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CONCENTRATION OF LAPLACE EIGENFUNCTIONS AND STABILIZATION OF WEAKLY DAMPED WAVE EQUATION by

In this article, we prove some universal bounds on the speed of concentration on small (frequency-dependent) neighborhoods of submanifolds of L 2 -norms of quasi modes for Laplace operators on compact manifolds. We deduce new results on the rate of decay of weakly damped wave equations.

Résumé. -On démontre dans cet article des bornes universelles sur la vitesse de concentration dans de petits voisinages (dépendant de la fréquence) de sous variétés pour les normes L 2 de quasimodes du Laplacian sur une variété compacte. On en déduit de nouveaux résultats sur la dćroissance des équations des ondes faiblement amorties.

Notations and main results

Let (M, g) be a smooth compact Riemanian manifold without boundary of dimension n, ∆ g the Laplace-Beltrami operator on M and d(•, •) the geodesic distance on M .

The purpose of this work is to investigate the concentration properties of eigenfunctions of the operator ∆ g (or more generally quasimodes). There are many ways of measuring such possible concentrations. The most classical is by describing semi-classical (Wigner) measures (see the works by Shnirelman [START_REF] Shnirelman | Ergodic properties of eigenfunctions[END_REF], Zelditch [START_REF] Zelditch | Uniform distribution of eigenfunctions on compact hyperbolic surfaces[END_REF], Colin de Verdière [START_REF] De Verdière | Ergodicité et foctions propres du laplacien[END_REF], Gérard-Leichtnam [START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF], Zelditch-Zworski [START_REF] Zelditch | Ergodicity of eigenfunctions for ergodic billiards[END_REF], Helffer-Martinez-Robert [START_REF] Helffer | Ergodicité et limite semi-classique[END_REF]. Another approach was iniciated by Sogge and consists in the studying the potential growth of ϕ λ L p (M ) , see the works by Sogge [START_REF] Sogge | Concerning the L p norm of spectral clusters for second order elliptic operators on compact manifolds[END_REF][START_REF] Sogge | Fourier integrals in classical analysis[END_REF], Sogge-Zelditch [START_REF] Sogge | Riemannian manifolds with maximal eigenfunction growth[END_REF], Burq-Gérard-Tzvetkov [START_REF] Burq | Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces[END_REF][START_REF] Burq | Multilinear estimates for the Laplace spectral projector on compact manifolds[END_REF][START_REF] Burq | Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations[END_REF]. Finally in [START_REF] Burq | Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds[END_REF][START_REF] Bourgain | Restriction of toral eigenfunctions to hypersurfaces and nodal sets[END_REF][START_REF] Tacy | Semiclassical L p estimates of quasimodes on submanifolds[END_REF] the concentration of restrictions on submanifolds was considered. Here, we focus on a situation intermediate between the latter (concentration on submanifolds) and the standard L 2 -concentration (Wigner measures). Indeed, we study the concentration (in L 2 norms) on small (frequency dependent) neighborhoods of submanifolds. Our first result is the following There exists C > 0, h 0 > 0 such that for every 0 < h ≤ h 0 , every α ∈ (0, 1) and every solution ψ ∈ H 2 (M ) of the equation on M (h 2 ∆ g + 1)ψ = g we have the estimate

(1.2) ψ L 2 (Nαh 1/2 ) ≤ Cα σ ψ L 2 (M ) + 1 h g L 2 (M )
where

σ = 1 if k ≤ n -3, σ = 1 -if k = n -2, σ = 1 2 if k = n -1.
Here 1 -means that we have a logarithm loss i.e. a bound by Cα| log(α)|.

Remark 1.2. -As pointed to us by M. Zworski, the result above is not invariant by conjugation by Fourier integral operators. Indeed, it is well known that micro locally, -h 2 ∆ -1 is conjugated by a (micro locally unitary) FIO to the operator hD x 1 . However the result above is clearly false is one replaces the operator -h 2 ∆ -1 by hD x 1

Another motivation for our study was the question of stabilization for weakly damped wave equations.

(1.3) (∂ 2 t -∆ g + b(x)∂ t )u = 0, (u, ∂ t u) | t=0 (u 0 , u 1 ) ∈ H s+1 (M ) × H s (M ), where 0 ≤ b ∈ L ∞ (M ). Let E(u)(t) = M g p (∇ g u(p), ∇ g u(p)) + |∂ t u(p)| 2 dv g (p)
where ∇ g denotes the gradient with respect to the metric g.

It is known that as soon as the damping b ≥ 0 is non trivial, the energy of every solution converge to 0 as t tends to infinity. On the other hand the rate of decay is uniform (and hence exponential) in energy space if and only if the geometric control condition [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF][START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF] is satisfied. Here we want to explore the question when some trajectories are trapped and exhibit decay rates (assuming more regularity on the initial data). This latter question was previously studied in a general setting in [START_REF] Lebeau | Equation des ondes amorties[END_REF] and on tori in [START_REF] Burq | Energy decay for damped wave equations on partially rectangular domains[END_REF][START_REF] Phung | Polynomial decay rate for the dissipative wave equation[END_REF][START_REF] Anantharaman | Sharp polynomial decay rates for the damped wave equation on the torus[END_REF] (see also [START_REF] Burq | Geometric control in the presence of a black box[END_REF][START_REF] Burq | Bouncing ball modes and quantum chaos[END_REF]) and more recently by Leautaud-Lerner [START_REF] Leautaud | Energy decay for a locally undamped wave equation[END_REF]. According to the works by Borichev-Tomilov [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], stabilization results for the wave equation are equivalent to resolvent estimates. On the other hand, Theorem 1.1 implies easily (see Section 2.2) the following resolvent estimate Corollary 1.3. -Consider for h > 0 the following operator

(1.4) L h = -h 2 ∆ g -1 + ihb, b ∈ L ∞ (M ).
Assume that there exists a global compact submanifold

Σ k ⊂ M of dimension k such that (1.5) b(p) ≥ Cd(p, Σ k ) 2κ , p ∈ M for some κ > 0. Then there exist C > 0, h 0 > 0 such that for all 0 < h ≤ h 0 ϕ L 2 (M ) ≤ Ch -(1+κ) L h ϕ L 2 (M ) , for all ϕ ∈ H 2 (M ).
This result will imply the following one.

Theorem 1.4. -Under the geometric assumptions of Corollary 1.3, there exists C > 0 such that for any (u 0 , u 1 ) ∈ H 2 (M ) × H 1 (M ), the solution u of (1.3) satisfies

(1.6) E(u(t)) 1 2 ≤ C t 1 κ u 0 H 2 + u 1 H 1 .
Remark 1.5. -Notice that in Theorem 1.4 the decay rate is worst than the rates exhibited by Leautaud-Lerner [START_REF] Leautaud | Energy decay for a locally undamped wave equation[END_REF] in the particular case when the submanifold Σ is a torus (and the metric of M is flat near Σ). We shall exhibit below examples showing that the rate (1.6) is optimal in general.

A main drawback of the result above (and Leautaud-Lerner's results) is that we were led to global assumptions on the geometry of the manifold M and the trapped region Σ k . However, the flexibility of Theorem 1.1 is such that we can actually dropp all global assumptions and keep only a local weak controlability assumption.

Theorem 1.6. -Let us assume the following weak geometric control property: for any ρ 0 = (p 0 , ξ 0 ) ∈ S * M , there exists s ∈ R such that the point (p 1 , ξ 1 ) = Φ(s)(ρ 0 ) on the bicharacteristic issued from ρ 0 satisfies either

p 1 ∈ ω = ∪{U open ; essinf U b > 0} -or there exists κ > 0, C > 0 and a local submanifold Σ k of dimension k ≥ 1 such that p 1 ∈ Σ k and near p 1 , b(p) ≥ Cd(p, Σ k ) 2κ
. Notice that since S * M is compact, we can assume in the assumption above that s ∈ [-T, T ] is bounded and that a finite number of submanifolds (and kappa's) are sufficient. Let κ 0 be the largest. Then there exists C > 0 such that for any

(u 0 , u 1 ) ∈ H 2 (M ) × H 1 (M ), the solution u of (1.3) satisfies E(u(t)) 1 2 ≤ C t 1 κ 0 u 0 H 2 + u 1 H 1 .
The results in Theorem 1.1 are in general optimal. On spheres S n = {x ∈ R n+1 : |x| = 1}, an explicit family of eigenfunctions e j (x 1 , . . . , x n+1 ) = (x 1 + ix 2 ) j (eigenvalues λ 2 j = j(j + n -1)) is known. We have

(1.7) |e j (x)| 2 = (1 -|x ′ | 2 ) j = e j log(1-|x ′ | 2 ) , x ′ = (x 3 , . . . , x n+1 ),
and consequently, these eigenfunctions concentrate exponentially on j -1/2 neighborhoods of the geodesic curve given by {x ∈ S n ; x ′ = 0} (the equator). As a consequence, the sequence j

d-1
4 e j is (asymptotically) normalized by a constant in L 2 (S n ), and if Σ k contains the equator, we can see optimality. Indeed, we work in local coordinates (y, x ′ ) where y ∈ T and x ′ ∈ V close to 0 in R n-1 . This localization being licit since according to (1.7), the fonction is O(e -δj ) outside of a fixed neighborhood of the equator. Let h = j -1 ,Let us decompose

x ′ = (y ′ , z ′ ) ∈ R k-1 × R n-k
and consider the submanifold defined by z ′ = 0.Then

e j L 2 (N αh 1/2 ) ∼ 1 y=0 |y ′ |≤1 |z ′ |≤αh 1/2 j n-1 2 e -j(|y ′ | 2 +|z ′ | 2 ) dy ′ dz ′ ∼ α n-k .
This elementary calculation shows that our results are saturated for all α > 0 on spheres (including the exponent of α appearing in (1.2)) by eigenfunctions in the case submanifolds of codimension 1 or 2 (except for the logarithmic loss appearing in the case of codimension 2). On the other hand again on spheres, other particular families of eigenfunctions, (f j , λ j ) are known (the so called zonal spherical harmonics). These are known to have size of order λ (n-1)/2 j in a neighborhood of size λ -1 j of two antipodal points (north and south poles). As a consequence, a simple calculation shows that if the submanifold contains such a point (which if always achievable by rotation invariance), we have, for α = ǫh 1/2

f j 2 L 2 (N αh 1/2 ) ≥ ch ∼ α 2 ,
which shows that (1.2) is optimal on spheres (at least in the regime α ∼ h 1/2 ). To get the full optimality might be possible by studying other families of spherical harmonics. For general manifolds, following the analysis in [10, Section 5]) should give the optimality of our results for quasi-modes on any manifold.

The paper is organized as follows. We first show how the non concentration result (Theorem 1.1) imply resolvent estimates for the damped Helmholtz equation, which in turn imply very classically the stabilization results for the damped wave equation. We then focus on the core of the article and prove Theorem 1.1. We start with the case of curves for which we have an alternative proof. Then we focus on the general case. We first show that the resolvent estimate is implied by a similar estimate for the spectral projector. To prove this latter estimate, we rely harmonic analysis and the precise description of the spectral projector given in [START_REF] Burq | Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds[END_REF]. Finally, we gathered in an appendix several technical results.
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From concentration estimates to stabilization results

2.1.

A priori estimates. -Recall that (M, g) is a compact connected Riemanian manifold. We shall denote by ∇ g the gradient operator with respect to the metric g and by dv g the canonical volume form on M. In all this section we set (2.1)

L h = -h 2 ∆ g -1 + ihb
We shall first derive some a-priori estimates on L h .

Lemma 2.1. -Let L h = -h 2 ∆ g -1 + ihb. Assume b ≥ 0 and set f = L h ϕ. Then (2.2) (i) h M b|ϕ(p)| 2 dv g (p) ≤ ϕ L 2 (M ) f L 2 (M ) , (ii) h 2 M g p ∇ g ϕ(p), ∇ g ϕ(p) dv g (p) ≤ ϕ 2 L 2 (M ) + ϕ L 2 (M ) f L 2 (M ) .
Proof. -We know that ∆ g = div∇ g and by the definition of these objects we have

A =: M g p ∇ g ϕ(p), ∇ g ϕ(p) dv g (p) = - M ∆ g ϕ(p)ϕ(p) dv g (p).
Multipying both sides by h 2 and since -h 2 ∆ g ϕ = f + ϕihbϕ we obtain

h 2 A = M |ϕ(p)| 2 dv g (p) -ih M b(p)|ϕ(p)| 2 dv g (p) + M f (p)ϕ(p) dv g (p).
Taking the real and the imaginary parts of this equality we obtain the desired estimates. 

N c αh 1/2 |ϕ(p)| 2 dv g (p) ≤ 1 Cα 2κ h -(1+κ) ϕ L 2 (M ) f L 2 (M ) .
Therefore we are left with the estimate of the L 2 (N αh 1/2 ) norm of ϕ.

According to (2.1) we see that ϕ is a solution of

(h 2 ∆ g + 1)ϕ = -f + ihbϕ =: g h where g h satisfies g h L 2 (M ) ≤ f L 2 (M ) + Ch ϕ L 2 (M ) . It follows from (2.3) and Theorem 1.1 that ϕ L 2 (M ) ≤ 1 C 1 2 α κ h -1+κ 2 ϕ 1 2 L 2 (M ) f 1 2 L 2 (M ) + Cα σ ( ϕ L 2 (M ) + 1 h f L 2 (M ) ).
Now we fix α so small that Cα σ ≤ 1 2 and we use the inequality a Proposition 2.2. -Let κ > 0. Then the estimate (1.6) holds if and only if there exist positive constants C, λ 0 such that for all u ∈ H 2 (M ), for all λ ≥ λ 0 we have

1 2 b 1 2 ≤ εa + 1 4ε b to obtain eventually ϕ L 2 (M ) ≤ C ′ h -(1+κ) f L 2 (M ) which completes the proof of Corollary 1.3.
C (-∆ g -λ 2 + iλb)u L 2 (M ) ≥ λ 1-κ u L 2 (M ) .
2.4. Proof of Theorem 1.6 assuming Theorem 1.1. -As before Theorem 1.6 will follow from the resolvent estimate

(2.4) ∃C > 0, h 0 > 0 : ∀h ≤ h 0 ϕ L 2 (M ) ≤ Ch -(1+κ) L h ϕ L 2 (M )
for every ϕ ∈ C ∞ (M ). We prove (2.4) by contradiction. If it is false one can find sequences (ϕ j ), (h j ), (f j ) such that

(2.5) (-h 2 j ∆ g -1 + ih j b)ϕ n = f j and ϕ j L 2 (M ) > j h 1+κ j f j L 2 (M ) .
Then ϕ j L 2 (M ) > 0 and we may therefore assume that

ϕ j L 2 (M ) = 1. It follows that (2.6) f j L 2 (M ) = o(h 1+κ j ), j → +∞.
Let µ be a semiclassical measure for (ϕ j ). By Lemma 2.1 we have

M |h j ∇ g ϕ j (p)| 2 -|ϕ j (p)| 2 dv g (p) ≤ f j L 2 (M ) .
It follows that (ϕ j ) is h j -oscillating which implies that µ(S * (M )) = 1. We therefore shall reach a contradiction if we can show that supp µ = ∅ and (2.4) will be proved. First of all by elliptic regularity we have

(2.7) supp µ ⊂ {(p, ξ) ∈ S * (M ) : g p (ξ, ξ) = 1}.
On the other hand using Lemma 2.1 we have

(2.8) b(p)|ϕ j (p)| 2 dv g (p) ≤ 1 h j f j L 2 (M ) since ϕ j L 2 (M ) = 1.
We deduce from (2.5), (2.8) and (2.6) that

(2.9) (h 2 j ∆ g + 1)ϕ j = G j , where G j L 2 (M ) = o(h 1+ κ 2 j ) → 0, j → +∞.
This shows that the support of µ is invariant by the geodesic flow. Let ρ 0 ∈ S * (M ) and

ρ 1 = (p 1 , ξ 1 ) ∈ S * (M )
) belonging to the geodesic issued from ρ 0 . Then

ρ 0 / ∈ supp µ ⇐⇒ ρ 1 / ∈ supp µ.
But according to our assumption of weak geometric control, either a neighborhood of p 1 belongs to the set {b(p

) ≥ c > 0} or p 1 ∈ Σ k and b(p) ≥ Cd(p, Σ k ) 2κ near p 1 .
In the first case in a neighborhood of ρ 1 the essential inf of b is positive and hence by (2.8) ρ 1 / ∈ supp µ. In the second case taking a small neighborhood ω of p 1 we write

ω |ϕ j (p)| 2 dv g (p) = ω∩Nαh 1/2 j |ϕ j (p)| 2 dv g (p) + ω∩N c αh 1/2 j |ϕ j (p)| 2 dv g (p) = (1) + (2).
By Theorem 1.1 and (2.9) we have

(1) ≤ Cα κ (1 + 1 h j g j L 2 (M ) ) ≤ Cα κ (1 + o(h κ 2 j ))
Using the assumption b(p) ≥ Cd(p, Σ k ) and (2.8) we get

(2) ≤ C α 2κ h σ j M b(p)|ϕ j (p)| 2 dv g (p) ≤ C ′ f j L 2 (M ) α 2κ h 1+κ j = o(1) α 2κ . It follows that ω |ϕ j (p)| 2 dv g (p) ≤ Cα κ + o(1) α 2κ . Let ε > 0. We first fix α(ε) > 0 such that Cα(ε) σ ≤ 1 2 ε then we take j 0 large enough such that for j ≥ j 0 , o(1) ≤ α(ε) 2κ 1 2 ε. It follows that for j ≥ j 0 we have ω |ϕ j | 2 dv g ≤ ε. This shows that lim j→+∞ ω |ϕ j | 2 dv g = 0 which implies that ρ 1 / ∈ supp µ thus ρ 0 / ∈ supp µ.
Since ρ 0 is arbitrary we deduce that supp µ = ∅ which the desired contradiction.

Concentration estimates (Proof of Theorem 1.1)

The rest of the paper will be devoted to the proof of Theorem 1.1. The case k = 1 i.e. the case of curves, is easier, so we shall start by this case before dealing with the general case.

3.1. The case of curves. -In this case we follow the strategy in [6, Section 2.4], [START_REF] Koch | Semiclassical L p estimates[END_REF] and see the equation satisfied by quasi modes as an evolution equation with respect to a well chosen variable. One can find an open neighborhood U p of p in M , a neighborhood B 0 of the origin in R n a diffeomorphism θ from U p to B 0 such that

(i) θ(U p ∩ Σ 1 ) = {x = (x ′ , x n ) ∈ (R n-1 × R) ∩ B 0 : x ′ = 0} (ii) θ(N ) ⊂ {x ∈ B 0 : |x ′ | ≤ αh 1 2 }.
Now Σ 1 is covered by a finite number of such open neighborhoods i.e. Σ 1 ⊂ ∪ n 0 j=1 U p j . We take a partition of unity relative to this covering i.e. (χ j ) ∈ C ∞ (M ) with supp χ j ∈ U p j and n 0 j=1 χ j = 1 in a fixed neighborhood of Σ 1 . Taking h small enough we can write

ψ h = n 0 j=1 χ j ψ h , (h 2 ∆ g + 1)ψ h = n 0 j=1 (h 2 ∆ g + 1)(χ j ψ h ) on N. Now for j = 1, . . . , n 0 set (3.1) F j,h = (h 2 ∆ g + 1)(χ j ψ h ). Then F j,h = χ j g h -h 2 (∆ g χ j )ψ h -2h 2 g p (∇ g ψ h , ∇ g χ j ) =: (1) -(2) -(3). We have (1) L 2 (M ) ≤ C g h L 2 (M ) and (2) L 2 (M ) ≤ Ch 2 ψ h L 2 (M )
. By the Cauchy Schwarz inequality we can write

h 2 g p (∇ g ψ h , ∇ g χ j ) ≤ h 2 g p (∇ g ψ h , ∇ g ψ h ) 1 2 g p (∇ g χ j , ∇ g χ j ) 1 2 which implies that |(3)| 2 ≤ Ch 4 g p (∇ g ψ h , ∇ g ψ h ). It follows from Lemma 2.1 with b ≡ 0 that (3) L 2 (M ) ≤ Ch( ψ h L 2 (M ) + ψ h 1 2 L 2 (M ) g h 1 2
L 2 (M ) ). Summing up we have proved that for j = 1, . . . , n 0

(3.2) F j,h L 2 (M ) ≤ C(h ψ h L 2 (M ) + g h L 2 (M ) ).
Setting u j,h (x) = (χ j ψ h ) • θ -1 j (x) we see that we have

(3.3) ψ h L 2 (Nαh 1/2 ) ≤ n 0 j=1 χ j ψ h L 2 (Nαh 1/2 ) ≤ C n 0 j=1 u j,h L 2 (B α,h )
where

B α,h = {x = (x ′ , x n ) ∈ R n-1 × R : |x ′ | ≤ αh 1 2 , |x n | ≤ c 0 }.
Our aim is to bound u j,h L 2 (B α,h ) for j = 1, . . . , n 0 . Therefore we can fix j and omit it in what follows. Without loss of generality we can assume that supp u h ⊂ K where K is a fixed compact independent of h.

Notice that Lemma 2.1 with b ≡ 0 implies that

(3.4) h 2 ∇ x u h L 2 (R n ) ≤ C( ψ h 2 L 2 (M ) + ψ h L 2 (M ) f h L 2 (M ) ) From (3.2) we see that (3.5) (h 2 P + 1)u h = G h , where where P = 1 g(x) 1 2 n k,l=1 ∂ ∂x k g(x)
1 2 g kl (x) ∂ ∂x l is the image of the Laplace Beltrami operator under the diffeomorphism and

(3.6) G h L 2 (R n ) ≤ C(h ψ h L 2 (M ) + g h L 2 (M ) ). Now let Ψ 1 ∈ C ∞ (R n ), Ψ 1 (ξ) = 1 2 if |ξ| ≤ 1, Ψ 1 (ξ) = 0 if |ξ| ≥ 1 and Ψ ∈ C ∞ 0 (R n ), Ψ = 1 on the support of Ψ 1 . Then (1 -Ψ 1 )(1 -Ψ) = 1 -ψ. Write (3.7) u h = (I -Ψ(hD))u h + Ψ(hD)u h =: v h + w h .
We have

(h 2 P + 1)v h = (h 2 P + 1)(I -Ψ 1 (hD))v h = (I -Ψ 1 (hD)) F h -h 2 P, Ψ 1 (hD) u h =: G 1h
By (3.6), (3.4) and the semi classical symbolic calculus we have

G 1h L 2 (R n ) ≤ C(h ψ h L 2 (M ) + g h L 2 (M ) ).
Now on the support of 1-Ψ 1 (ξ), the principal symbol of the semi classical pdo, Q = (h 2 P +1) does not vanish. By the elliptic regularity we have therefore

(3.8) 2 k=0 (h∇) k v h L 2 (R n ) ≤ C G 1h L 2 (R n ) ≤ C(h ψ h L 2 (M ) + g h L 2 (M ) ).
It follows that for ε > 0 small we have

(3.9) h 1+ε v h H 1+ε (R n ) ≤ C(h ψ h L 2 (M ) + g h L 2 (M ) ). Now recall that x = (x ′ , x n ) where x ′ ∈ R n-1 . Let r = 1 if n = 2, r = 2 if n ≥ 3. Then H 1+ε (R r ) ⊂ L ∞ (R r ). Set x ′ = (y, z) ∈ R r × R n-1-r . We can write v h L 2 (B) ≤ (αh 1 2 ) r sup y∈R r |v h (y, z, x n )| 2 dzdx n 1 2 ≤ (αh 1 2 
)

r 2 v h (•, z, x n ) 2 H 1+ε (R r ) dzdx n 1 2 ≤ C(αh 1 2 
)

r 2 v h H 1+ε (R n ) ≤ Cα r 2 h r 4 -ε 1 h (h ψ h L 2 (M ) + g h L 2 (M ) ).
and since r 4ε > 0 we obtain eventually

(3.10) v h L 2 (B) ≤ Cα σ ( ψ h L 2 (M ) + 1 h g h L 2 (M ) )
where

σ = 1 2 if n = 2, σ = 1 if n ≥ 3. Now let us consider w h . First of all we have (3.11) (h 2 P + 1)w h = Ψ(hD) F h + h 2 P, Ψ(hD) u h =: G 2h
with, as above

(3.12) G 2h L 2 (R n ) ≤ C(h ψ h L 2 (M ) + g h L 2 (M ) ).
We notice that the semi classical principal symbol q of the operator Q =: h 2 P + 1 satisfies the following property

(3.13) on the set {(x, ξ) ∈ T * (R n ) : q(x, ξ) = 0} we have ∂q ∂ξ = 0. Since K := K × supp Ψ is a compact subset ot T * (R n ) we can find a finite number of subsets ot T * (R n ), V 1 , . . . V N such that K ⊂ ∪ N j=1 V and in which (3.14) (i) either |q(x, ξ)| ≥ c 0 > 0 (ii) or q(x, ξ) = e(x, ξ)(ξ l + a(x, ξ ′ )), a real, e(x, ξ) = 0.
Then we can find (ζ j ) j=1,...,N such that

ζ j ∈ C ∞ 0 (V j ),
and

N j=1 ζ j = 1 in a neighborhood of K.
Therefore we can write

(3.15) Ψ(hD)u h = w h = N j=1 ζ j (x, hD)w h .
It is sufficient to bound each term so we shall skip the index j. case 1. In V we have |q(x, ξ)| ≥ c 0 > 0.

In that case the symbol a = ζ q belongs to S 0 (R n × R n ). By the semi classical symbolic calculus and (3.11) we can write

ζ(x, hD)w h = ζ(x, hD)Ψ(hD)u h = a(x, hD)Q(x, hD)Ψ(hD)u h + R h u h = a(x, hD)G 2h + R h u h where R h u h L 2 (R n ) ≤ Ch u h L 2 (R n ) .
It follows from (3.12) that (3.16)

2 k=0 (h∇) k ζ(x, hD)w h L 2 (R n ) ≤ C(h ψ h L 2 (M ) + g h L 2 (M ) )
so we see that ζ(x, hD)w h satisfies the same estimate (3.8) as v h . Therefore the same argument as before leads to

(3.17) ζ(x, hD)w h L 2 (B) ≤ Cα σ ( ψ h L 2 (M ) + 1 h g h L 2 (M ) ), where σ = 1 2 if n = 2, σ = 1 if n ≥ 3. case 2. In V we have q(x, ξ) = e(x, ξ)(ξ l + a(x, η)), a real, |e(x, ξ)| ≥ c 0 > 0. l ∈ {1, . . . , n -1}, η = (ξ 1 , . . . , ξ l-1 , ξ l+1 , . . . , ξ n ), e ∈ S 0 , |e(x, ξ)| ≥ c 0 > 0. Let us set x l = t, x = (x 1 , . . . , x l-1 , x l+1 , . . . , x n ). Recall (see (3.3)) that B α,h ⊂ {(t, x) : |t| ≤ αh 1 2 }.
Using the symbolic calculus and (3.12) we see easily that

ih ∂ ∂t + a(t, x, hD x ) ζ(x, hD)w h = G 3h , where (3.18) G 3h L 2 (R n ) ≤ C(h ψ h L 2 (M ) + g h L 2 (M ) ).
Since the symbol a is real, computing d dt w(t,

•) 2 L 2 (R n-1 ) we see easily that ζ(x, hD)w h (t, •) L 2 (R n-1 ) ≤ C t t 0 ζ(x, hD)w h (s, •) L 2 (R n-1 ) ds+ 1 h t t 0 G 3h (s, •) L 2 (R n-1 ) ds. Now since |t| ≤ αh 1 2 , |t 0 | ≤ αh 1 2
using the Cauchy Schwarz inequality, (3.18) and the Gronwall inequality we obtain

ζ(x, hD)w h (t, •) L 2 (R n-1 ) ≤ Cα 1 2 h 1 4 ( ψ h L 2 (M ) + 1 h g h L 2 (M ) ).
It follows that

(3.19) ζ(x, hD)w h L 2 (B α,h ) ≤ Cαh 1 2 ( ψ h L 2 (M ) + 1 h g h L 2 (M ) ). case 3. In V we have q(x, ξ) = e(x, ξ)(ξ n + a(x, ξ ′ )), a real, |e(x, ξ)| ≥ c 0 > 0. Since B α,h = {x = (x ′ , x n ) ∈ R n-1 × R : |x ′ | ≤ αh 1 2
, |x n | ≤ c 0 } we cannot use the same argument as in case 2. Instead we shall use Strichartz estimates proved in [6, Section 2.4] and [START_REF] Koch | Semiclassical L p estimates[END_REF] (see also [START_REF] Zworski | Semiclassical analysis[END_REF]). First of all, as before we see that

ih ∂ ∂t + a(x, hD x ′ ) ζ(x, hD)w h = G 4h
where t = x n and G 4h satisfies (3.18). Assume first n ≥ 4. It is proved in the above works that with I = {|t| ≤ c 0 } one has

(3.20) ζ(x, hD)w h L 2 t (I,L r x ′ (R n-1 ) ≤ Ch -1 2 1 h G 4h L 1 t (I,L 2 x ′ (R n-1 )) , r = 2(n -1) n -3 . Now set B ′ = {x ′ ∈ R n-1 : |x ′ | ≤ αh 1 2 }.
Using the Hölder inequality we obtain

ζ(x, hD)w h (t, •) L 2 (B ′ ) ≤ Cαh 1 2 ζ(x, hD)w h (t, •) L r (R n-1 )
which implies, using (3.20) and (3.18) that

(3.21) ζ(x, hD)w h (t, •) L 2 (B α,h ) ≤ Cα( ψ h L 2 (M ) + 1 h g h L 2 (M ) ).
When n = 3 the Strichartz estimate (3.20) does not hold but we have the weaker ones, with

1 q + 2 r = 1, r < +∞ (3.22) ζ(x, hD)w h L q t (L r x ′ (R 2 )) ≤ C r h -( 1 2 -1 r ) 1 h G 4h L 1 t (L 2 x ′ (R 2 ))
where (see [START_REF] Lieb | Analysis[END_REF]) C r ≤ Cr 1/2 . Then the Hölder inequality gives

ζ(x, hD)w h (t, •) L 2 (B ′ ) ≤ C r (αh 1 2 ) 2( 1 2 -1 r ) ζ(x, hD)w h (t, •) L r and therefore (3.23) ζ(x, hD)w h (t, •) L 2 (B α,h ) ≤ Cr 1/2 α 1 2 -1 r ( ψ h L 2 (M ) + 1 h g h L 2 (M ) ).
Optimizing with respect to r < +∞ leads to the choice r = 4 log(α -1 ), which gives a log(α -1 ) loss in the final estimate. In the case n = 2 we have instead the estimate

ζ(x, hD)w h L 4 t (I,L ∞ x ′ (R)) ≤ Ch -1 4 1 h G 4h L 1 t (I,L 2 
x ′ (R)) . which gives eventually

(3.24) ζ(x, hD)w h (t, •) L 2 (B α,h ) ≤ Cα 1 2 ( ψ h L 2 (M ) + 1 h g h L 2 (M ) ).
Then the conclusion in Proposition 1. 

of dimension k, 1 ≤ k ≤ n -1.
-The Laplace-Beltrami operator -∆ g with domain D = {u ∈ L 2 (M ) : ∆ g u ∈ L 2 (M )} has a discrete spectrum which can be written

0 = λ 2 0 < λ 2 1 < • • • < λ 2 j • • • → +∞ where λ j > 0, j ≥ 1 and -∆ g ϕ = λ 2 j ϕ. Moreover we can write L 2 (M ) = ⊕ +∞ j=0 H j
, where H j is the subspace of eigenvectors associated to the eigenvalue λ 2 j and H j ⊥ H k if j = k. For λ ≥ 0 we define the spectral projector Π λ :

L 2 (M ) → L 2 (M ) by (3.25) L 2 (M ) ∋ f = j∈N ϕ j , → Π λ f = j∈Λ λ ϕ j , Λ λ = {j ∈ N : λ j ∈ [λ, λ + 1)}.
Then Π λ is self adjoint and Π 2 λ = Π λ . Theorem 1.1 will be a consequence of the following one. Recall N αh 1/2 has been defined in (1.1). Proposition 3.1. -There exist C > 0, h 0 > 0 such that for every h ≤ h 0 and every α ∈ (0, 1)

(3.26) Π λ u L 2 (Nαh 1/2 ) ≤ Cα σ u L 2 (M ) , λ = 1 h , for every u ∈ L 2 (M ), Here σ = 1 if k ≤ n -3, σ = 1 -if k = n -2, σ = 1 2 if k = n -1.
Here, as before, 1 -means that we have an estimate by Cα| log(α)|. -If ψ = j≥0 ϕ j we have g = (h 2 ∆ g + 1)ψ = j≥0 (h 2 ∆ g + 1)ϕ j . Therefore by orthogonality

(3.27) g 2 L 2 (M ) = j≥0 |1 -h 2 λ 2 j | 2 ϕ j 2 L 2 (M ) . Let ε 0 be a fixed number in ]0, 1[. With N = [ε 0 λ] we write ψ = N k=-N Π λ+k ψ + R N .
Recall that Π λ+k ψ = j∈E k ϕ j , where E k = {j ≥ 0 :

λ j ∈ [λ + k, λ + k + 1[. Assume |k| ≥ 2. Since λ + k ≤ λ j < λ + k + 1 we have |λ j -λ| ≥ 1 2 |k| which implies that |λ 2 j -λ 2 | ≥ 1 2 |k|λ
. By orthogonality we have

Π λ+k ψ 2 L 2 (M ) = j∈E k ϕ j 2 L 2 (M ) = j∈E k 1 |λ 2 j -λ 2 | 2 |λ 2 j -λ 2 | 2 ϕ j 2 L 2 (M ) ≤ 4 |k| 2 λ 2 j∈E k |λ 2 j -λ 2 | 2 ϕ j 2 L 2 (M ) ≤ 4λ 2 |k| 2 j∈E k |h 2 λ 2 j -1| 2 ϕ j 2 L 2 (M ) .
Since Π 2 λ+k = Π λ+k , using Proposition 3.1 and the above estimate we obtain

2≤|k|≤N Π λ+k ψ L 2 (Nαh 1/2 ) ≤ 2≤|k|≤N Π λ+k ψ L 2 (Nαh 1/2 ) ≤ Cα σ 2≤|k|≤N Π λ+k ψ L 2 (M ) ≤ 2Cα σ λ 2≤|k|≤N 1 |k| j∈E k |h 2 λ 2 j -1| 2 ϕ j 2 L 2 (M ) 1 2 .
Using Cauchy-Schwarz inequality, (3.27) and the fact that the E k are pairwise disjoints we obtain eventually

(3.28) 2≤|k|≤N Π λ+k ψ L 2 (Nαh 1/2 ) ≤ Cα σ 1 h g L 2 (M ) .
Now a direct application of Proposition 3.1 shows that

(3.29) |k|≤1 Π λ+k ψ L 2 (Nαh 1/2 ) ≤ Cα σ ψ L 2 (M ) .
Eventually let us consider the remainder R N . We have

R N = j∈A ϕ j + j∈B ϕ j , A = {j : λ j ≤ λ -N }, B = {j : λ j ≥ λ + N + 1}.
The two sums are estimated by the same way since in both cases we have

|λ j -λ| ≥ cλ thus |λ 2 j -λ 2 | ≥ cλ 2 .
Then by orthogonality we write

j∈A ϕ j 2 L 2 (M ) = j∈A ϕ j 2 L 2 (M ) = j∈A 1 |λ 2 j -λ 2 | 2 |λ 2 j -λ 2 | 2 ϕ j 2 L 2 (M ) ≤ C λ 4 j∈A |λ 2 j -λ 2 | 2 ϕ j 2 L 2 (M ) ≤ j∈N |h 2 λ 2 j -1| 2 ϕ j 2 L 2 (M ) = g 2 L 2 (M ) . It follows that R N L 2 (M ) ≤ C g L 2 (M ) . Now (h 2 ∆ g + 1)R N = j∈A∪B (1 -h 2 λ 2 j )ϕ j =: g N and g N L 2 (M ) ≤ g L 2 (M ) . So using Lemma A.1 we obtain (3.30) R N L 2 (Nαh 1/2 ) ≤ C α σ h g L 2 (M ) where σ = 1 2 if k = n -1, σ = 1 if 1 ≤ k ≤ n -2.
. Then Theorem 1.1 follows from (3.28), (3.29) and (3.30).

Proof of Proposition 3.1.

-This proposition will be a consequence of the following one.

Proposition 3.2. -Let χ ∈ C ∞ (R) be such that χ(0) = 0. There exist C > 0, h 0 > 0 such that for every h ≤ h 0 ,every α ∈ (0, 1), and every u ∈ L 2 (M ) we have

(3.31) χ( -∆ g -λ)u L 2 (Nαh 1/2 ) ≤ Cα σ u L 2 (M ) , λ = 1 h where χ( -∆ g -λ)u = j∈N χ(λ j -λ)ϕ j if u = j∈N ϕ j .
Proof of Proposition 3.1 assuming Proposition 3.2. -There exists δ = 1 N > 0 and c > 0 such that χ(t) ≥ c for every t ∈ [-δ, δ]. Now let E = {j ∈ N : λ j ∈ [µ, µ + δ)} and set Π δ µ u = j∈E ϕ j . On E we have χ(λ jµ) ≥ c > 0 therefore we can write

1 E (j) = χ(λ j -µ) 1 E (j) χ(λ j -µ)
.

It follows that Π δ µ u = χ( -∆ g -λ)
• Ru where R is continuous from L 2 (M ) to itself with norm bounded by 1 c . Therefore assuming Proposition 3.2 we can write

(3.32) Π δ µ u L 2 (Nαh 1/2 ) ≤ Cα σ Ru L 2 (M ) ≤ C c α σ u L 2 (M ) .
where the constants in the right are independent of µ. Now since

{j : λ j ∈ [λ, λ + 1)} = ∪ N -1 k=0 {j : λ j ∈ [λ + kδ, λ + (k + 1)δ)} where the union is disjoint, one can write Π λ u = N -1 k=0 Π δ λ+kδ . It follows from (3.32) that Π λ u L 2 (Nαh 1/2 ) ≤ C ′ α σ u L 2 (M )
which proves Proposition 3.1.

It remains to prove Proposition 3.2. Until the end of this section σ will be a real number such that

σ = 1 if k ≤ n -3, σ = 1 -ε (ε > 0) if k = n -2, σ = 1 2 if k = n -1.
As before for every p ∈ Σ k one can find an open neighborhood U p of p in M , a neighborhood B 0 of the origin in R n a diffeomorphism θ from U p to B 0 such that

(3.33) (i) θ(U p ∩ Σ k ) = {x = (x a , x b ) ∈ (R k × R n-k ) ∩ B 0 : x b = 0} (ii) θ(U p ∩ N αh 1/2 ) ⊂ B α,h =: {x ∈ B 0 : |x b | ≤ αh 1 2 }.
Now Σ k and N αh 1/2 for h small, are covered by a finite number of such open neighborhoods i.e. N αh 1 2 ⊂ ∪ n 0 j=1 U p j . We take a partition of unity relative to this covering i.e.

(ζ j ) ∈ C ∞ (M ) with supp ζ j ∈ U p j and n 0 j=1 ζ j = 1 in a fixed neighborhood O of Σ k containing N αh 1/2 . For p ∈ O we can therefore write χ( -∆ g -λ)u(p) = n 0 j=1 χ( -∆ g -λ)(ζ j u)(p).
Our aim being to bound each term of the right hand side, we shall skip the index j in what follows. Moreover we shall set for convenience

χ λ =: χ( -∆ g -λ)
We shall use some results in [BGT] from which we quote the following ones.

Theorem 3.3 ([10] Theorem 4

). -There exists χ ∈ S(R) such that χ(0) = 1 and for any p 0 ∈ Σ k there a diffeomorphism θ as above, open sets

W ⊂ V = {x ∈ R n : |x| ≤ ε 0 }, a smooth function a : W x × V y × R + λ → C supported in the set {(x, y) ∈ W × V : |x| ≤ c 0 ε ≤ c 1 ε ≤ |y| ≤ c 2 ε ≪ 1} satisfying ∀α ∈ N 2n , ∃C α > 0 : ∀λ ≥ 0, |∂ α x,y a(x, y, λ)| ≤ C α , an operator R λ : L 2 (M ) → L ∞ (M ) satisfying R λ u L ∞ (M ) ≤ C u L 2 (M ) , such that for every x ∈ U =: W ∩ {x : |x| ≤ cε}, setting u = ζu • θ -1 we have (3.34) χ λ (ζu)(θ -1 (x)) = λ n-1 2 y∈V e iλψ(x,y) a(x, y, λ) u(y) dy + (R λ (ζu))(θ -1 (x))
where ψ(x, y) = -d g ((θ -1 (x)), (θ -1 (y))) is the geodesic distance on M between θ -1 (x) and θ -1 (y). Furthermore the symbol a is real non negative, does not vanish for |x| ≤ cε and

d g ((θ -1 (x)), (θ -1 (y))) ∈ [c 3 ε, c 4 ε].
Let us set (3.35) T λ u(x) = y∈V e iλψ(x,y) a(x, y, λ) u(y) dy.

It follow from (3.34) that (3.36) χ λ (ζu) L 2 (N α,h ) ≤ λ n-1 2 T λ u L 2 (B α,h ) + R λ (ζu) L 2 (N α,h )
Let us look to the contribution of R λ . Since (see (3.33)) the volume of N αh 1/2 is bounded by

C(αh 1 2 
) n-k we can write

R λ (ζu) L 2 (Nαh 1/2 ) ≤ C(αh 1 2 
)

n-k 2 R λ (ζu) L ∞ (M ) ≤ C(αh 1 2 
)

n-k 2 u L 2 (M ) . If k = n -1 we have α n-k 2 = α 1 2 and if 1 ≤ k ≤ n -2 we have α n-k 2 ≤ α. Therefore we get (3.37) R λ (ζu) L 2 (Nαh 1/2 ) ≤ Cα σ u L 2 (M ) .
According to (3.36) Proposition 3.2 will be a consequence of the following result.

Proposition 3.4. -There exists positive constants C, λ 0 such that

(3.38) λ n-1 2 T λ u L 2 (B α,h ) ≤ Cα σ u L 2 (M )
for every λ ≥ λ 0 and every u ∈ L 2 (M ).

Proof of Proposition 3.4. -Set S λ = T λ T * λ and denote by 1 B the indicator function of the set B α,h . By the usual trick (3.38) will be a consequence of the following estimate.

(3.39) 1 B S λ 1 B v L 2 (R n ) ≤ Ch n-1 α 2σ v L 2 (R n ) , h = 1 λ .
Let K λ (x, x ′ ) be the kernel of S λ . By (3.35) it is given by (3.40) K λ (x, x ′ ) = e iλ[ψ(x,y)-ψ(x ′ ,y)] a(x, y, λ)a(x ′ , y, λ) dy.

We shall decompose

(3.41)              K λ = K 1 λ + K 2 λ , K 1 λ = 1 {|x-x ′ |≤ 1 λ } K λ , K 2 λ = 1 { 1 λ <|x-x ′ |≤ε} K λ , S λ = 2 j=1 S j λ , S j λ u(x) = K j λ (x, x ′ ) u(x ′ ) dx ′
and treat separately each piece.

3.2.3. Estimate of S 1 λ . -When |x -x ′ | ≤ 1 λ the kernel K λ is uniformly bounded. Therefore |K 1 λ | ≤ C1 {|x-x ′ |≤ 1 λ } , so by Schur lemma we have S 1 λ v L 2 (R n ) ≤ Ch n v L 2 (R n ) . Therefore (3.42) 1 B S 1 λ 1 B v L 2 (R n ) ≤ Chh n-1 v L 2 (R n ) . On the other hand writing x = (x a , x b ), x ′ = (x ′ a , x ′ b ) we have S 1 λ v(•, x b ) L 2 (R k ) ≤ C R n-k 1 {|x b -x ′ b |≤h} R k 1 {|xa-x ′ a |≤h} v(x ′ a , x ′ b ) dx ′ a L 2 (R k ) dx ′ b .
Again by Schur lemma we get

S 1 λ v L ∞ (R n-k ,L 2 (R k )) ≤ Ch k v L 1 (R n-k ,L 2 (R k )) . We deduce that 1 B S 1 λ 1 B v L 2 (R n ) ≤ C(αh 1 2 ) n-k h k v L 2 (R n )
. This estimate can be rewritten as

(3.43) 1 B S 1 λ 1 B v L 2 (R n ) ≤ Cα 2σ α n-k-2σ h n-k 2 +k v L 2 (R n ) .

Now if h

1 2 ≤ α we use (3.42) and we obtain

1 B S 1 λ 1 B v L 2 (R n ) ≤ Cα 2 h n-1 v L 2 (R n . If α ≤ h 1 2
we use instead (3.43). Since nk -2σ ≥ 0 we can write

1 B S 1 λ 1 B v L 2 (R n ) ≤ Cα 2σ h 1 2 (n-k-2σ)+ 1 2 (n-k)+k v L 2 (R n ) = Cα 2σ h n-σ v L 2 (R n ) ≤ Cα 2σ h n-1 v L 2 (R n ) .
Therefore in all cases we have

(3.44) 1 B S 1 λ 1 B v L 2 (R n ) ≤ Cα 2σ h n-1 v L 2 (R n ) .
To deal with the other regime we need the description of the kernel K given in [START_REF] Burq | Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds[END_REF]. 

≪ 1, (a ± p , b p ) p∈N ∈ C ∞ (R n × R n × R) such that for |x -x ′ | λ -1 and any N ∈ N * we have K λ (x, x ′ ) = ± N -1 p=0 e ±iλ ψ(x,x ′ ) (λ|x -x ′ |) n-1 2 +p a ± p (x, x ′ , λ) + b N (x, x ′ , λ)
where ψ(x, x ′ ) is the geodesic distance between the points θ -1 (x) and θ -1 (x ′ ). Moreover a ± p are real, have supports of size O(ε) with respect to the two first variables and are uniformly bounded with respect to λ. Finally

|b N (x, x ′ , λ)| ≤ C N (λ|x -x ′ |) -( d-1 2 +N ) . 3.2.4. Estimate of S 2 λ . -We cut the set 1 λ ≤ |x -x ′ | ≤ ε into pieces |x -x ′ | ∼ 2 -j , 1 λ ≤ 2 -j ≤ ε
and we estimate the contribution of each term. According to Lemma 3.5 we are lead to work with the operator

A j v(x) = k j (x, x ′ , λ)v(x ′ ) dx ′ where (3.45) k j (x, x ′ , λ) = (λ2 -j ) -n-1 2 χ 0 (2 j (x -x ′ ))e iλ ψ(x,x ′ ) N -1 p=0 λ -p a p (x, x ′ , λ). Now there exists χ ∈ C ∞ (R n ) such that supp χ ⊂ {x : |x| ≤ 1}, χ(x) = 1 if |x| ≤ 1 2 and p∈Z n χ(x -p) = 1, ∀x ∈ R n .
Following [START_REF] Burq | Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds[END_REF] we write (3.46)

k j (x, x ′ , λ) = p,q∈Z n k jpq (x, x ′ , λ) k jpq (x, x ′ , λ) = χ(2 j x -p)k j (x, x ′ , λ)χ(2 j x ′ -q)
and we denote by A jpq the operator with kernel k jpq .

Notice that the sum appearing in (3.46) is to be taken only for |p -q| ≤ 2. We claim that by quasi orthogonality in L 2 we have

(3.47) 1 B A j 1 B L 2 (R n )→L 2 (R n ) ≤ C sup |p-q|≤2 1 B A jpq 1 B L 2 (R n )→L 2 (R n ) .
Indeed let us forget 1 B which plays any role. We have

A j v L 2 (R n ) = |p-q|≤2 |p ′ -q ′ |≤2 A jpq [ χ(2 j • -q)v](x)A jp ′ q ′ [ χ(2 j • -q ′ )v](x) dx where χ ∈ C ∞ 0 (R n ), χ = 1 on the support of χ and p∈Z n [ χ(x -p)] 2 ≤ M, ∀x ∈ R n .
Due to the presence of χ(2 j xp), χ(2 j xp ′ ) ans χ 0 (2 j (xx ′ ) inside the above integral one must also have |pp ′ | ≤ 2 in the sum. Therefore we are summing on the set E = {(p, q, p ′ , q ′ ) :

|p -q| ≤ 2, |p -p ′ | ≤ 2, |p ′ -q ′ | ≤ 2}. We have E ⊂ E 1 = {(p, q, p ′ , q ′ ) : |p -q| ≤ 2, |p ′ -q| ≤ 4, |q ′ -q| ≤ 6}, E ⊂ E 2 = {(p, q, p ′ , q ′ ) : |p ′ -q ′ | ≤ 2, |p -q ′ | ≤ 4, |q -q ′ | ≤ 6}.
It follows from the Cauchy-Schwarz inequality that A j v L 2 (R n ) can be bounded by

E 1 A jpq 2 L 2 →L 2 χ(2 j • -q)v 2 L 2 (R n ) 1 2 E 2 A jp ′ q ′ 2 L 2 →L 2 χ(2 j • -q ′ )v 2 L 2 (R n ) 1 2
and therefore by the choice of χ by

C sup |p-q|≤2 A jpq 2 L 2 (R n )→L 2 (R n ) v 2 L 2 (R n ) which proves our claim.
Now let us consider the operator Q jpq defined by

(3.48) Q jpq v(X) = R n σ jpq (X, X ′ , λ)v(X ′ ) dX ′ σ jpq (X, X ′ , λ) = χ(X -p)k j (2 -j X, 2 -j X ′ , λ)χ(X ′ -q).
Then by the change of variables (x = 2 -j X, x ′ = 2 -j X ′ ) we can see easily that

1 2 j B Q jpq 1 2 j B v L 2 (R n ) ≤ K j v L 2 (R n ) implies (3.49) 1 B A jpq 1 B v L 2 (R n ) ≤ 2 -jn K j v L 2 (R n ) . (3.50) Setting (3.51) µ j = λ2 -j , ψ j (X, X ′ ) = 2 j ψ(2 -j X, 2 -j X ′ ),
we deduce from (3.45) and (3.48) we have

(3.52) σ jpq (X, X ′ , λ) = µ -n-1 2 j e iµ j ψ j (X,X ′ ) χ(X -p)χ(X -q)χ 0 (X -X ′ ) • N -1 p=0 λ -p a p (2 -j X, 2 -j X ′ , λ).
We shall derive two estimates of the left hand side of (3.49). On one hand using Theorem A.4 with p = k -1 we can write,

1 2 j B Q jpq 1 2 j B v L 2 (R n ) ≤ C(αh 1 2 2 j ) n-k 2 Q jpq 1 2 j B v L ∞ (R n-k x b ×Rx a1 ,L 2 (R k-1 x ′ a )) , ≤ Cµ -n-1 2 j (αh 1 2 2 j ) n-k 2 µ -k-1 2 j 1 2 j B v L 1 (R n-k x b ×Rx a1 ,L 2 (R k-1 x ′ a )) , ≤ Cµ -n-1 2 j (αh 1 2 2 j ) n-k µ -k-1 2 j v L 2 (R n ) .
We deduce from (3.50) and (3.47) that

(3.53) 1 B A j 1 B v L 2 (R n ) ≤ Ch n-1 α n-k 2 j( n-k 2 -1) v L 2 (R n ) .
On the other hand using Theorem A.2 with p = n -1 we can write

1 2 j B Q jpq 1 2 j B v L 2 (R n ) ≤ Q jpq 1 2 j B v L 2 (R n ) ≤ Cµ -n-1 2 j µ -n-1 2 j v L 2 (R n ) ,
from which we deduce using (3.50) and (3.47) that

(3.54) 1 B A j 1 B v L 2 (R n ) ≤ C2 -jn (2 j h) n-1 ≤ Ch n-1 2 -j .
Recall that we have S 2 λ = j∈E A j where E = {j : 1 ε ≤ 2 j ≤ λ}. Then we write (3.55)

1 B S 2 λ 1 B v = j∈E 1 1 B A j 1 B v + j∈E 2 1 B A j 1 B v = (1) + (2)
, where

E 1 = {j : 1 ε ≤ 2 j ≤ α -2 }, E 2 = {j : α -2 ≤ 2 j ≤ λ}.
is invertible with M p (X, Ξ) -1 ≤ c 0 .

Then we have

Theorem A.4. -There exists a positive constant C such that for every λ > 0 we have

T λ u L ∞ (R n-p η ,L 2 (R p ξ )) ≤ Cλ -p 2 u L 1 (R n-p y ,L 2 (R p x )) for all u ∈ L 1 (R n-p y , L 2 (R p x )).
Theorem A.2 follows from Theorem A.4 using (H1).

Proof of Theorem A.4. -It is an easy consequence of the proof of a proposition in section 1.1 Chapter IX in [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]. Indeed let us set for (y,

η) ∈ R n-p × R n-p φ (y,η) (x, ξ) = φ(x, y, ξ, η), a (y,η) (x, ξ) = a(x, y, ξ, η), u y (x) = u(x, y), (A.7) T λ (y,η) u y (ξ) = R p e iλφ (y,η) (x,ξ) a (y,η) (x, ξ)u y (x) dx. (A.8)
Then we have (A.9)

T λ u(Ξ) = R n-p
T λ (y,η) u y (ξ) dy.

We claim that there exists C > 0 such that for every (y, η) ∈ V (y 0 ,η 0 ) we have

(A.10) T λ (y,η) u y L 2 (R p ξ ) ≤ Cλ -p 2 u y L 2 (R p x ) ∀λ > 0.
Assuming for a moment that (A.10) is proved we obtain

T λ u(•, η) L 2 (R p ξ ) ≤ R n-p T λ (y,η) u y L 2 (R n ξ ) dy ≤ Cλ -p 2 R n-p u(•, y) L 2 (R p x
) dy which implies immediately the conclusion of Theorem A.2.

The claim (A.10) follows immediately from the proof of proposition in 1.1 Chapter IX in [Stein]. However, for the convenience of the reader, we shall give it here.

For simplicity we shall skip the subscript (y, η), keeping in mind the uniformity, with respect to (y, η) ∈ V (y 0 ,η 0 ) , of the constants in the estimates. Therefore we set S λ = T λ (y,η) , φ (y,η) = ψ, b = a (y,η) . It follows from (A.6) that the matrix

N (x, ξ) = ∂ 2 ψ ∂x i ∂ξ j (x, ξ) 1≤i,j≤p
is invertible and N (x, ξ) -1 ≤ c 0 where c 0 is independent of (y, η). Now by the usual trick the estimate (A.10) is satisfied if and only if we have (A.11) S λ S * λ f L 2 (R p ) ≤ Cλ -p f L 2 (R p ) with C independent of (y, η). It is easy to see that (A.12)

S λ S * λ f (ξ) = R p K(ξ, ξ ′ )f (ξ ′ ) dξ ′ with K(ξ, ξ ′ ) = R k
e iλ(ψ(x,ξ)-ψ(x,ξ ′ )) b(x, ξ)b(x, ξ ′ ) dx.

Let us set c(x, ξ, ξ ′ ) = N (x, ξ) -1 ξξ ′ |ξξ ′ | .

Then we can write (A.13) c(x, ξ, ξ ′ ) • ∇ x e iλ(ψ(x,ξ)-ψ(x,ξ ′ )) = e iλ(ψ(x,ξ)-ψ(x,ξ ′ )) iλ∆(x, ξ, ξ ′ ) where ∆(x, ξ, ξ ′ ) = Moreover since the derivatives with respect to x of N (x, ξ) -1 are products of N (x, ξ) -1 and derivatives of N (x, ξ), we see that all the derivatives with respect to x of ∆(x, ξ, ξ ′ ) are uniformly bounded in (y, η) near (y 0 , η 0 ). Let us set

L = 1 iλ∆(x, ξ, ξ ′ ) c(x, ξ, ξ ′ ) • ∇ x .
It follows from (1.4) and the fact that b has compact support in x that for every N ∈ N we can write

K(ξ, ξ ′ ) =
R p e iλ(ψ(x,ξ)-ψ(x,ξ ′ )) t L) N [b(x, ξ)b(x, ξ ′ )] dx.

We deduce from (A.14) that for every N ∈ N there exists C N > 0 independent of (y, η) such that |K(ξ, ξ ′ )| ≤ C N (1 + λ|ξξ ′ |) N . Taking N > p we deduce from (A.12) and Schur lemma that (A.11) holds with a constant C independent of (y, η). This completes the proof. 

Theorem 1 . 1 .

 11 -Let k ∈ {1, . . . , n -1} and Σ k be a submanifold of dimension k of M . Let Let us introduce for β > 0, (1.1) N β = {p ∈ M : d(p, Σ k ) < β}. N.B. was supported in part by Agence Nationale de la Recherche project NOSEVOL, 2011 BS01019 01. N.B. and C. Z. were supported in part by Agence Nationale de la Recherche project ANA É ANR-13-BS01-0010-03.

2. 3 .

 3 Proof of Theorem 1.4 assuming Corollary 1.3. -The proof is an immediate consequence of a work by Borichev-Tomilov [3] and Corollary 1.3. We quote the following proposition from [18, Proposition 1.5].

3. 2 . 1 .

 21 Proof of Theorem 1.1 assuming Proposition 3.1.

Lemma 3 . 5 (

 35 [START_REF] Burq | Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds[END_REF] Lemma 6.1). -There exists ε

  c j (x, ξ, ξ ′ ) ∂ 2 ψ ∂x j ∂ξ l (x, ξ)(ξ lξ ′ l ) + O(|ξξ ′ | 2 , = N (x, ξ)c(x, ξ, ξ ′ ), ξξ ′ + O(|ξξ ′ | 2 ) = |ξξ ′ | + O(|ξξ ′ | 2 ),where O(|ξξ ′ | 2 ) is independent of (y, η). Since b has small support in ξ we deduce that (A.14) ∆(x, ξ, ξ ′ ) ≥ C|ξξ ′ |.
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 522 -Let d ≥ 1, δ ∈ R and ϕ 0 (x, x ′ ) = d j=1 (x jx ′ j ) 2 + δ Let M = ∂ 2 ϕ 0 ∂x j ∂x ′ k (x, x ′ ) 1≤j,k≤d. Then(i) if δ = 0 M has rank d for all x, x ′ ∈ R d , (ii) if δ = 0 M has rank d -1 for x = x ′ .Proof. -(i) A simple computation shows thatM = ϕ 0 (x, x ′ ) -1 (-δ jk + ω j ω k ), ω j = x jx ′ j ϕ 0 (x, x ′ )where δ jk is the Kronecker symbol. For λ ∈ R consider the polynomial in λF (λ) = detδ jk + λω j ω k 1≤j,k≤dWe have obviously F (0) = (-1) d . Now denote by C j (λ) the j th column of this determinant. ThenF ′ (λ) = d k=1det C 1 (λ), . . . , C ′ k (λ), . . . C d (λ) .

Since det C 1 F

 1 (0), . . . , C ′ k (0), . . . C d (0) = (-1) d-1 ω 2 j we obtain F ′ (0) = (-1) d-1 d j=1 ω 2 j . Now C j (λ) being linear with respect to λ we have C ′′ j (λ) = 0. Thereforedet C 1 (λ), . . . , C ′ j (λ), . . . , C ′ k (λ), . . . , C d (λ) . Since C ′ j (λ) = ω j (ω 1 , . . . , ω d ) and C ′ k (λ) = ω k (ω 1 , . . . , ω d ) we have F ′′ (λ) = 0 for all λ ∈ R. It follows that F (λ) = (-1) d (1λ d j=1 ω 2 j ). Therefore det M = (-1) d (1 -d j=1 ω 2 j ) = (-1) d δ 2 ϕ 0 (x, x ′ ) 2 = 0.(ii) Since xx ′ = 0 we may assume without loss of generality that ω d = 0. SetA =δ jk + ω j ω k 1≤j,k≤d-1 .Introducing G(λ) = detδ jk + λω j ω k 1≤j,k≤d-1 the same computation as above shows that det A = (-1) d-1 (1 -

  Cd(p, Σ k ) 2κ ≥ Cα 2κ h κ .

	2.2. Proof of Corollary 1.3 assuming Theorem 1.1. -According to condition (1.5)
	we have on N c αh 1/2	
	b(p) ≥ Writing N c αh 1/2 |ϕ(p)| 2 dv g (p) = N c αh 1/2 that	1 b(p) b(p)|ϕ(p)| 2 dv g (p), we deduce from Lemma 2.1
	(2.3)	

To estimate the term (1) we use (3.53). We obtain

Then we have three cases.

To estimate the term (2) we use (3.54). We obtain

Using these estimates and (3.55) we deduce

Gathering the estimates proved in (3.44) and (3.56) we obtain (3.39) which proves Proposition 3.4 and therefore Proposition 3.1. The proof of Theorem 1.1 is complete.

A. Some technical results

A.1. A lemma. -

we deduce from Lemma 2.1 and from the equation that

For fixed j ∈ {1, . . . , n 0 } we deduce from (A.1) that

from which we deduce that for ε > 0 small (A.4)

Using the Sobolev embeddings

} and (A.3), (A.4) we obtain

2 )

Lemma A. 

where φ : R n × R n → R is a smooth real valued phase and a a smooth symbol. We shall make the following assumptions.

(H1) there exists a compact

Our purpose is to prove the following result.

Theorem A.2. -Under the hypotheses (H1) and (H2) there exists C > 0 such that

for every λ > 0 and all u ∈ L 2 (R n ).

Remark A.3. -We shall actually apply Theorem A.2 for a family of phases φ j and symbols a j converging in C ∞ topology to a fixed phase φ and symbol a and use that in such case the estimates are uniform with respect to the parameter j, which will be a consequence of the proof given below.

Below we shall prove a slightly stronger result. First of all by the hypothesis (H1), using partitions of unity, we may assume without loss of generality that with a small ε > 0

Moreover changing if necessary the orders of the variables we may assume that near ρ 0 X = (x, y) ∈ R p × R n-p , Ξ = (ξ, η) ∈ R p × R n-p and for all (X, Ξ) ∈ V ρ 0 the p × p-matrix (A.6) M p (X, Ξ) = ∂ 2 φ ∂x i ∂ξ j (X, Ξ)

1≤i,j≤p