence (Pnε ψ)n∈N.

It was pointed out by Lasota and Mackay that a small stochastic perturbation of the
transformation (5.4) with an aperiodic unperturbed asymptotic dynamics (i.e, supported
by a Cantor set), is enough for the random dynamical system (5.5) to have a transfer
operator (5.6) asymptotically periodic. Contrarily to the noise investigated in Section 4,
we are not able to produce rigorous results to show in particular that conditions D2 and
D′ are satisfied, but some information is still available. First of all we observe that the
convex combination of the gi given by the spectral decomposition and with equal weights
1
r gives a stationary measure. In particular it has been proved by Lasota and Mackay that
such a measure is mixing if and only if r = 1. This seems the case for the map S with
α = 1/3, β = 7/8 and the noise ε large enough. The random orbits of arbitrarly chosen
initial conditions seem to distribute on the whole circle suggesting the presence of only one
fixed point for Pε and therefore mixing. We do not have any means to compute the rate
of decay, but the GEV statistics effectuated for the usual observable shows a pretty good
convergence towards the Gumbel’s law. This is what is represented in Fig. 6 (upper-left
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panel) where the shape parameter κ is plotted against the noise intensity ε. For the range
of values investigated there are no substantial deviation from 0, that is the Gumbel law.
Error-bars have been computed as the standard deviation of an ensamble of 30 realizations
of the map, with n = 1000.

As mention earlier, another interesting case is given by a particular choice of the pa-
rameters namely α = 1/2, β = 17/30 and the random variables ω distributed uniformly in
the interval [0, ε] with ε = 1/15. This example has been also investigated by Lasota and
Mackay; these values of parameters are close to (irrational) values for which in the absence
of noise the orbits (xn)n∈N are not periodic and the invariant limiting set ∩∞k=0S

kI is a
Cantor set. The presence of noise will induce asymptotic periodicity in the sense that we
detect a sequence of densities which is asymptotically periodic with period r = 3.

This is particularly evident if we perform an histogram of the frequency of visits of
random orbits on the circle. We have therefore taken the center z of our target balls in
the supports of these densities and checked if there is presence of extreme value statistics.
Numerical computations suggest the presence of an extremal index equal to 1/3 which could
be related to the order of asymptotic periodicity. These results are shown in the right panels
of Fig. 6. The upper plot is, as before, the shape parameter κ against the noise intensity ε.
The smallest ε plotted is 1/15 so that we can remark how the convergence to the Gumbel
law is good and does not change with increasing noise. The extremal index (bottom-left
panel of the same figure) shows instead a clear dependence on ε. For ε → 1/15 a good
convergence towards the prediction ϑ = 1/3 is achieved, whereas for ε → 1, also ϑ → 1 as
we expect from the theoretical arguments of [11].
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Figure 1: Normalizing sequence bn vs intensity of the noise in terms of p (we recall that
ε = 10−p) for the Lozi map (Eq. 5.2). Errorbars display the average of bn over 30 realizations
and the standard deviation of the sample. Solid lines the theoretical values. the blue, red
and magenta curves respectively refers to n = 1000, 10000, 30000. The points z are randomly
chosen on the attractor. Observational noise is represented by stars, random transformation
by circles.
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Figure 2: Map of bn (colorscale) for the Lozi system (Eq. 5.2). The left plots refer to the
observational noise, the right plots to random transformations. Top panels: p=1, Central
panels p = 3, Lower panels p = 5.
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Figure 3: Map of distances from the Gumbel law (colorscale) for the Lozi system (Eq. 5.2).
The left plots refer to the observational noise, the right plots to random transformations.
Top panels: p=1, Central panels p = 3, Lower panels p = 5.
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Figure 4: Map of bn (colorscale) for the Hénon system (Eq. 5.3). The left plots refer to the
observational noise, the right plots to random transformations. Top panels: p=1, Central
panels p = 3, Lower panels p = 5.
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Figure 5: Map of distances from the Gumbel law (colorscale) for the Hénon system (Eq. 5.3).
The left plots refer to the observational noise, the right plots to random transformations.
Top panels: p=1, Central panels p = 3, Lower panels p = 5.
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Figure 6: Upper panels: shape parameter κ VS noise intensity ε for the map (5.5). Lower
panels: Extremal index ϑ VS noise intensity ε for the map (5.5). Left panels: α = 1/3,
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