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ANNEALED AND QUENCHED LIMIT THEOREMS FOR RANDOM

EXPANDING DYNAMICAL SYSTEMS

ROMAIN AIMINO, MATTHEW NICOL, AND SANDRO VAIENTI

Abstract. In this paper, we investigate annealed and quenched limit theorems for random
expanding dynamical systems. Making use of functional analytic techniques and more prob-
abilistic arguments with martingales, we prove annealed versions of a central limit theorem,
a large deviation principle, a local limit theorem, and an almost sure invariance princi-
ple. We also discuss the quenched central limit theorem, dynamical Borel-Cantelli lemmas,
Erdös-Rényi laws and concentration inequalities.

Appeared online on Probability Theory and Related Fields. The final publication is available at

Springer via http://dx.doi.org/10.1007/s00440-014-0571-y.

1. Introduction

1.1. Limit theorems for Random Dynamical Systems: a brief survey. Statistical
properties for deterministic uniformly expanding dynamical systems are by now pretty well
understood, starting from the existence of an absolutely continuous invariant probability
[52, 14, 64], to exponential decay of correlations and limit theorems [39, 63, 33], and more
refined properties, such as Erdös-Rényi laws [19, 27], dynamical Borel-Cantelli lemmas [22, 49]
and concentration inequalities [23, 21]. Most of these results are derived from the existence of
a spectral gap of the transfer operator of the system, when acting on a appropriately chosen
Banach space. The books [15] and [12] contain a nice overview and historical perspectives
on the subject.
For random dynamical systems, the understanding of the situation is still unsatisfactory. A
random dynamical system can be seen as a random composition of maps acting on the same
space X , where maps are chosen according to a stationary process. When the process is a
sequence of independent random maps, this gives rise to a Markov chain with state space X .
The iid setting has been extensively studied in the book of Kifer [45], while the general case
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is treated in the book of Arnold [5]. The relevance of random dynamical systems is obvious
from the fact that in most physical applications, it is very unlikely that the same map is
iterated all along the time, and it is rather the case that different maps, very close to a fixed
one, are iterated randomly. This topic of stochastic perturbations is very well covered in [46].
Random dynamical systems also arise naturally in the field of particle systems on lattices,
where on a single site, the particle is subject to a local deterministic dynamic, but can jump
from one site to another randomly, see [50, 68].
The existence of stationary measures absolutely continuous with respect to Lebesgue measure
was first studied by Pelikan [62] and Morita [59] in the case where X is the unit interval,
and in the thesis of Hsieh [40] for the multidimensional case. This question has also been
investigated for one-dimensional and multidimensional systems in the case of position depen-
dent probabilities, see [8] and references therein. For limit theorems, the available literature
is much more sparse. It should be first stressed that for random systems, limit theorems
are of two kind : annealed results concern properties related to the skew-product dynamics,
while quenched results describe properties for almost every realization. Annealed results fol-
low from the spectral analysis of an annealed transfer operator, generalizing the successful
approach for deterministic systems. In this line of spirit, we can cite the papers of Baladi
[11], Baladi-Young [9] or Ishitani [42] and the thesis [68]. Quenched results are usually more
difficult to prove. Exponential decay of correlation in a quenched regime has been proved
using Birkhoff cones technique in [10, 18, 48], while a quenched central limit theorem and a
law of iterated logarithm are studied by Kifer [47], using a martingale approximation. These
results deal with more general stationary process, where absolutely continuous stationary
measure can fail to exist and are replaced by a family of sample measures. Closer to our
setting are the papers [6, 7] which are concerned with random toral automorphisms, and a
very recent work of M. Stenlund and H. Sulky (A coupling approach to random circle maps
expanding on the average, preprint, 2013), where quenched exponential decay of correlations
together with an annealed almost sure invariance principle are shown for iid expanding circle
maps, using the coupling method.

1.2. Limit theorems: our new results. When the random dynamical system is contract-
ing on average, the transition operator of the Markov chain admits a spectral gap on a space
of Hölder functions, from which one can deduce a large span of limit theorems following the
Nagaëv’s method, see for instance [38] and references therein. Nevertheless, for the appli-
cations we have in mind, the maps will instead be expanding on average. In this situation,
the transition operator generally fails to admit a spectral gap and we will preferably rely
on the quasi-compactness of an associated annealed transfer operator on an appropriate Ba-
nach space. In this paper, we provide an abstract functional framework, valid for several
one dimensional and multidimensional systems, under which annealed limit theorems hold
for smooth enough observables. More precisely, under a spectral gap assumption for the
annealed transfer operator, we apply Nagaëv’s perturbative method to obtain a central limit
theorem with rate of convergence and a large deviation principle. A Borel-Cantelli argument
allows us to derive immediately a quenched upper bound for the large deviation principle, but
the question of whether a quenched lower bound holds remains open. We also show a local
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limit theorem under an abstract aperiodicity condition, and relate in most practical cases
this condition to the usual one for individual maps. We apply Gouëzel’s spectral method
to prove an annealed almost sure invariance principle for vector valued observables : this is
a strong reinforcement of the central limit theorem which has many consequences, such as
the law of the iterated logarithm, the functional central limit theorem, and the almost sure
central limit theorem [51].
Changing slightly our approach, we then adapt the martingale approximation method, which
goes back to Gordin [31], and give an alternative proof of the annealed central limit theorem.
This requires the introduction of a symbolic deterministic system on which the standard
martingale procedure can be pursued. Decay of annealed correlations is the key ingredient
here and allows us to show that the Birkhoff’s sums can be written as the sum of a backwards
martingale and a coboundary, from which the central limit theorem follows from the analogous
result for martingales.
We next investigate dynamical Borel-Cantelli lemmas : if (fn) is a bounded sequences of
positive functions lying in the functional space, such as

∑

n

∫

fndµ = ∞, where µ is the
stationary measure, we prove that

∑n−1
k=0 fk(T k

ωx)
∑n−1

k=0

∫

fkdµ
→ 1,

for almost every realization ω and almost every point x ∈ X , a property usually called
strong Borel-Cantelli lemma in the literature. Of particular interest is the case where fn are
the characteristic functions of a sequence of decreasing sets, since this relates to recurrence
properties of the system. The proof builds upon annealed decay of correlations, and is a
consequence of the work of Kim [49]. This result can be seen as a generalization of the
strong law of large numbers, and it is hence natural to study the nature of the fluctuations in
this convergence. Provided we have precise enough estimates on the measure of the sets, we
prove a central limit theorem. For this purpose, we employ the martingale technique already
used before for Birkhoff sums, and make use of a central limit theorem for non stationary
martingales from Hall and Heyde [34], mimicking the proof from [35] for the deterministic
case.
We then turn to Erdös-Rényi laws : these limit laws give information on the maximal average
gain in the case where the length of the time window ensures there is a non-degenerate limit.
This result was first formulated by Erdös and Rényi [30], and brought in dynamical context
in [19, 27, 44] among others. Making use of the large deviation principle, we adapt the proof
of [27] to show that an annealed Erdös-Rényi law holds true in the random situation, for
one-dimensional transformations.
Importing a technique from the field of random walks in random environments, Ayyer, Liv-
erani and Stenlund [7] proved a quenched central limit theorem for random toral hyperbolic
automorphisms. Their approach consists in proving a spectral gap for the original system
and for a ”doubled” system acting on X2, where maps are given by T̂ω(x, y) = (Tωx, Tωy),
and driven by the same iid process. This allows to prove a quenched central limit theorem
for subsequences of the Birkhoff sums by a Borel-Cantelli argument, and the large deviation
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principle helps to estimate the error occurring in the gaps. Unfortunately, this method needs
a precise relation between the asymptotic variance of the observable on the original system,
and the asymptotic variance of a deduced observable on the doubled system. This relation is
easily shown when all maps preserve the same measure, as it is the case in [7], but is harder
to prove, and possibly false, in full generality. Hence, in this paper, we restrict our attention
to the case where all maps preserve the Lebesgue measure on the unit interval. Apart the
trivial case where all maps are piecewise onto and linear, we show that we can include in the
random compositions a class of maps introduced in [25], which have a neutral fixed point
and a point where the derivative blows up. The general case remains open.
Concentration inequalities are a well known subject in probability theory, and have numerous
and deep consequences in statistics. They concern deviations from the mean for non additive
functionals and hence generalize large deviations estimates for ergodic sums. Furthermore,
these inequalities are non-asymptotic. The price to pay is that they do not give precise
asymptotics for the deviation function, in contrast to the large deviations principle. They
were introduced in dynamical systems by Collet, Martinez and Schmitt [23] who prove an
exponential inequality for uniformly piecewise expanding maps of the interval. The paper
[21] covers a wide range of uniformly and non-uniformly expanding/hyperbolic dynamical
systems which are modeled by a Young tower. For random dynamical systems, concentration
inequalities were not previously studied. As far as the authors know, the only result available
is [55], which covers the case of the observational noise. We attempt to fill this gap and
prove an annealed exponential concentration inequality for randomly expanding systems on
the interval, generalizing the approach of [23]. We then give an application to the rate of
convergence of the empirical measure to the stationary measure.

1.3. Plan of the paper. The paper is outlined as follows. In section 2, we described our
abstract functional framework, and give several classes of one dimensional and multidimen-
sional examples which fit the assumptions. In section 3 we apply Nagaëv method to prove
annealed limit theorems. In section 4, we explain how the central limit theorem follows from
a martingale approximation. In section 5, we prove dynamical Borel-Cantelli lemmas and
a central limit theorem for the shrinking target problem. In section 6, we prove an Erdös-
Rényi law for random one-dimensional systems. In section 7, we consider the quenched
central limit theorem for specific one dimensional random systems. Finally, in section 8, we
prove an exponential concentration inequality and discuss its applications.

The letter C denotes a positive constant whose precise value has no particular importance
and can change from one line to another.

2. Abstract framework and examples

Let (Ω̃, T̃ , P̃) be a probability space, and θ : Ω̃ → Ω̃ be a measure preserving transforma-

tion. Let now (X,A) be a measurable space. Suppose that to each ω ∈ Ω̃ is associated a
transformation Tω : X → X such that the map (ω, x) 7→ Tω(x) is measurable. We are then
considering random orbits Tθnω ◦ . . . ◦ Tωx.
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One can now define a skew-product transformation F : Ω̃ × X → Ω̃ × X by F (ω, x) =
(θω, Tωx). We will say that a probability measure µ on (X,A) is a stationary measure if

P̃⊗ µ is invariant under F .
The simplest situation possible is the i.i.d. case : (Ω̃, T̃ , P̃) is a countable product space,

namely Ω̃ = ΩN, T̃ = T ⊗N, P̃ = P⊗N and θ is the full shift. If to each ω ∈ Ω is associated
a map Tω on X such that (ω, x) 7→ Tω(x) is measurable, then we define Tω = Tω1 for each

ω ∈ Ω̃, with ω = (ω1, ω2, . . .). This fits the framework described previously. It is easily seen
that µ is a stationary measure iff µ(A) =

∫

Ω
µ(T−1

ω (A)) dP(ω) for each A ∈ A. Moreover, if
we set Xn(ω, x) = Tθnω ◦ . . .◦Tωx, this defines a homogeneous Markov chain with state space
(X,A) and transition operator given by U(x,A) = P({ω : Tωx ∈ A}) for any x ∈ X and any
set A ∈ A.
From now, we will always consider this i.i.d. situation. Suppose now that (X,A) is endowed
with a probability measure m such that each transformation Tω is non-singular w.r.t. m.
We will investigate existence and statistical properties of stationary measures absolutely
continuous w.r.t. m. To this end, we introduce averaged transfer and Koopman operators.
Since every transformation Tω is non-singular, the transfer operator Pω and the Koopman
operator Uω of Tω are well defined, and act respectively on L1(m) and L∞(m). We recall their
definitions for the convenience of the reader, and refer to [15] and [12] for more properties.
The Koopman operator of Tω is acting on L∞(m) by Uωf = f ◦ Tω. Its action on conjugacy
classes of functions is well defined since Tω is non-singular w.r.t. m. The transfer operator,
or Perron-Frobenius operator is acting on L1(m) in the following way : for f ∈ L1(m),
define the complex measure mf by dmf = fdm. Then Pωf is defined to be the Radon-
Nykodim derivative of the push-forward measure T⋆mf w.r.t. m, which is well defined by
non-singularity. The main relation between these two operators is given by the duality
formula

∫

X
Pωf(x)g(x)dm(x) =

∫

X
f(x)Uωg(x)dm(x), which holds for all f ∈ L1(m) and

g ∈ L∞(m).
We can now defined the averaged versions of these operators. For f ∈ L1(m), we define Pf
by the formula Pf(x) =

∫

Ω
Pωf(x) dP(ω), and for g ∈ L∞(m), we define Ug by Ug(x) =

∫

Ω
Uωg(x) dP(ω). The operator U just defined coincides with the transition operator U of

the Markov chain (Xn), when acting on functions. Notice that for all n ≥ 0 and g ∈ L∞(m),

one has Ung(x) =
∫

Ωn g(Tωn
. . . Tω1x) dP⊗n(ω1, . . . , ωn) =

∫

Ω̃
g(Tωn

. . . Tω1x) dP̃(ω), because P̃

is a product measure. It is then straightforward to check that U is the dual operator of P ,
that is

∫

X
Pf(x)g(x) dm(x) =

∫

X
f(x)Ug(x) dm(x) for all f ∈ L1(m) and g ∈ L∞(m). An

absolutely continuous probability measure is stationary iff its density is a fixed point of P .
We will assume that P has good spectral properties on some Banach space of functions. More
precisely, we assume that there exists a Banach space (B, ‖.‖) such that :

(1) B is compactly embedded in L1(m);
(2) Constant functions lie in B;
(3) B is a complex Banach lattice : for all f ∈ B, |f | and f̄ belong to B;
(4) B is stable under P : P (B) ⊂ B, and P acts continuously on B;
(5) P satisfies a Lasota-Yorke inequality : there exist N ≥ 1, ρ < 1 and K ≥ 0 such that

‖PNf‖ ≤ ρ‖f‖ +K‖f‖L1
m

for all f ∈ B.
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The LY inequality implies in particular that the spectral radius of P acting on B is less or
equal than 1, and since m belongs to the topological dual of B by the first assertion, and is
fixed by P ⋆ the adjoint of P , we have that the spectral radius is 1. Hence, by Ionescu-Tulcea
and Marinescu’s theorem [41] (see also [36]), we have that the essential spectral radius of P is
less or equal than ρ < 1, implying that P is quasi-compact on B, since it has spectral radius
1. A standard argument using compactness proves that PN and hence P has a positive fixed
point : there is an element h ∈ B with Ph = h, h ≥ 0 and

∫

X
h dm = 1. As a consequence 1 is

an eigenvalue of P . Another consequence of quasi-compactness is the fact that the spectrum
of P is constituted of a finite set of eigenvalues with modulus 1 of finite multiplicity and the
remaining spectrum is contained in a disk of radius strictly less than 1. We will make the
following assumption, that prevents the possibility of peripheral spectrum :

6. 1 is a simple (isolated) eigenvalue of P , and there is no other eigenvalue on the unit
circle.

This assumption implies in particular that the absolutely continuous stationary measure is
unique. We will denote it by µ, and its density by h, throughout the paper.
Usually, assertions 4 and 5 can be deduced from corresponding assertions for the operators
Pω if the constants appearing in the Lasota-Yorke inequality are uniform. Nevertheless, they
can be established even if one of the maps Tω is not uniformly expanding, as showed by the
following class of examples :

Example 2.1 (Piecewise expanding one-dimensional maps).
A Lasota-Yorke map is a piecewise C2 map T : [0, 1] → [0, 1] for which λ(T ) := inf |T ′| > 0.
We denote by PT the transfer operator (with respect to Lebesgue measure) associated to T .
One has

PTf(x) =
∑

Ty=x

f(y)

|T ′(y)|

for all f ∈ L1(m). We will analyze the spectral properties of PT acting on the space of
functions of bounded variation. We recall the definition. A function f : [0, 1] → C is of
bounded variation if its total variation defined as

Var(f) = sup

n−1
∑

i=0

|f(xi+1) − f(xi)|,

where the supremum is taken over all the finite partitions 0 = x0 < . . . < xn = 1, is finite.
For a class of equivalence f ∈ L1(m), we then define

Var(f) = inf{Var(g) / f = g m−ae}.

The space BV = {f ∈ L1(m) /Var(f) <∞} is endowed with the norm ‖f‖ = ‖f‖L1
m

+Var(f),
which turns it into a Banach space satisfying assumptions 1, 2 and 3 above. Furthermore,
this is a Banach algebra which embeds continuously into L∞(m).
If T is a Lasota-Yorke map, the following inequality holds :
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Proposition 2.2 (Lasota-Yorke inequality [52]). For any f ∈ BV, we have

Var(PTf) ≤ 2

λ(T )
Var(f) + A(T )‖f‖L1

m

where A(T ) is a finite constant depending only on T .

Let Ω be a finite set, together with a probability vector P = {pω}ω∈Ω and a finite number
of Lasota-Yorke maps T = {Tω}ω∈Ω. We assume that pω > 0 for all ω ∈ Ω. The system
(Ω,P, T ) is called a random Lasota-Yorke system.
The random Lasota-Yorke system (Ω,P, T ) is expanding in mean if

Λ :=
∑

ω∈Ω

pω
λ(Tω)

< 1.

The annealed transfer operator associated to (Ω,P, T ) is P =
∑

ω∈Ω pωPTω
. It satisfies

P n =
∑

ω∈Ωn pnωPTn
ω

, where ω = (ω1, . . . , ωn), pnω = pω1 . . . pωn
and T n

ω = Tωn
◦ . . . ◦ Tω1 .

Proposition 2.3. If (Ω,P, T ) is expanding in mean, then some iterate of the annealed trans-
fer operator satisfies a Lasota-Yorke inequality on BV.

Proof. By the classical LY inequality and subadditivity of the total variation, one has

Var(P nf) ≤ 2θnVar(f) + An‖f‖L1
m

for all n ≥ 1 and all f ∈ BV, where θn =
∑

ω∈Ωn

pnω
λ(Tn

ω )
and An =

∑

ω∈Ωn pnωA(T n
ω ). Since

λ(T n
ω ) ≥ λ(Tω1) . . . λ(Tωn

), one obtains θn ≤∑ω∈Ωn

pω1 ...pωn

λ(Tω1 )...λ(Tωn )
= Λn. Hence, 2θn < 1 for n

large enough, while the corresponding An is finite. This concludes the proof. � �

This implies assumptions 4 and 5.

Remark 2.4. (1) Pelikan [62] showed that the previous Lasota-Yorke inequality still
holds under the weaker assumption supx

∑

ω∈Ω
pω

|T ′
ω(x)|

< 1.

(2) The result is still valid if the set Ω is infinite, assuming an integrability condition for
the distortion. See Remark 5.1 in Morita [59].

From Ionescu-Tulcea and Marinescu theorem, it follows that the annealed transfer operator
has the following spectral decomposition :

P =
∑

i

λiΠi +Q,

where all λi are eigenvalues of P of modulus 1, Πi are finite-rank projectors onto the associated
eigenspaces, Q is a bounded operator with a spectral radius strictly less than 1. They satisfy

ΠiΠj = δijΠi, QΠi = ΠiQ = 0.

This implies existence of an absolutely continuous stationary measure, with density belonging
to BV. Standard techniques show that 1 is an eigenvalue and that the peripheral spectrum
is completely cyclic. We’ll give a concrete criterion ensuring that 1 is a simple eigenvalue of
P , and that there is no other peripheral eigenvalue, hence implying assumption 6. In this
case, we will say that (Ω,P, T ) is mixing.
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Definition 2.5. The random LY system (Ω,P, T ) is said to have the Random Covering (RC)
property if for any non-trivial subinterval I ⊂ [0, 1], there exist n ≥ 1 and ω ∈ Ωn such that
T n
ω (I) = [0, 1].

Proposition 2.6. If (Ω,P, T ) is expanding in mean and has the (RC) property, then (Ω,P, T )
is mixing and the density of the unique a.c. stationary measure is bounded away from 0.

Proof. Since the peripheral spectrum of P consists of a finite union of finite cyclic groups,
there exists k ≥ 1 such that 1 is the unique peripheral eigenvalue of P k. It suffices then to
show that the corresponding eigenspace is one-dimensional. Standard arguments show there
exists a basis of positive eigenvectors for this subspace, with disjoint supports. Let then
h ∈ BV non-zero satisfying h ≥ 0 and P kh = h. There exist a non-trivial interval I ⊂ [0, 1]
and α > 0 such that h ≥ α1I . Choose n ≥ 1 and ω⋆ ∈ Ωnk such that T nk

ω⋆ (I) = [0, 1]. For all
x ∈ [0, 1], we have

h(x) = P nkh(x) ≥ αP nk
1I(x) = α

∑

ω∈Ωnk

pnkω
∑

Tnk
ω y=x

1I(y)

|(T nk
ω )′(y)| ≥ αpnkω⋆

∑

Tnk
ω⋆ y=x

1I(y)

|(T nk
ω⋆ )′(y)| .

This shows that h(x) ≥ α
pnk
ω⋆

‖(Tnk
ω⋆ )′‖sup

> 0, since there is always a y ∈ I with T nk
ω⋆ y = x. This

implies that h has full support, and concludes the proof. � �

Some statistical properties of random one-dimensional systems, using the space BV, were
studied in the thesis of Tümel [68].

Example 2.7 (Piecewise expanding multidimensional maps).
We describe a class of piecewise expanding multi-dimensional maps introduced by Saussol
[64]. Denote by md the d-dimensional Lebesgue measure, by d(., .) the euclidean distance
and by γd the md-volume of the unit ball of Rd. Let M a compact regular subset of Rd and
let T : M → M be a map such that there exists a finite family of disjoint open sets Ui ⊂ M
and Vi with Ūi ⊂ Vi and maps Ti : Vi → Rd satisfying for some 0 < α ≤ 1 and some small
enough ǫ0 > 0 :

(1) md(M \ ∪iUi) = 0;
(2) for all i, the restriction to Ui of T and Ti coincide, and Bǫ0(TUi) ⊂ Ti(Vi);
(3) for all i, Ti is a C1-diffeomorphism from Vi onto TiVi, and for all x, y ∈ Vi with

d(Tix, Tiy) ≤ ǫ0, we have

|detDTi(x) − detDTi(y)| ≤ c |detDTi(x)| d(Tix, Tiy)α,

for some constant c > 0 independant of i, x and y;
(4) there exists s < 1 such that for all x, y ∈ Vi with d(Tix, Tiy) ≤ ǫ0, we have d(x, y) ≤

sd(Tix, Tiy);
(5) Assume that the boundaries of the Ui are included in piecewise C1 codimension one

embedded compact submanifolds. Define

Y = sup
x

∑

i

♯{smooth pieces intersecting ∂Ui containing x},
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and

η0 = sα +
4s

1 − s
Y
γd−1

γd
.

Then η0 < 1.

The above conditions can be weakened in order to allow infinitely many domains of injectivity
and also the possibility of fractal boundaries. We refer the interested reader to [64] for more
details.
We will call such maps piecewise expanding maps in the sense of Saussol. The analysis of
the transfer operators of these maps requires the introduction of the functional space called
Quasi-Hölder. This space was first defined and studied by Keller [43] for one-dimensional
transformations, and then extended to multidimensional systems by Saussol [64].
We give the definition of this space. Let f : Rd → C be a measurable function. For
a Borel subset A ⊂ R

d, define osc(f, A) = ess sup
x,y∈A

|f(x) − f(y)|. For any ǫ > 0, the

map x 7→ osc(f, Bǫ(x)) is a positive lower semi-continuous function, so that the integral
∫

Rd osc(f, Bǫ(x))dx makes sense. For f ∈ L1(Rd) and 0 < α ≤ 1, define

|f |α = sup
0<ǫ≤ǫ0

1

ǫα

∫

Rd

osc(f, Bǫ(x))dx.

For a regular compact subset M ⊂ Rd, define

Vα(M) = {f ∈ L1(Rd) / supp(f) ⊂M, |f |α <∞},
endowed with the norm ‖f‖α = ‖f‖L1

m
+ |f |α, where m is the Lebesgue measure normalized

so that m(M) = 1. Note that while the norm depends on ǫ0, the space Vα does not, and two
choices of ǫ0 give rise to two equivalent norms.
If T is a piecewise expanding map in the sense of Saussol and PT is the transfer operator of
T , a Lasota-Yorke type inequality holds :

Proposition 2.8. ([64, Lemma 4.1]) Provided ǫ0 is small enough, there exists η < 1 and
D <∞ such that for any f ∈ Vα,

|PTf |α ≤ η|f |α +D‖f‖L1
m
.

Suppose now that Ω is a finite set, P = {pω}ω∈Ω a probability vector, and {Tω}ω∈Ω a finite
collection of piecewise expanding maps on M ⊂ Rd. This will be referred to as a random
piecewise expanding multidimensional system. Take ǫ0 small enough so that the inequalities
|PTω

|α ≤ ηω|f |α + Dω‖f‖L1
m

for all f ∈ Vα. Defining η = max ηω and D = maxDω, so that
η < 1 and D < ∞. Since P =

∑

ω PTω
, we immediately get |Pf |α ≤ η|f |α + ‖f‖L1

m
, for

all f ∈ Vα. This shows that our abstract assumptions 1 to 5 are all satisfied. To prove
that P is mixing, and hence check assumption 6, we can proceed as in the one-dimensional
situation, introducing the same notion of random-covering.. Indeed, any positive non-zero
element h ∈ Vα is bounded uniformly away from zero on some ball by Lemma 3.1 in [64], so
we can mimic the proof of Proposition 2.6 and get :
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Proposition 2.9. If (Ω,P, T ) is a random piecewise expanding multidimensional system
which has the random covering property in the sense that for all ball B ⊂ M , there exists
n ≥ 1 and ω ∈ Ωn such that T n

ω (B) = M , then (Ω,P, T ) is mixing and the density of the
unique a.c. stationary measure is bounded away from 0.

There are alternative functional spaces to study multidimensional expanding maps. One of
them is the space of functions of bounded variations in higher dimension. Applications of this
space to dynamical systems have been widely studied, see [14, 54] among many others. We
also mention the thesis of Hsieh [40] who investigates the application of this space to random
multidimensional maps, using the same setting as us. Notice that maps studied there are the
so-called Jab loński maps, for which the dynamical partition is made of rectangles. This kind
of maps will appear later in this paper, when we will derive a quenched CLT. Nevertheless,
the space BV in higher dimensions presents some drawbacks : it is not included in L∞ and
there exist some positive functions which are not bounded below on any ball, making the
application of random covering difficult, in contrast to the the Quasi-Hölder space. Apart
multidimensional BV, another possibility is to use fractional Sobolev spaces, as done in a
deterministic setting by Thomine [66].

Example 2.10 (Random expanding piecewise linear maps).
Building on a work by Tsujii [67], we considerer random compositions of piecewise linear
maps. First recall a definition :

Definition 2.11. Let U be a bounded polyhedron in Rd with non-empty interior. An expand-
ing piecewise linear map on U is a combination (T ,U) of a map T : U → U and a family
U = {Uk}lk=1 of polyhedra Uk ⊂ U , k = 1, . . . , l, satisfying the conditions

(1) the interiors of polyhedra Uk are mutually disjoint,
(2) ∪l

k=1Uk = U ,
(3) the restriction of the map T to the interior of each Uk is an affine map and
(4) there exists a constant ρ > 1 such that ‖DTx(v)‖ ≥ ρ‖v‖ for all x ∈ ∪l

k=1int(Uk), and
all v ∈ Rd.

We will drop U , writing merely T , when the partition U is understood. A basic consequence
of Tsujii [67], using the Quasi-Hölder space, is the following :

Proposition 2.12. For any expanding piecewise linear map T on U , there exists constant
ǫ0 > 0, θ < 1, C,K > 0 such that, for any n ≥ 0 and f ∈ V1 :

|P n
T f |1 ≤ Cθn|f |1 +K‖f‖L1

m
,

where PT is the transfer operator of T .

Let T = {(Tω,Uω)}ω∈Ω be a finite collection of expanding piecewise linear map on U , and
P = {pω}ω∈Ω a probability vector.
Choosing ǫ0 > 0, θ < 1, C,D < ∞ adequately, we get |P n

T f |1 ≤ Cθn|f |1 + K‖f‖L1
m

for all
f ∈ V1, where P is the annealed transfer operator. If we assume furthermore that the system
has the random covering property, then the Proposition 2.9 also holds true.
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3. Spectral results

We assume here that there exists a Banach space B0 ⊂ L1(m), with norm ‖.‖0, and a constant
C > 0 such that ‖fg‖ ≤ C‖f‖0‖g‖ for all f ∈ B0 and g ∈ B. This assumption is clearly
satisfied with B = B0 if B is a Banach algebra, as it is the case for the space of functions of
bounded variation in one dimension, or the Quasi-Hölder space. If B is the space of functions
of bounded variation in Rd, then we can take B0 = Lip, see lemma 6.4 in [66]. Elements of
B0 will play the role of observables in the following.
The spectral decomposition of P yields P = Π +Q where Π is the projection given by Πf =
(∫

X
f dm

)

h and Q has spectral radius on B strictly less than 1 and satisfies ΠQ = QΠ = 0.
It follows that P n = Π + Qn, where ‖Qn‖ ≤ Cλn, for some C ≥ 0 and λ < 1. This implies
exponential decay of correlations :

Proposition 3.1. We have :

(1) For all f ∈ B0 and g ∈ L∞(m),
∣

∣

∣

∣

∫

X

f Ung dµ−
∫

X

f dµ

∫

X

g dµ

∣

∣

∣

∣

≤ Cλn‖f‖0‖g‖L∞
m
,

(2) If B is continuously embedded in L∞(m), then for all f ∈ B0 and g ∈ L1(m),
∣

∣

∣

∣

∫

X

f Ung dµ−
∫

X

f dµ

∫

X

g dµ

∣

∣

∣

∣

≤ Cλn‖f‖0‖g‖L1
m
,

(3) If B is continuously embedded in L∞(m) and if the density of µ is bounded uniformly
away from 0, then for all f ∈ B0 and g ∈ L1(µ)

∣

∣

∣

∣

∫

X

f Ung dµ−
∫

X

f dµ

∫

X

g dµ

∣

∣

∣

∣

≤ Cλn‖f‖0‖g‖L1
µ
.

The proof is classical, see appendix C.4 in [4] for the deterministic analogue.
We will now investigate limit theorems, namely a Central Limit Theorem (CLT) and a Large
Deviation Principle (LDP), following Nagaev’s perturbative approach. We refer to [37] for a
full account of the theory. Let ϕ ∈ B0 be a bounded real observable with

∫

X
ϕdµ = 0. Define

Xk on Ω̃ × X by Xk(ω, x) = ϕ(Tωk
. . . Tω1x) and Sn =

∑n−1
k=0 Xk. The first step is to prove

the existence of the asymptotic variance.

Proposition 3.2. The limit σ2 = limn→∞
1
n
E
P̃⊗µ(S2

n) exists, and is equal to

σ2 =

∫

X

ϕ2 dµ+ 2
+∞
∑

n=1

∫

X

ϕUnϕdµ.

Proof. We expand the term S2
n and get E

P̃⊗µ(S2
n) =

∑n−1
k,l=0EP̃⊗µ(XkXl).

Lemma 3.3. For all integers k and l, one has E
P̃⊗µ(XkXl) =

∫

X
ϕU |k−l|ϕdµ.
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Proof of the lemma. By symmetry, we can assume k ≥ l. We have

E
P̃⊗µ(XkXl) =

∫

X

h(x)

∫

Ω̃

Xk(ω, x)Xl(ω, x) dP̃(ω)dm(x)

=

∫

X

h(x)

∫

Ω̃

(ϕ ◦ Tωk
◦ . . . ◦ Tωl+1

)(Tωl
. . . Tω1x)ϕ(Tωl

. . . Tω1x) dP̃(ω)dm(x)

=

∫

X

h(x)

∫

Ω̃

U l(ϕ(ϕ ◦ Tωk
◦ . . . ◦ Tωl+1

))(x) dP̃(ωl+1, . . .)dm(x)

=

∫

Ω̃

∫

X

P lh(x)ϕ(x)ϕ(Tωk
. . . Tωl+1

x) dm(x)dP̃(ωl+1, . . .) =

∫

X

ϕ(x)Uk−lϕ(x) dµ(x)

�

�

Applying this lemma, we get

E
P̃⊗µ(S2

n) =

n−1
∑

k,l=0

∫

X

ϕU |k−l|ϕdµ = n

∫

X

ϕ2 dµ+ 2

n
∑

k=1

(n− k)

∫

X

ϕUkϕdµ.

Since
∫

X
ϕUkϕdµ decays exponentially fast, we see immediately that 1

n
E
P̃⊗µ(S2

n) goes to the
desired quantity. �

�

Let us mention that we have the following criteria to determine whether the asymptotic
variance is 0. The proof follows along the same lines as Lemma 4.1 in [7].

Proposition 3.4. The asymptotic variance satisfies σ2 = 0 if and only if there exists ψ ∈
L2(µ) such that, for P-a.e. ω, ϕ = ψ − ψ ◦ Tω µ-a.e.
Denote by MB the set of all probability measures on (X,A) which are absolutely continuous
w.r.t. m, and whose density lies in B. For a measure ν ∈ MB, we will denote by ‖ν‖ the
B-norm of the density dν

dm
. Now, we are able to state the main theorems of this section :

Theorem 3.5 (Central Limit Theorem). For every probability measure ν ∈ MB, the process

( Sn√
n
)n converges in law to N (0, σ2) under the probability P̃⊗ ν.

Theorem 3.6 (Large Deviation Principle). Suppose that σ2 > 0. Then there exists a non-
negative rate function c, continuous, strictly convex, vanishing only at 0, such that for every
ν ∈ MB and every sufficiently small ǫ > 0, we have

lim
n→∞

1

n
log P̃⊗ ν(Sn > nǫ) = −c(ǫ)

In particular, these theorems are valid for both the reference measure m and the stationary
one µ, with the same asymptotic variance and the same rate function.
We introduce Laplace operators, which will encode the moment-generating function of the
process. For every z ∈ C, we define Pz by Pz(f) = P (ezϕf). Thanks to our assumption on B0,
this a well defined and continuous operator on B, and the map z 7→ Pz is complex-analytic on
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C : indeed, if we define Cn(f) = P (ϕnf), then Pz =
∑

n≥0
zn

n!
Cn, and this series is convergent

on the whole complex plane since ‖Cn‖ ≤ (C‖ϕ‖0)n‖P‖.
We have the following fundamental relation :

Lemma 3.7. For every n ≥ 0 and every f ∈ B, we have
∫

Ω̃

∫

X

ezSn(ω,x)f(x) dm(x) dP̃(ω) =

∫

X

P n
z (f) dm.

Proof. We proceed by induction on n. The case n = 0 is trivial. Assume that the relation is
valid for some n ≥ 0, and all f ∈ B. Let f be a member of B. Since Pz(f) belongs to B, the
induction hypothesis gives

∫

X

P n+1
z (f) dm =

∫

X

P n
z (Pz(f)) dm =

∫

Ω̃

∫

X

ezSn(ω,x)Pz(f)(x) dm(x)dP̃(ω)

=

∫

Ω̃

∫

X

ezSn(ω,x)P (ezϕf)(x) dm(x)dP̃(ω)

=

∫

Ω̃

∫

X

U(ezSn(ω, . ))(x)ezϕ(x)f(x) dm(x)dP̃(ω)

=

∫

X

∫

Ω̃

∫

Ω

ez(ϕ(x)+Sn(ω,Tωx)) dP(ω)dP̃(ω)f(x)dm(x)

But ϕ(x) + Sn(ω, Tωx) = Sn+1(ωω, x), where ωω stands for the concatenation (ω, ω1, ω2, . . .)

if ω = (ω1, ω2, . . .). As
∫

Ω̃

∫

Ω
ezSn+1(ωω,x) dP(ω)dP̃(ω) =

∫

Ω̃
ezSn+1(ω,x)dP̃(ω) because of the

product structure of P̃, we obtain the formula for n+ 1 and f . �

�

If f is the density w.r.t. m of a probability measure ν ∈ MB, by the previous lemma, we
know that the moment-generating function of Sn under the probability measure P̃⊗ν is given
by
∫

X
P n
z (f) dm This leads us to understand the asymptotic behavior of the iterates of the

Laplace operators Pz. Since they are smooth perturbations of the quasi-compact operator P ,
one can apply here the standard theory of perturbations for linear operators (see for instance
theorem III.8 in [37]), and get the following :

Lemma 3.8. There exists ǫ1 > 0, η1 > 0, η2 > 0, and complex-analytic functions λ(.), h(.),
m(.), Q(.), all defined on Dǫ1 = {z ∈ C / |z| < ǫ1}, which take values respectively in C, B,
B⋆, L(B) and satisfying for all z ∈ Dǫ1 :

(1) λ(0) = 1, h(0) = h,m(0) = m,Q(0) = Q;
(2) Pz(f) = λ(z)〈m(z), f〉h(z) +Q(z)f for all f ∈ B;
(3) 〈m(z), h(z)〉 = 1;
(4) Q(z)h(z) = 0 and m(z)Q(z) = 0;
(5) |λ(z)| > 1 − η1;
(6) ‖Q(z)n‖ ≤ C(1 − η1 − η2)

n.

Furthermore, |〈m,Q(z)nf〉| ≤ C|z|(1 − η1 − η2)
n‖f‖ for all f ∈ B and z ∈ Dǫ1.
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For all n ≥ 0, we hence have P n
z (f) = λ(z)n〈m(z), f〉h(z) + Q(z)nf . The asymptotic be-

havior of P n
z is clearly intimately related to the behavior of the leading eigenvalue λ(z) in a

neighborhood of 0. We have the following :

Lemma 3.9. The leading eigenvalue λ(.) satisfies λ′(0) =
∫

ϕdµ = 0 and λ′′(0) = σ2 ≥ 0.

Proof. By corollary III.11 in [37], λ′(0) = 〈m(0), P ′(0)h(0)〉. As m(0) = m, h(0) = h = dµ
dm

and P ′(0)f = C1(f) = P (ϕf) for any f ∈ B, since P (z) =
∑

n≥0
zn

n!
Cn with Cn(f) = P (ϕnf),

the formula for λ′(0) reads as

λ′(0) = 〈m,P (ϕh)〉 = 〈m,ϕh〉 =

∫

ϕdµ = 0.

Using again corollary III.11 in [37], we have

λ′′(0) = 〈m(0), P ′′(0)h(0)〉 + 2〈m(0), P ′(0)h̃〉,

where h̃ is the unique element of B satisfying 〈m(0), h̃〉 = 0 and (λ(0) − P (0)) h̃ = (P ′(0) − λ′(0))h(0).

This implies that h̃ is the unique element of B satisfying 〈m, h̃〉 = 0 and (I − P )h̃ =

P (ϕh). By corollary III.6 in [37], h̃ is given by h̃ =
∑

n≥0Q(0)n(ϕh). But Q(0)n(ϕh) =

P n(ϕh) − 〈m,ϕh〉h = P n(ϕh), since 〈m,ϕh〉 =
∫

ϕdµ = 0. Hence h̃ =
∑

n≥0 P
n(P (ϕh)) =

∑

n≥1 P
n(ϕh).

On one hand, we have 〈m(0), P ′′(0)h(0)〉 = 〈m,C2(h)〉 = 〈m,P (ϕ2h)〉 =
∫

ϕ2dµ. On the
other hand,

〈m(0), P ′(0)h̃〉 = 〈m,P (ϕh̃)〉 = 〈m,ϕh̃〉 =
∑

n≥1

〈m,ϕP n(ϕh)〉 =
∑

n≥1

∫

ϕP n(ϕh)dm =
∑

n≥1

∫

Unϕϕdµ.

Summing these two parts, we recognize the formula for σ2 given by proposition 3.2. � �

Then, λ( it√
n
)n = (1 − σ2t2

2n
+ o( 1

n
))n goes to e−

σ2t2

2 , from which it follows that E
P̃⊗ν(e

i t√
n
Sn) =

λ( it√
n
)n〈m( it√

n
), f〉〈m, h( it√

n
)〉+〈m,Q( it√

n
)f〉 goes also to e−

σ2t2

2 , for each t ∈ R, when n→ ∞,

which it implies the CLT by Lévy’s continuity theorem. Remark that the previous identity
holds for any measure ν ∈ MB and their associated density f .
We can furthermore prove a rate of convergence in the CLT, when σ2 > 0 :

Lemma 3.10. There exists C > 0 and ρ < 1 such that for all t ∈ R and n ≥ 0 with |t|√
n

sufficiently small, and all ν ∈ MB, we have

∣

∣

∣
E
P̃⊗ν(e

i t√
n
Sn) − e−

1
2
σ2t2
∣

∣

∣
≤ C‖ν‖

(

e−
σ2t2

2

( |t| + |t|3√
n

)

+
|t|√
n
ρn
)

.

Proof. This follows from the third order differentiability of λ(.) at 0 : for t√
n

small enough,

λ( it√
n
)n =

(

1 − σ2t2

2n
+ O

(

|t|3
n
√
n

))n

= e−
σ2t2

2 + O
(

e−
σ2t2

2
|t|3√
n

)

. Recalling that f = dν
dm

and
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‖ν‖ = ‖f‖ ≥ C, where the constant C comes from the continuous embedding B ⊂ L1(m)
and is independent of ν, we have

E
P̃⊗ν(e

i t√
n
Sn) = λ(

it√
n

)n〈m(
it√
n

), f〉〈m, h(
it√
n

)〉 + 〈m,Q(
it√
n

)nf〉

=

(

e−
σ2t2

2 + O
(

e−
σ2t2

2
|t|3√
n

))(

1 + O
( |t|√

n
‖f‖

))

+ O
( |t|√

n
ρn‖f‖

)

,

where the first line follows from lemma 3.7 applied to f and z = it√
n

and item 2 of lemma

3.8. This implies the result. � �

From this lemma, we deduce that
∣

∣

∣
E
P̃⊗ν(e

i t√
n
Sn) − e−

1
2
σ2t2
∣

∣

∣
= O

(

1+|t|3√
n

)

, which will be useful

latter, when proving a quenched CLT. The precise estimate of the lemma also implies a rate
of convergence of order 1√

n
in the CLT, using the Berry-Esséen inequality. We refer to [37]

or [28] for a scheme of proof :

Theorem 3.11. If σ2 > 0, there exists C > 0 such that for all ν ∈ MB :

sup
t∈R

∣

∣

∣

∣

P̃⊗ ν

(

Sn√
n
≤ t

)

− 1

σ
√

2π

∫ t

−∞
e−

u2

2σ2 du

∣

∣

∣

∣

≤ C‖ν‖√
n
.

We turn now to the proof of the LDP. For this, we will show the convergence of 1
n

logE
P̃⊗ν(eθSn)

for small enough θ ∈ R and then apply Gartner-Ellis theorem [26, 29]. Proofs are a verbatim
copy of those from [3].

Lemma 3.12. There exists 0 < ǫ2 < ǫ1 such that for every θ ∈ R with |θ| < ǫ2, we have
λ(θ) > 0. Furthermore, the functions h(.) and m(.) can be redefined in such a way that they
still satisfy conclusions of lemma 3.8, while they also verify h(θ) ≥ 0, m(θ) ≥ 0 for θ ∈ R.

Proof. As Pθ is a real operator, we have Pθf = Pθf for all f ∈ B. So, we have Pθh(θ) =

Pθh(θ) = λ(θ) h(θ). Since λ(θ) is the unique eigenvalue of Pθ with maximal modulus, we

get λ(θ) = λ(θ), and hence λ(θ) ∈ R. Since λ(0) = 1, by a continuity argument, we obtain

λ(θ) > 0 for small θ. For z ∈ C small enough, 〈m(z),1〉 6= 0. We define h̃(z) = 〈m(z),1〉h(z)
and m̃(z) = 〈m(z),1〉−1m(z). Those new eigenfunctions satisfy obviously the conclusions of

the previous proposition. We have just to prove that h̃(θ) and m̃(θ) are positive for θ ∈ R

small enough. By the spectral decomposition of Pθ, we see that λ(θ)−nP n
θ 1 goes to h̃(θ) in

B, and hence in L1(m). We then get h̃(θ) ≥ 0 because Pθ is a positive operator and λ(θ) is

positive too. Now, let ψ(θ) ∈ B⋆ positive such that 〈ψ(θ), h̃(θ)〉 = 1 1. Then, λ(θ)−n(P ⋆
θ )nψ(θ)

goes to 〈ψ(θ), h(θ)〉m(θ) = m̃(θ), which proves that m̃(θ) is a positive linear form. � �

We denote Λ(θ) = log λ(θ). We then have

Proposition 3.13. For every ν ∈ MB, there exists 0 < ǫ3 < ǫ2 such that for every θ ∈ R

with |θ| < ǫ3, we have

lim
n→∞

1

n
logE

P̃⊗ν(eθSn) = Λ(θ)

1Choose ψ(θ) = α(θ)−1m, where α(θ) = 〈m, h̃(θ)〉 is positive, since h̃(θ) is a positive element of L1(m).
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Proof. Let f ∈ B be the density dν
dm

. We have the identity

E
P̃⊗ν(eθSn) = 〈m,P n

θ (f)〉 = λ(θ)n〈m(θ), f〉 〈m, h(θ)〉 + 〈m,Q(θ)nf〉
= λ(θ)n

(

〈m(θ), f〉 〈m, h(θ)〉 + λ(θ)−n〈m,Q(θ)nf〉
)

All involved quantities are positive, hence we can write

1

n
logE

P̃⊗ν(eθSn) = log λ(θ) +
1

n
log
(

〈m(θ), f〉 〈m, h(θ)〉 + λ(θ)−n〈m,Q(θ)nf〉
)

Since limθ→0〈m(θ), f〉 〈m, h(θ)〉 = 1 and since the spectral radius of Q(θ) is strictly less than
λ(θ), it’s easy to see that for θ small enough, we have

lim
n→∞

1

n
log
(

〈m(θ), f〉 〈m, h(θ)〉 + λ(θ)−n〈m,Q(θ)nf〉
)

= 0.

� �

To complete the proof, it suffices to prove that Λ is a differentiable function, strictly convex
in a neighborhood of 0, which is indeed the case since λ(.) is complex-analytic and we have
supposed Λ′′(0) = λ′′(0) = σ2 > 0. A local version of the Gartner-Ellis theorem (a precise
statement can be found e.g. in lemma XIII.2 in [37]) finishes the proof.
It is interesting to notice that the annealed LDP implies almost immediately a quenched
upper bound, with the same rate function for almost every realization :

Proposition 3.14. For every ν ∈ MB, for every small enough ǫ > 0 and for P̃-almost every
ω, we have

lim sup
n→∞

1

n
log ν({x ∈ X /Sn(ω, x) > nǫ}) ≤ −c(ǫ)

Proof. Let ǫ > 0 small enough such that the annealed LDP holds. Let 0 < γ < 1 and define

An = {ω ∈ Ω̃ / ν({x ∈ X /Sn(ω, x) > nǫ}) ≥ e−n(1−γ)c(ǫ)}.
By the annealed LDP, we have P̃ ⊗ ν(Sn > nǫ) ≤ Ce−n(1− γ

2
)c(ǫ) for some C = C(γ, ǫ), and

hence Markov inequality yields

P̃(An) ≤ en(1−γ)c(ǫ)
P̃⊗ ν(Sn > nǫ) ≤ Ce−n γ

2
c(ǫ).

By the Borel-Cantelli lemma, we have that P̃-almost every ω lies in finitely many An whence
lim supn→∞

1
n

log ν({x ∈ X /Sn(ω, x) > nǫ}) ≤ −(1 − γ)c(ǫ) for P̃-almost every ω. As γ can

be a rational number arbitrarily close to 0, we get lim supn→∞
1
n

log ν({x ∈ X /Sn(ω, x) >

nǫ}) ≤ −c(ǫ) for P̃-almost every ω. � �

We can also prove a local limit theorem.

Definition 3.15. We will say that ϕ is aperiodic if for all t 6= 0, the spectral radius of Pit is
strictly less than 1.
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Theorem 3.16 (Local Limit Theorem). If σ2 > 0 and ϕ is aperiodic, then, for all ν ∈ MB
and all bounded interval I ⊂ R,

lim
n→∞

sup
s∈R

∣

∣

∣

∣

σ
√
n P̃⊗ ν(s + Sn ∈ I) − 1√

2π
e−

s2

2nσ2 |I|
∣

∣

∣

∣

= 0.

Proof. We follow the proof given by Breiman [16] in the iid case. See also Rousseau-Egele
[63] for a proof in a dynamical context. By a density argument, it is sufficient to prove that,

uniformly in s ∈ R,

∣

∣

∣

∣

σ
√
nE

P̃⊗ν(g(Sn + s)) − 1√
2π
e−

s2

2nσ2
∫

R
g(u)du

∣

∣

∣

∣

goes to 0 as n → ∞, for

all g ∈ L1(R) for which the Fourier transform ĝ is continuous with compact support. Using
Fourier’s inversion formula, we first write

σ
√
nE

P̃⊗ν(g(Sn + s)) =
σ
√
n

2π

∫

R

eitsĝ(t)

(
∫

X

P n
it(f) dm

)

dt.

Let δ > 0 be such that the support of ĝ is included in [−δ,+δ], and, remembering that

λ(it) = 1 − σ2t2

2
+ o(t2) and 〈m(it), f〉〈m, h(it)〉 = 1 + O(|t|), choose 0 < δ̃ < δ small enough

in such a way that |λ(it)| ≤ 1− σ2t2

4
≤ e−

t2σ2

4 and |〈m(it), f〉〈m, h(it)〉 − 1| ≤ C|t| for |t| < δ̃.
Using

1√
2π
e−

s2

2nσ2

∫

R

g(u)du =
ĝ(0)σ

2π

∫

R

e
its√
n e−

σ2t2

2 dt

and
∫

X

P n
it (f) dm = λ(it)n〈m, h(it)〉〈m(it), f〉 + 〈m,Q(it)nf〉

for |t| < δ̃, we can write

σ
√
nE

P̃⊗ν(g(Sn + s)) − 1√
2π
e−

s2

2nσ2

∫

R

g(u)du

=
σ

2π

(
∫

|t|<δ̃
√
n

e
its√
n

(

ĝ(
t√
n

)λ(
it√
n

)n − ĝ(0)e−
σ2t2

2

)

dt

+

∫

|t|<δ̃
√
n

e
its√
n ĝ(

t√
n

)λ(
it√
n

)n
(

〈m(
it√
n

), f〉〈m, h(
it√
n

)〉 − 1

)

dt

+
√
n

∫

|t|<δ̃

eitsĝ(t)〈m,Q(it)nf〉dt

+
√
n

∫

δ̃≤|t|≤δ

eitsĝ(t)〈m,P n
itf〉dt− ĝ(0)

∫

|t|≥δ̃
√
n

e
its√
n e−

σ2t2

2 dt

)

=
σ

2π

(

A(1)
n (s) + A(2)

n (s) + A(3)
n (s) + A(4)

n (s) + A(5)
n (s)

)

.
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One has
∣

∣

∣
A

(1)
n (s)

∣

∣

∣
≤
∫

|t|<δ̃
√
n

∣

∣

∣
ĝ( t√

n
)λ( it√

n
)n − ĝ(0)e−

σ2t2

2

∣

∣

∣
dt, so sups∈R

∣

∣

∣
A

(1)
n (s)

∣

∣

∣
→ 0 by domi-

nated convergence, since
∣

∣

∣
ĝ( t√

n
)λ( it√

n
)n − ĝ(0)e−

σ2t2

2

∣

∣

∣
≤ ‖ĝ‖sup

(

e−
σ2t2

4 + e−
σ2t2

2

)

is integrable

on R and ĝ( t√
n
)λ( it√

n
)n → ĝ(0)e−

σ2t2

2 .

For the second term, we can bound it by C‖ĝ‖sup√
n

∫

|t|<δ̃
√
n
|t|e−σ2t2

4 dt = O
(

1√
n

)

and so sups∈R

∣

∣

∣
A

(2)
n (s)

∣

∣

∣
→

0
The third term is bounded by C

√
n‖ĝ‖supρn, and so sups∈R

∣

∣

∣
A

(3)
n (s)

∣

∣

∣
→ 0.

By dominated convergence, we have clearly sups∈R

∣

∣

∣
A

(5)
n (s)

∣

∣

∣
→ 0, so it remains to deal with

the fourth term. This is where the aperiodicity assumption plays a role. Denoting by r(Pit)
the spectral radius of the operator Pit, we know that the u.s.c. function t 7→ r(Pit) reaches

its maximum on the compact set {δ̃ ≤ |t| ≤ δ}, which is then < 1 by assumption. Since the

set {Pit}δ̃≤|t|≤δ is bounded, there exists C and θ < 1 such that ‖P n
it‖ ≤ Cθn for all δ̃ ≤ |t| ≤ δ

and all n ≥ 0. Then one has sups∈R

∣

∣

∣
A

(4)
n (s)

∣

∣

∣
≤ C

√
nθn‖ĝ‖sup‖m‖‖f‖ → 0, which concludes

the proof. � �

We give a concrete criterion to check the aperiodicity assumption :

Proposition 3.17. Assume that the stationary measure µ is equivalent to m, and that the
spectral radius (resp. the essential spectral radius) of Pit is less (resp. strictly less) than 1 for
all t ∈ R. If ϕ is not aperiodic, then there exists t 6= 0, λ ∈ C with |λ| = 1 and a measurable
function g : X → C such that gh ∈ B and λg(Tωx) = eitϕ(x)g(x) for m-ae x and P-ae ω.

Proof. Suppose that the spectral radius of Pit is greater or equal than 1 for some t 6= 0.
By the assumptions on the spectral radius, this implies that there is an eigenvalue λ of Pit

satisfying |λ| = 1. Let f ∈ B a corresponding eigenvector, and define g = f
h
. This definition

makes sense m-ae, by the assumption on µ. We then have P (φgh) = gh, where φ = λ̄eitϕ.
We then lift this relation to the skew-product : by Lemma 4.3, we have PS(φπgπhπ) = gπhπ,
where PS is the transfer operator for the skew-product system, defined w.r.t. the measure
P̃ ⊗m. See Section 4 for the notations. By Proposition 1.1 in Morita [61], we deduce that

gπ ◦ S = φπgπ, P̃⊗m- ae. We conclude the proof by writing explicitly this relation. � �

Remark 3.18. (1) The assumptions on the spectral radius of Pit are usually proved by
mean of a Lasota-Yorke inequality for each Pit, which usually follow in the same way
we prove a Lasota-Yorke inequality for the transfer operator P . See the works of
Rousseau-Egele [63], Morita [61], Broise [17] or Aaronson-Denker-Sarig-Zweimuller
[2] for one-dimensional deterministic examples.

(2) The previous Proposition shows that if ϕ is not aperiodic for the random system,
then it is not aperiodic for almost each deterministic system Tω in the usual sense,
and that almost all aperiodicity equations share a common regular solution g. For
instance, if the set Ω is finite and if we know that ϕ is aperiodic for one map Tω, then
it is aperiodic for the random system. This can be checked using known techniques,
see [1, 2, 17] among many others for more details.
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We conclude this section with an annealed vector-valued almost sure invariance principle.
First recall the definition.

Definition 3.19. For λ ∈ (0, 1
2
], and Σ2 a (possibly degenerate) symmetric semi-positive-

definite d × d matrix, we say that an Rd-valued process (Xn)n satisfies an almost sure in-
variance principle (ASIP) with error exponent λ and limiting covariance Σ2 if there exist, on
another probability space, two processes (Yn)n and (Zn)n such that :

(1) the processes (Xn)n and (Yn)n have the same distribution;
(2) the random variables Zn are independent and distributed as N (0,Σ2);

(3) almost surely,
∣

∣

∑n−1
k=0 Yk −

∑n−1
k=0 Zk

∣

∣ = o(nλ).

The ASIP has a lot of consequences, such as a functional central limit theorem, a law of
the iterated logarithm, etc ... See Melbourne and Nicol [58] and references therein for more
details.
Let ϕ : X → Rd be a bounded vector-valued observable such that each component ϕj : X →
R, j = 1, . . . , d, belongs to B0, with

∫

X
ϕj dµ = 0. Define as before Xk(ω, x) = ϕ(T k

ωx).

Theorem 3.20. The covariance matrix 1
n
cov

(
∑n−1

k=0Xk

)

converges to a matrix Σ2 and the

process (Xn)n, defined on the probability space (Ω̃×X, P̃⊗µ), satisfies an ASIP with limiting
covariance Σ2, for any error exponent λ > 1

4
.

Proof. We will apply results from Gouëzel [32]. Namely, we construct a family of operators
(Lt)t∈Rd acting on B which codes the characteristic function of the process (Xn)n and we check
assumptions (I1) and (I2) from [32]. For k ≥ 0 and j1, . . . , jk ∈ {1, . . . , d}, define Cj1,...,jk

by Cj1,...,jk(f) = P (ϕj1 . . . ϕjkf). The assumptions on B0 and B show that Cj1,...,jk acts
continuously on B, with a norm bounded by Ck‖ϕj1‖0 . . . ‖ϕjk‖0. Now, for t = (t1, . . . , td) ∈
Rd, define

Lt =

∞
∑

k=0

ik

k!

d
∑

j1,...,jk=1

tj1 . . . tjkCj1,...,jk .

This defines on Rd a real-analytic family of bounded operators on B, since
∞
∑

k=0

‖ i
k

k!

d
∑

j1,...,jk=1

tj1 . . . tjkCj1,...,jk‖ ≤
∞
∑

k=0

1

k!

d
∑

j1,...,jk=1

|tj1| . . . |tjk |‖Cj1,...,jk‖ ≤ eC
∑d

j=0 |tj |‖ϕj‖0 <∞.

For t ∈ Rd and f ∈ B, we have Lt(f) = P (ei〈t,ϕ〉f), and so the family {Lt}t∈Rd codes the
characteristic function of the process (Xn)n in the sense of [32], as easily seen using lemma
3.7. Since L0 = P has a spectral gap on B, this implies (I1). To check (I2), we only need,
by proposition 2.3 in [32], the continuity of the map t 7→ Lt at t = 0, but this follows
immediately from the real-analyticity of this map. �

�

4. Annealed central limit theorem via a martingale approximation

The main goal of this section is to show that the classical martingale approach to the CLT,
see Gordin [31] and Liverani [53], can be easily adapted to the random setting, leading to a
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new proof of Theorem 3.5 for the stationary measure µ, together with a generalization, in
the next section, where a sequence of observables is considered, rather than a single one.
In this section, the annealed transfer operator P and Koopman operator U are defined by
duality with respect to the stationary measure µ, instead of the measure m. We assume
moreover that we have decay of correlations for observables in B against L1(µ), in the sense
that

∣

∣

∣

∣

∫

X

f Ung dµ−
∫

X

f dµ

∫

X

g dµ

∣

∣

∣

∣

≤ Cλn‖f‖‖g‖L1
µ

for all f ∈ B and g ∈ L1(µ). This is the case for instance if we assume that the density h
of the stationary measure is bounded away from 0 and that B is continuously embedded in
L1(m), see Proposition 3.1.
Recall that we have the Markov operator U which acts on functions defined on X by Uf(x) =
∫

Ω
f(Tωx) dP(ω). To U is associated a transition probability on X defined by U(x,A) =

U(1A)(x) = P({ω / Tωx ∈ A}). Recall also that the stationary measure µ satisfies µU = µ,
by definition. We can then define the canonical Markov chain associated to µ and U :
Let Ω⋆ = XN0 = {x = (x0, x1, x2, . . . , xn, . . .)}, endowed with the σ-algebra F generated by
cylinder sets. As X is Polish, this is also the Borel σ-algebra associated with the product
topology. The Ionescu-Tulcea’s theorem asserts there exists an unique probability measure
µc on Ω⋆ such that

∫

Ω⋆

f(x) dµc(x) =

∫

X

µ(dx0)

∫

X

U(x0, dx1) . . .

∫

X

U(xn−1, dxn)f(x0, . . . , xn)

for every n and every bounded measurable function f : Ω⋆ → R which depends only on
x0, . . . , xn. If we still denote by xn the map which associates to each x its n-th coordinate
xn, then {xn}n≥0 is a Markov chain defined on the probability space (Ω⋆,F , µc), with initial
distribution µ, and transition probability U . By stationarity of the measure µ, each xn is
distributed accordingly to µ.
We can define an unilateral shift τ on Ω⋆. By stationarity, it preserves µc. Recall also that
we have a skew-product system S on ΩN×X , defined by S(ω, x) = (σω, Tω1x), where σ is the

unilateral shift on ΩN. S preserves the probability measure P̃⊗ µ = P
⊗N ⊗ µ. This system is

related to the shift on Ω⋆ in the following way :
Define Φ : ΩN×X → Ω⋆ by Φ(ω, x) = (x, Tω1x, Tω2Tω1x, . . . , Tωn

. . . Tω1x, . . .) = {p(Sn(ω, x))}n≥0,
where p(ω, x) = x. We have the following :

Lemma 4.1. Φ is measurable, sends P̃⊗ µ on µc, and satisfies Φ ◦ S = τ ◦ Φ.

Proof. The only non-trivial thing to prove is that P̃⊗µ is sent on µc. For this, it is sufficient
to prove that
∫

X

µ(dx)

∫

ΩN

f0(x)f1(T
1
ωx) . . . fn(T n

ωx) dP̃(ω) dµ(x)

=

∫

X

µ(dx0)f0(x0)

∫

X

U(x0, dx1)f1(x1) . . .

∫

X

U(xn−1, dxn)fn(xn)
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for all n ≥ 0 and all bounded measurable functions f0, . . . , fn : X → R. We proceed by
induction on n, the case n = 0 being obvious. We have

∫

X

µ(dx0)f0(x0)

∫

X

U(x0, dx1)f1(x1) . . .

∫

X

U(xn−1, dxn)fn(xn)

∫

X

U(xn, dxn+1)fn+1(xn+1)

=

∫

X

µ(dx0)f0(x0)

∫

X

U(x0, dx1)f1(x1) . . .

∫

X

U(xn−1, dxn)fn(xn)Ufn+1(xn)

=

∫

X

µ(dx)

∫

ΩN

f0(x)f1(T
1
ωx) . . . fn(T n

ωx)Ufn+1(T
n
ωx) dP̃(ω) dµ(x)

=

∫

X

µ(dx)

∫

ΩN

f0(x)f1(T
1
ωx) . . . fn(T n

ωx)fn+1(T
n+1
ω x) dP̃(ω) dµ(x)

which concludes the proof. � �

Let πn : Ω⋆ → X be the projection operator πn(x0, . . . , xn, . . .) = xn and π = π0 We lift each
φ : X → R on Ω⋆ by φπ = φ ◦ π. We then have Eµ(φ) = Eµc

(φπ). Notice that πn = π ◦ τn
and p ◦ Sn = πn ◦ Φ.
For a fixed observable φ : X → R with zero µ-mean, define Xk = φ◦p◦Sk and Sn =

∑n−1
k=0 Xk.

We have Xk = φ ◦ πk ◦ Φ = φπ ◦ τk ◦ Φ. Hence Sn = (
∑n−1

k=0 φπ ◦ τk) ◦ Φ, and so the law of

Sn under P̃ ⊗ µ is the law of the n-th Birkhoff sum of φπ under µc. So, to prove the CLT
for Sn under the probability measure P̃⊗µ, it suffices to prove it for the Birkhoff sum of the
observable φπ for the symbolic system (Ω⋆, τ, µc).

To this end, we introduce the Koopman operator Ũ and the transfer operator P̃ associated
to (Ω⋆, τ, µc). Since this system is measure-preserving, those operators satisfy P̃ kŨkf = f
and ŨkP̃ kf = Eµc

(f |Fk) for every µc integrable f , where Fk = τ−kF = σ(xk, xk+1, . . .)
We have the following

Lemma 4.2. For every φ : X → R, we have P̃ (φπ) = (Pφ)π.

We will deduce this result from the corresponding statement for the transfer operator PS of
the skew product :

Lemma 4.3. For every φ : X → R, we have PS(φ ◦ p) = (Pφ) ◦ p.
Proof. Let ψ : ΩN × X → R be an arbitrary element of L∞(P̃ ⊗ µ). We have to show that
∫

ΩN×X
(φ ◦ p)(ψ ◦ S) d(P̃⊗ µ) =

∫

ΩN×X
((Pφ) ◦ p)ψ d(P̃⊗ µ). But

∫

ΩN×X

(φ ◦ p)(ψ ◦ S) d(P̃⊗ µ) =

∫

ΩN

∫

X

φ(x)ψ(σw, Tω1x) dµ(x)dP̃(ω)

=

∫

ΩN

∫

X

Pω1φ(x)ψ(σω, x) dµ(x)dP̃(ω)

=

∫

X

∫

ΩN

∫

Ω

Pω1φ(x)ψ((ω2, ω3, . . .), x) dP(ω1)dP̃(ω2, ω3, . . .)dµ(x)

=

∫

X

Pφ(x)

∫

ΩN

ψ(ω, x) dP̃(ω)dµ(x) =

∫

ΩN×X

((Pφ) ◦ p)ψ d(P̃⊗ µ)
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�

�

Proof of lemma 4.2. Let ψ : Ω⋆ → R be an arbitrary element of L∞(µc). We have to show
that

∫

Ω⋆ φπ(ψ ◦ τ) dµc =
∫

Ω⋆(Pφ)πψ dµc. We have
∫

Ω⋆

φπ(ψ ◦ τ) dµc =

∫

ΩN×X

(φ ◦ π ◦ Φ)(ψ ◦ τ ◦ Φ) d(P̃⊗ µ)

=

∫

ΩN×X

(φ ◦ p)(ψ ◦ Φ ◦ S) d(P̃⊗ µ) =

∫

ΩN×X

PS(φ ◦ p)(ψ ◦ Φ) d(P̃⊗ µ)

=

∫

ΩN×X

(Pφ ◦ p)(ψ ◦ Φ) d(P̃⊗ µ) =

∫

ΩN×X

(Pφ ◦ π ◦ Φ)(ψ ◦ Φ) d(P̃⊗ µ)

=

∫

Ω⋆

(Pφ)πψ dµc

�

�

This helps us to construct a martingale approximation for the Birkhoff sums of φπ. We first
remark upon the stationary case. By our assumption on decay of correlations, the series
w =

∑∞
n=1 P

nφ is convergent in L∞(µ) if φ ∈ B. We define χ = φπ + wπ − wπ ◦ τ on Ω⋆. χ

satisfies P̃χ = P̃ (φπ) + P̃ (wπ) − P̃ Ũwπ = (Pφ)π + (Pw)π − wπ = 0, since Pw = w − Pφ.
We claim that {χ ◦ τk}k≥0 is a reverse martingale difference with respect to the decreasing

filtration {Fk}k≥0. Indeed, we have Eµc
(χ ◦ τk|Fk+1) = Ũk+1P̃ k+1Ũkχ = Ũk+1P̃ χ = 0.

Uniqueness of the stationary measure also yields that the associated martingale is ergodic,
and hence satisfies a CLT (see Billingsley [13]).
Since

∑n−1
k=0 φπ ◦ τk =

∑n−1
k=0 χ ◦ τk + wπ ◦ τn − wπ, and wπ◦τn−wπ√

n
goes to zero in probability

(because it goes to 0 in the L1 norm), it follows that 1√
n
Sn converges to the gaussian law

N (0, σ2) in distribution , where σ2 = Eµc
(χ2), since

∑n−1
j=0

1√
n
χ ◦ τ j converges to N (0, σ2) in

distribution.

5. Dynamical Borel-Cantelli lemmas

In this section, we make the same assumptions as in the previous one. Recall the following
result from [65] :

Theorem 5.1. Let fk be a sequence of non-negative measurable functions on a measure space
(Y, ν), and let f̄k, ϕk be sequences of real numbers such that 0 ≤ f̄k ≤ ϕk ≤ M for all k ≥ 1
and some M > 0. Suppose that

∫

Y

(

∑

m<k≤n

(

fk(y) − f̄k
)

)2

dν(y) ≤ C
∑

m<k≤n

ϕk
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for arbitrary integers m < n and some C > 0. Then
∑

1≤k≤n

fk(y) =
∑

1≤k≤n

f̄k +O(Φ1/2(n) log3/2+ǫ Φ(n))

for ν-a.e. y ∈ Y , for all ǫ > 0 and Φ(n) =
∑

1≤k≤n ϕk.

Applying this result to the probability space (Ω̃×X, P̃⊗µ), and using decay of correlations,
we get :

Proposition 5.2. If φn is a sequence of non-negative functions in B, with supn ‖φn‖ < ∞
and En → ∞, where En =

∑n−1
j=0

∫

φn dµ, then

lim
n→∞

1

En

n−1
∑

j=0

φj(S
j(x, ω)) → 1

for P̃⊗ µ a.e. (ω, x) ∈ Ω̃ ×X.

See theorem 2.1 in Kim [49] for a completely analogue proof in a deterministic setting. The
annealed version of the Strong Borel-Cantelli property clearly implies a quenched version,
namely for P̃-a.e. ω for µ-a.e. x ∈ X ,

lim
n→∞

1

En

n−1
∑

j=0

φj(S
j(x, ω)) → 1

We now show how to prove a CLT, following our martingale approach described in the
previous section.

CLT for Borel-Cantelli sequences. Let p ∈ X and let Bn(p) be a sequence of nested balls
about p such that for 0 ≤ γ2 ≤ γ1 ≤ 1 and constants C1,C2 > 0 we have C1

nγ1
≤ µ(Bn(p)) ≤

C2

nγ2
.

Let φn = 1Bn(p) be the characteristic function of Bn(p). We assume that φn is a bounded
sequences in B, which is clearly the case when B is BV or Quasi-Hölder. We will sometimes
write E[φ] or

∫

φ for the integral
∫

φ dµ when the context is understood.

First we lift φi to Ω∗ and define (φi)π = φi ◦ π and then we normalize and write φ̃j =
(φj)π −

∫

(φj)πdµc.
We are almost in the setting of [35, Proposition 5.1] which states,

Proposition 5.3. Suppose (T,X, µ) is an ergodic transformation whose transfer operator P
satisfies, for some constants C > 0, 0 < θ < 1,

‖P nφ‖B ≤ Cθn‖φ‖B
for all φ such that φ dµ = 0. Let Bi := Bi(p) be nested balls about a point p such that for
constants 0 ≤ γ2 ≤ γ1 ≤ 1,C1 > 0,C2 > 0 we have C1

nγ1
≤ µ(Bn(p)) ≤ C2

nγ2
. Let

a2n := E(
n
∑

j=1

(1Bi
◦ T i − µ(Bi))

2
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Then

lim inf
a2n
En

≥ 1

and
1

an

n
∑

j=1

(φj −
∫

φj dµ) ◦ T j → N (0, 1)

As a fairly direct corollary we may show in our setting:

Corollary 5.4.

1

an

n
∑

j=1

φ̃j ◦ τ j → N (0, 1)

and hence
1

an

n
∑

j=1

(φj −
∫

φj dµ) ◦ Sj → N (0, 1)

Proof. Define φ0 = 1 and for n ≥ 1

wn = Pφn−1 + P 2φn−2 + . . . P nφ0

so that w1 = Pφ0, w2 = Pφ1 + P 2φ0, w3 = Pφ2 + P 2φ1 + P 3φ0 etc... For n ≥ 1 define

ψn = (φn)π − (wn+1)π ◦ τ + (wn)π

An easy calculation shows that P̃ψn = 0 and hence Xni := ψi ◦τ i/(an) is a reverse martingale
difference array with respect to the filtration Fi.
We have exponential decay of correlations in the sense that if j > i then

∣

∣

∣

∣

∫

φ̃i ◦ τ iφ̃j ◦ τjdµc

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

φ̃iφ̃j ◦ τ j−idµc

∣

∣

∣

∣

≤ Cθj−i

∥

∥

∥

∥

φj −
∫

φj dµ

∥

∥

∥

∥

B
‖φ̃j‖1

where ‖φj −
∫

φj dµ‖B is bounded uniformly over j.
The proof of [35, Proposition 5.1] may now be followed exactly to establish conditions (a),
(b), (c) and (d) of Theorem 3.2 from Hall and Heyde [34] as well as show that the variance
an is unbounded. � �

6. Erdös-Rényi laws

Erdös-Rényi limit laws give information on the maximal average gain precisely in the case
where the length of the time window ensures there is a non-degenerate limit. Recall the
following proposition from [27] :

Proposition 6.1. Let (X, T, µ) be a probability preserving transformation, and ϕ : X → R

be a mean-zero µ-integrable function. Let Sn(ϕ) = ϕ+ . . .+ ϕ ◦ T n−1.
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(1) Suppose that ϕ satisfies a large deviation principle with rate function I defined on the
open set U . Let α > 0 and set

ln = ln(α) =

[

logn

I(α)

]

n ∈ N.

Then the upper Erdös-Rényi law holds, that is, for µ a.e. x ∈ X

lim sup
n→∞

max{Sln(ϕ) ◦ T j(x)/ln : 0 ≤ j ≤ n− ln} ≤ α.

(2) Suppose that for every ǫ > 0 the series
∑

n>0 µ(Bn(ǫ)), where Bn(ǫ) = {max0≤m≤n−ln Sln◦
Tm ≤ ln(α− ǫ)} is summable.

Then the lower Erdös-Rényi law holds, that is, for µ a.e. x ∈ X

lim inf
n→∞

max{Sln(ϕ) ◦ T j(x)/ln : 0 ≤ j ≤ n− ln} ≥ α.

Remark 6.2. Assumptions (a) and (b) of Proposition 6.1 together imply that

lim
n→∞

max
0≤m≤n−ln

Sln ◦ Tm

ln
= α.

In this section, we will suppose that X = [0, 1], and that the Banach space B is BV, the space
of functions of bounded variation on [0, 1]. All maps Tω are piecewise C2, and we assume an
uniform upper bound L > 0 for their derivatives. We will apply the previous proposition to
the symbolic system (Ω⋆, τ, µc) introduced before.

Theorem 6.3. Suppose φ : X → R is of bounded variation with
∫

X
φ dµ = 0 and define

Sn =
∑n−1

j=0 φπ ◦ τ j. Let α > 0 and set

ln = ln(α) =

[

log n

I(α)

]

n ∈ N

where I(.) is the rate function associated to φ, which exists by Theorem 3.6. Then

lim
n→∞

max
0≤m≤n−ln

Sln ◦ Tm

ln
= α.

Proof. Since φ satisfies an annealed LDP, which can be immediately lifted to a LDP for φπ,
we need only prove (2). As in the section on the logistic map in [27] we use a blocking
argument to establish (2).

For all s > 0, define As
n = {Sln ≤ ln(α − s)}. We fix ǫ > 0, and consider Aǫ

n and A
ǫ/2
n . Let

0 < η < 1. We define ϕǫ to be a Lipschitz function with Lipschitz norm at most L(1+η)ln

satisfying 1Aǫ
n
≤ ϕǫ ≤ 1 and µ(Aǫ

n) <
∫

X
ϕǫ dµ < µ(A

ǫ/2
n ), in the same way as in the proof of

Theorem 3.1 in [27].

Define Cm(ǫ) = {Sln ◦τm ≤ ln(α−ǫ)} and Bn(ǫ) =
⋂n−ln

m=0 Cm(ǫ). We use a blocking argument
to take advantage of decay of correlations and intercalate by blocks of length (logn)κ, κ > 1.
We define

E0
n(ǫ) :=

[(n−(logn)κ)/(log n)κ)]
⋂

m=0

Cm[(logn)κ](ǫ)
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and in general for 0 ≤ j < [ n
(logn)κ

]

Ej
n(ǫ) :=

[(n−(j+1)(logn)κ)/(log n)κ)]
⋂

m=0

Cm[(logn)κ](ǫ).

Note that µ(Bn(ǫ)) ≤ µ(E0
n(ǫ)). For each j, let ψj = 1Ej

n(ǫ)
denote the characteristic function

of Ej
n(ǫ).

By decay of correlations we have

µ(E0
n(ǫ)) ≤

∫

ϕǫ · ψ1 ◦ τ [(log n)
κ]dµc

≤ Cθ(log n)
κ‖ϕǫ‖BV ‖ψ1‖1 +

∫

ϕǫ dµc

∫

ψ1 dµc

≤
∫

ϕǫ dµc

∫

ψ1 dµc + Cθ(log n)
κ

(L(1+η)ln).

Applying decay of correlations again to
∫

ψ1 dµc we iterate and conclude

µ(E0
n(ǫ)) ≤ nCθ(logn)

κ

L(1+η)ln + µ(Aǫ/2
n )n/(logn)

κ

.

The term nCθ(log n)
κ

L(1+η)ln is clearly summable since κ > 1. �

�

Remark 6.4. We would obtain a quenched Erdös-Rényi law as well, if we could establish
exponential decay of correlations for P̃ almost every ω, together with a quenched LDP for
functions of bounded variation.

7. Quenched CLT for random one dimensional systems

In this section, we consider the quenched CLT, that is a CLT holding for almost every fixed
sequence ω. We first state a general result, which is basically a consequence of [7]. Let
{Tω}ω∈Ω be a iid random dynamical system acting on X , with a stationary measure µ. Let
ϕ : X → R be an observable with

∫

X
ϕdµ = 0, and define as before Xk(ω, x) = ϕ(T k

ωx) and

Sn =
∑n−1

k=0Xk. We will need to introduce a auxiliary random system defined as follows :
the underlying probability space is still (Ω,P), while the auxiliary system acts on X2, with

associated maps T̂ω given by T̂ω(x, y) = (Tωx, Tωy). Define then a new observable ϕ̂ : X2 → R

by ϕ̂(x, y) = ϕ(x) − ϕ(y), and denote its associated Birkhoff sums by Ŝn.

Theorem 7.1. Assume there exists σ2 > 0 and a constant C > 0 such that for all t ∈ R and
n ≥ 1 with t√

n
small enough :

(1)
∣

∣

∣
E
P̃⊗µ(e

i t√
n
Sn) − e−

t2σ2

2

∣

∣

∣
≤ C 1+|t|3√

n
,

(2)
∣

∣

∣
E
P̃⊗(µ⊗µ)(e

i t√
n
Ŝn) − e−t2σ2

∣

∣

∣
≤ C 1+|t|3√

n
.

Suppose also that for n ≥ 1 and ǫ > 0 :

(3) P̃⊗ µ
(∣

∣

Sn

n

∣

∣ ≥ ǫ
)

≤ Ce−Cǫ2n.
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Then, the quenched CLT holds : for P̃-a.e. sequence ω ∈ ΩN one has
∑n−1

k=0 ϕ ◦ T k
ω√

n
=⇒µ N (0, σ2).

The first and third assumptions can be proved using the spectral approach described in this
paper. Indeed the first one corresponds to lemma 3.10, while the third follows from the LDP.
To prove the second assumption, one must employ again the spectral technique, but with the
auxiliary system introduced above and the observable ϕ̂. There are mainly two difficulties
: the obvious one is that the auxiliary system acts on a space whose dimension is twice
the dimension of X , so that we have to use more complicated functional spaces. The other
difficulty, less apparent, is that the asymptotic variance of ϕ̂ has to be twice the asymptotic
variance of ϕ. We do not see any reason for this to be true in full generality. In the particular
case where all maps Tω preserve the measure µ, this can be proved using Green-Kubo formula
from Proposition 3.2 : assuming that the auxiliary system is mixing and has a spectral gap
on an appropriated Banach space, the stationary measure is then given by µ⊗ µ (since it is

preserved by all maps T̂ω), and an algebraic manipulation using Proposition 3.2 shows that
the asymptotic variance of ϕ̂ is given by 2σ2. See [7] for a similar computation.
In the general situation, the stationary measure of the auxiliary measure can be different
from µ ⊗ µ, and it seems hard to compute the asymptotic variance of ϕ̂ from Green-Kubo
formula. Even though this condition can seem unnatural, it is also necessary in order for the
quenched central limit theorem to be true in the form we have stated it, as can be seen from
the proof of [7]. We state this as a lemma :

Lemma 7.2. Using the same notations introduced above, assume that there exists σ2 > 0
and σ̂2 > 0 such that

(1) Sn√
n
converges in law to N (0, σ2) under the probability P̃⊗ µ,

(2) Ŝn√
n
converges in law to N (0, σ̂2) under the probability P̃⊗ (µ⊗ µ),

(3) for a.e. ω, 1√
n

∑n−1
k=0 ϕ ◦ T k

ω converges in law to N (0, σ2) under the probability µ.

Then σ̂2 = 2σ2.

Proof. Define Sn,ω = Sn(ω, .) =
∑n−1

k=0 ϕ◦T k
ω . Following [7], we write for any t ∈ R and n ≥ 1

:

E
P̃

(

∣

∣

∣
µ(e

i t√
n
Sn,ω) − e−

σ2t2

2

∣

∣

∣

2
)

= E
P̃

(

∣

∣

∣
µ(e

i t√
n
Sn)
∣

∣

∣

2
)

− e−t2σ2

+ 2e−
σ2t2

2 ℜ
(

e−
σ2t2

2 − E
P̃⊗µ(e

i t√
n
Sn)
)

= E
P̃

(

µ⊗ µ(e
i t√

n
Ŝn)
)

− e−
t2σ̂2

2 +
(

e−
t2σ̂2

2 − e−t2σ2
)

+ 2e−
σ2t2

2 ℜ
(

e−
σ2t2

2 − E
P̃⊗µ(e

i t√
n
Sn)
)

.

By the two first assumptions, this term goes to e−
t2σ̂2

2 − e−t2σ2
as n goes to infinity. But

E
P̃

(

∣

∣

∣
µ(e

i t√
n
Sn,ω) − e−

σ2t2

2

∣

∣

∣

2
)

goes to 0 thanks to the third assumption and the dominated

convergence theorem. This shows that e−
t2σ̂2

2 = e−t2σ2
. � �
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In the following, we will consider the situation where X = [0, 1] and all maps preserve the
Lebesgue measure m. For technical convenience, we will also assume that Ω is a finite set.

Example 7.3. Suppose that all maps Tω are given by Tωx = βωx mod 1, where βω > 1
is an integer. The transfer operator of this system clearly satisfies a Lasota-Yorke on the
space BV, and is random-covering, so that assumption (1) and (3) follows automatically for
any ϕ ∈ BV. On the other hand, the auxiliary two-dimensional system has a spectral gap
on the quasi-Hölder space V1(X

2) and is also random covering. Since ϕ̂ belongs to V1(X
2),

assumption (2) follows by the above discussion and the quenched CLT holds.

Example 7.4. There exist piecewise non-linear expanding maps which preserves Lebesgue.
Such a class of examples is provided by the Lorenz-like maps considered in the paper [25] :
these maps have both a neutral parabolic fixed point and a point where the derivative goes to
infinity. The coexistence of these two behaviors allows the possibility for the map to preserve
Lebesgue measure while being non-linear. Suppose that Ω = {0, 1}, T0 is the doubling map
T0x = 2x mod 1, and that T1 is one of the maps considered in [25]. We will prove that there
exists 0 ≤ p⋆ < 1 such that if T0 is iterated with probability p with p > p⋆, then the quenched
CLT holds for any observable ϕ Lipschitz.
Since the annealed transfer operator P can be written as pP0 +(1−p)P1, where P0, resp. P1,

is the transfer operator of T0, resp. T1 (and similarly P̂ = pP̂0 + (1 − p)P̂1 for the auxiliary

system), it is sufficient to prove that P0 and P̂0 have a spectral gap on Banach spaces B and

B̂, while P1 and P̂1 act continuously on these spaces, and that ϕ ∈ B and ϕ̂ ∈ B̂. We will use
quasi-Hölder spaces and will take B = Vα(X) and B̂ = Vα(X2) for a convenient choice of α.

Clearly, the transfer operator of T0 and T̂0 have a spectral gap on these spaces, and ϕ (resp.

ϕ̂) belongs to B (resp. B̂) whenever ϕ is Lipschitz. To prove the continuity of P1 and P̂1, we
will use the following general result.

Proposition 7.5. Let M be a compact subset of Rd with md(M) = 1, where md denotes the
Lebesgue measure on Rd, and T : M → M be a non-singular map. Define g(x) = 1

|detDT (x)| ,

and assume there exist a finite family of disjoint open set {Ui}i included in M , a constant
C > 0 and 0 < α ≤ 1 with

(1) md(∪iUi) = 1,
(2) T : Ui → TUi is a C

1-diffeomorphism,
(3) d(Tx, Ty) ≥ d(x, y) for all i and all x, y ∈ Ui,
(4) |g(x) − g(y)| ≤ Cd(x, y)α, for all i and all x, y ∈ Ui,
(5) md(Bǫ(∂TUi)) ≤ Cǫα for all i and all ǫ > 0.

Then the transfer operator of T acts continuously on Vα(M).

The map with parameter γ > 1 considered in [25] satisfies these assumptions for α =
min{1, γ − 1}, so that the quenched CLT holds when p⋆ is close enough to 1.

Proof of Proposition 7.5. We denote by T−1
i : TUi → Ui the inverse branch of T restricted

to Ui.
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The transfer operator P of T reads as

Pf(x) =
∑

i

(gf) ◦ T−1
i 1TUi

(x).

Following Saussol [64], we have for all ǫ > 0 and x ∈ R
d :

osc(Pf,Bǫ(x)) ≤
∑

i

R
(1)
i (x)1TUi

(x) + 2
∑

i

R
(2)
i (x),

where R
(1)
i (x) = osc(gf, T−1Bǫ(x) ∩ Ui) and R

(2)
i (x) =

(

ess sup
T−1Bǫ(x)∩Ui

|gf |
)

1Bǫ(∂TUi)(x).

Using Proposition 3.2 (iii) in [64], we get

R
(1)
i (x) ≤ osc(f, T−1Bǫ(x) ∩ Ui) ess sup

T−1Bǫ(x)∩Ui

g + osc(g, T−1Bǫ(x) ∩ Ui) ess inf
T−1Bǫ(x)∩Ui

|f |.

By assumption (3), we have T−1Bǫ(x)∩Ui ⊂ Bǫ(T
−1
i x), while by assumption (4), osc(g, T−1Bǫ(x)∩

Ui) ≤ Cǫα and ess sup
T−1Bǫ(x)∩Ui

g ≤ g(T−1
i x) + Cǫα.

This shows R
(1)
i (x) ≤ g(T−1

i x)osc(f, Bǫ(T
−1
i x) + Cǫα‖f‖sup, whence

∫

∑

i

R
(1)
i (x)1TUi

(x)dx ≤
∫

P (osc(f, Bǫ(.))(x)dx + C‖f‖∞ǫα
∑

i

md(TUi).

Since the sum is finite, this gives
∫
∑

iR
(1)
i (x)1TUi

(x)dx ≤ ǫα (|f |α + C‖f‖sup) ≤ Cǫα‖f‖α.

We turn now to the estimate of R
(2)
i : one has R

(2)
i (x) ≤ ‖g‖sup‖f‖sup1Bǫ(∂TUi)(x), so that

using assumption (4),
∫
∑

iR
(2)
i dx ≤ C‖f‖sup

∑

imd(Bǫ(∂TUi)) ≤ Cǫα‖f‖sup. This shows
that |Pf |α ≤ C‖f‖α and concludes the proof. �

�

8. Concentration inequalities

A function K : Xn → R, where (X, d) is a metric space, is separately Lipschitz if, for all i,
there exists a constant Lipi(K) with

|K(x0, . . . , xi−1, xi, xi+1, . . . , xn−1) −K(x0, . . . , xi−1, x
′
i, xi+1, . . . , xn−1)| ≤ Lipi(K)d(xi, x

′
i)

for all points x0, . . . , xn−1, x
′
i in X .

Let (Ω,P, T ) be a finite random Lasota-Yorke system on the unit interval X = [0, 1], such that
λ(Tω) > 1 for all ω ∈ Ω. We assume that (Ω,P, T ) satisfies the random covering property, and
we denote by µ its unique absolutely continuous stationary measure. Its density h belongs
to BV , and is uniformly bounded away from 0.

Theorem 8.1. There exists a constant C ≥ 0, depending only on (Ω,P, T ), such that for
any n ≥ 1 and any separately Lipschitz function K : Xn → R, one has

Eµ⊗P̃

(

eK(x,T 1
ωx,...,T

n−1
ω x)−E

µ⊗P̃(K(x,T 1
ωx,...,T

n−1
ω x))

)

≤ eC
∑n−1

i=0 Lip2i (K)
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This leads to a large deviation estimate, namely that for all t > 0, one has

µ⊗ P̃
(

{(x, ω) /K(x, T 1
ωx, . . . , T

n−1
ω x) −m > t}

)

≤ e
− t2

4C
∑n−1

i=0
Lip2

i
(K) ,

where m = Eµ⊗P̃

(

K(x, T 1
ωx, . . . , T

n−1
ω x)

)

.
For the proof, we will use McDiarmid’s bounded differences method [56, 57], as in [21] and
[23], conveniently adapted to the random context.
We will denote by P the annealed transfer operator with respect to the Lebesgue measure
m, and by L the annealed tranfer operator with respect to the stationary measure µ. Recall

that L acts on functions in L1(µ) by L(f) = P (fh)
h

, whence

Lf(x) =
∑

ω∈Ω
pω
∑

Tωy=x

h(y)f(y)

h(x)|T ′
ω(y)| .

Since h belongs to BV , together with 1
h
, L acts on BV and has a spectral gap.

Recall the construction of the symbolic system (XN,F , σ, µc) and of the decreasing filtration
{Fp}p≥0 of σ-algebras. We extend K as a function on XN, depending only on the n first
coordinates. One has obviously Eµc

(K) = Eµ⊗P̃

(

K(x, T 1
ωx, . . . , T

n−1
ω x)

)

and

Eµ⊗P̃

(

eK(x,T 1
ωx,...,T

n−1
ω x)−E

µ⊗P̃(K(x,T 1
ωx,...,T

n−1
ω x))

)

= Eµc
(eK−Eµc(K)),

since Φ : X × Ω̃ → XN is a factor map. We define Kp = Eµc
(K|Fp), and Dp = Kp −Kp+1.

One has the following :

Lemma 8.2. The dynamical system (XN,F , σ, µc) is exact.

Proof. This follows from exactness of the skew-product system (X× Ω̃, S, µ⊗ P̃), see theorem

5.1 in [59], and the fact that Φ : X × Ω̃ → XN is a factor map. See also theorem 4.1 in
[60]. � �

This implies that F∞ :=
⋂

p≥0Fp =
⋂

p≥0 σ
−pF is µc-trivial, from which we deduce, by

Doob’s convergence theorem, that Kp goes to Eµc
(K) µc-as when p goes to infinity, whence

K − Eµc
(K) =

∑

p≥0Dp.

From Azuma-Hoeffding’s inequality (see lemma 4.1 in [56] and its proof for the bound of the
exponential moment), we deduce that there exists some C ≥ 0 such that for all P ≥ 0,

Eµc
(e

∑P
p=0 Dp) ≤ eC

∑P
p=0 sup |Dp|2.

It remains to bound Dp :

Proposition 8.3. There exists ρ < 1 and C ≥ 0, depending only on (Ω,P, T ), such that for
all p, one has

|Dp| ≤ C

p
∑

j=0

ρp−jLipi(K).
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This proposition, together with the Cauchy-Schwarz inequality, implies immediately the de-
sired concentration inequality, in the same manner as in [21]. The following lemma leads
immediately to the result, using the Lipschitz condition on K :

Lemma 8.4. There exists ρ < 1 and C ≥ 0, depending only on (Ω,P, T ), such that for all p
and xp, ... , one has

∣

∣

∣

∣

Kp(xp, . . .) −
∫

Ω̃

∫

X

K(y, T 1
ωy, . . . , T

p−1
ω y, xp, . . .)dµ(y)dP̃(ω)

∣

∣

∣

∣

≤ C

p−1
∑

j=0

Lipj(K)ρp−j.

The rest of this section is devoted to the proof of this lemma. For a sequence ω ∈ Ω̃, we

denote g
(p)
ω (y) = h(y)

h(T p
ωy)

1
|(T p

ω)′(y)| . We have

Kp(xp, . . .) =
∑

ω∈Ωp

ppω
∑

T p
ωy=x

g(p)ω (y)K(y, T 1
ωy, . . . , T

p−1
ω y, xp . . .).

We fix a x⋆ ∈ X , and we decompose Kp as

Kp(xp, . . .) = K(x⋆, . . . , x⋆, xp, . . .) +

p−1
∑

i=0

∑

ω∈Ωp

ppω
∑

T p
ωy=x

g(p)ω (y)Hi(y, . . . , T
i
ωy),

where Hi(y0, . . . , yi) = K(y0, . . . , yi, x⋆, . . . , x⋆, xp, . . .) −K(y0, . . . , yi−1, x⋆, . . . , x⋆, xp, . . .).

A simple computation then shows that Kp(xp, . . .) = K(x⋆, . . . , x⋆, xp, . . .)+
∑p−1

i=0 L
p−ifi(xp),

with

fi(y) =
∑

ω∈Ωi

piω
∑

T i
ωz=y

g(i)ω (z)Hi(z, . . . , T
i
ωz).

From the spectral gap of L, we deduce that there exists C ≥ 0 and ρ < 1 depending only
on the system, such that ‖Lp−ifi −

∫

X
fidµ‖BV ≤ Cρp−i‖fi‖BV. On one hand, since the BV-

norm dominates the supremum norm, one has
∣

∣Lp−ifi(xp) −
∫

X
fidµ

∣

∣ ≤ Cρp−i‖fi‖BV. On the

other hand, one has easily
∫

X
fidµ =

∫

Ω̃

∫

X
Hi(y, . . . , T

i
ωy)dµ(y)dP̃(ω), from which it follows,

summing all the relations, that
∣

∣

∣

∣

Kp(xp, . . .) −
∫

Ω̃

∫

X

K(y, T 1
ωy, . . . , T

n−1
ω y, xp, . . .)dµ(y)dP̃(ω)

∣

∣

∣

∣

≤ C

p−1
∑

i=0

ρp−i‖fi‖BV.

It remains to estimate ‖fi‖BV ≤ ‖fi‖sup + Var(fi). For this, we’ll need a technical lemma.
For ω ∈ Ω, we denote by Aω the partition of monotonicity of Tω, and for ω ∈ ΩN, we define

An−1
ω =

∨n−1
k=0

(

T k
ω

)−1 (Aωk+1

)

, which is the partition of monotonicity of T n
ω .

If T is a Lasota-Yorke map of the interval, with partition of monotonicity A, we define its
distorsion Dist(T ) as the least constant C such that |T ′(x) − T ′(y)| ≤ C|T ′(x)||Tx− Ty| for
all x, y ∈ I and I ∈ A.

Lemma 8.5. There exists λ > 1 and C ≥ 0 so that, for all ω ∈ ΩN and n ≥ 0 :

(1) λ(T n
ω ) ≥ λn,
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(2) Dist(T n
ω ) ≤ C,

(3)
∑

ω∈Ωn pnω
∑

I∈An−1
ω

supI
1

|(Tn
ω )′| ≤ C,

(4)
∑

ω∈Ωn pnω
∑

I∈An−1
ω

VarI

(

1
|(Tn

ω )′|

)

≤ C.

Proof. (1) is obvious, since Ω is a finite set.
(2) This is a classical computation. It follows from (1) and the chain rule.
(3) This an easy adaptation of lemma II.4 in [23]. For any ω ∈ Ωn, and I ∈ An−1

ω , there

exists a least integer p = pω,I such that T p
ω(I) ∩ ∂Aωp+1 6= ∅. We denote by An−1,p

ω

the set of all I ∈ An−1
ω for which we have p = pω,I. We define ∂ = ∪ω∈Ω∂Aω. Fix

I ∈ An−1,p
ω . There exists a ∈ ∂I such that b = T p

ωa ∈ ∂. From (2), we deduce the
existence of a constant C, depending only on the system, such that, for any x ∈ I,

|(T n
ω )′(x)| ≥ C|(T n

ω )′(a)| = C|(Tωn
◦ . . . ◦ Tωp+1)

′(b)||(T p
ω)′(a)| ≥ Cλn−p|(T p

ω)′(a)|.

One has then supI
1

|(Tn
ω )′| ≤ C−1λ−(n−p) 1

|(T p
ω)′(a)| . Since a pre-image by T p

ω of an element

b ∈ ∂ can only belong to at most two different I ∈ An−1
ω , it follows

∑

ω∈Ωn

pnω
∑

I∈An−1
ω

sup
I

1

|(T n
ω )′| ≤ 2C−1

n−1
∑

p=0

λ−(n−p)
∑

b∈∂

∑

ω∈Ωn

pnω
∑

T p
ωa=b

1

|(T p
ω)′(a)|

= 2C−1

n−1
∑

p=0

λ−(n−p)
∑

b∈∂
P p

1(b).

This quantity is bounded, since P is power bounded, and ∂ is a finite set.
(4) It follows from the three previous points, and the definition of the total variation.

� �

Since Li
1 = 1, one has ‖fi‖sup ≤ ‖Hi‖sup ≤ Lipi(K). The crucial point lies in the estimate

of the variation of fi. We first note that

Var(fi) ≤ Var(
1

h
)‖hfi‖sup + ‖1

h
‖supVar(hfi).

Since ‖hfi‖sup ≤ Lipi(K)‖P ih‖sup ≤ CLipi(K), one has just to estimate Var(hfi).
For ω ∈ Ωi and I ∈ Ai−1

ω , we denote by Si,I,ω the inverse branch of T i
ω restricted to I. We

define also Hi,ω(z) = Hi(z, . . . , T
i
ωz).

Then, we can write

hfi =
∑

ω∈Ωi

piω
∑

I∈Ai−1
ω

(

hHi,ω

|(T i
ω)′|

)

◦ Si,I,ω 1T i
ω(I)

.
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It follows that

Var(hfi) ≤
∑

ω∈Ωi

piω





∑

I∈Ai−1
ω

VarI

(

hHi,ω

|(T i
ω)′|

)

+ 2
∑

a∈∂Ai−1
ω

|h(a)||Hi,ω(a)|
|(T i

ω)′(a)|





≤
∑

ω∈Ωi

piω (Iω,i + IIω,i + IIIω,i + IVω,i) ,

where

Iω,i =
∑

I∈Ai−1
ω

VarI(h) sup
I

1

|(T i
ω)′| sup

I
|Hi,ω|,

IIω,i =
∑

I∈Ai−1
ω

sup
I
hVarI

(

1

|(T i
ω)′|

)

sup
I

|Hi,ω|,

IIIω,i =
∑

I∈Ai−1
ω

sup
I
h sup

I

1

|(T i
ω)′| VarI(Hi,ω),

IVω,i = 2
∑

a∈∂Ai−1
ω

|h(a)||Hi,ω(a)|
|(T i

ω)′(a)| .

Using the Lipschitz condition for K, one gets Iω,i ≤ CLipi(K)
∑

I∈Ai−1
ω

supI
1

|(T i
ω)

′| , which

gives, by lemma 8.5,
∑

ω∈Ωi piω Iω,i ≤ CLipi(K). The same argument applies to prove that
∑

ω∈Ωi piω IIω,i ≤ CLipi(K).
We turn now to the estimate of IIIω,i. Let y0 < . . . < yl be a sequence of points of I. In order

to estimate
∑l−1

j=0 |Hi,ω(yj+1)−Hi,ω(yj)|, we split Hi,ω into two terms in an obvious way, and
we deal with the first one, the second being completely similar. We have

l−1
∑

j=0

i
∑

k=0

|K(yj+1, . . . , T
k
ωyj−1, T

k+1
ω yj, . . . , T

i
ωyj, . . .) −K(yj+1, . . . , T

k−1
ω yj+1, T

k
ωyj, . . . , T

i
ωyj, . . .)|

≤
l−1
∑

j=0

i
∑

k=0

Lipk(K)
∣

∣T k
ωyj+1 − T k

ωyj
∣

∣ =

i
∑

k=0

Lipk(K)m(T k
ω (I)).

Since I ∈ Ai−1
ω , T k

ω (I) is included in an interval of monotonicity of Tωi
◦ . . .◦Tωk+1

, and hence

its length is less than
(

λ(Tωi
◦ . . . ◦ Tωk+1

)
)−1 ≤ λ−(i−k). Therefore, one has VarI(Hi,ω) ≤

∑i
k=0 λ

−(i−k)Lipk(K). An application of lemma 8.5 shows that
∑

ω∈Ωi piω IIIω,i ≤ C
∑i

k=0 λ
−(i−k)Lipk(K).

Using again lemma 8.5 and Lipschitz condition on K, we can bound the last term by
∑

ω∈Ωi piω IVω,i ≤ CLipi(K).

Finally, putting together all the estimates, we find that Var(hfi) ≤ C
∑i

k=0 λ
−(i−k)Lipk(K),

which gives Var(fi) ≤ C
∑i

k=0 λ
−(i−k)Lipk(K), and the same estimate for ‖fi‖BV.
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We then have
∣

∣

∣

∣

Kp(xp, . . .) −
∫

Ω̃

∫

X

K(y, T 1
ωy, . . . , T

p−1
ω y, xp, . . .)dµ(y)dP̃(ω)

∣

∣

∣

∣

≤ C

p−1
∑

i=0

ρp−i

i
∑

k=0

λ−(i−k)Lipk(K).

A simple calculation shows that this term is less thanC
∑p−1

k=0(ρ
′)p−kLipk(K), for max(ρ, λ−1) <

ρ′ < 1. This concludes the proof. �

Concentration inequalities have several statistical applications concerning the empirical mea-
sure, the shadowing, the integrated periodogram, the correlation dimension, the kernel den-
sity estimation, the almost-sure CLT, ... We describe here an application to the rate of
convergence of the empirical measure to the stationary measure, and refer the reader to
[19, 20, 21, 23] for others possibilities. We also mention the work of Maldonado [55], where
concentration inequalities are proved in a random context. He considers the so-called obser-
vational noise, where the randomness doesn’t affect the dynamics, but only the observations,
so the setup is somewhat different from ours, but once an annealed concentration inequality
is established, all consequences are derived in a similar way.
The empirical measure is the random measure defined by

En(x, ω) =
1

n

n−1
∑

j=0

δT j
ωx
.

Since the skew-product system (X × Ω̃, S, µ ⊗ P̃) is ergodic, it follows from Birkhoff’s the-

orem that En(x, ω) converges weakly to the stationary measure µ, for µ ⊗ P̃-ae (x, ω). For
statistical purposes, it proves useful to estimate the speed of this convergence. We introduce
the Kantorovitch distance κ on the space of probability measures on [0, 1]. For any ν1, ν2
probabilities measure on the unit interval, their Kantorovitch distance κ(ν1, ν2) is equal to

κ(ν1, ν2) =

∫ 1

0

|Fν1(t) − Fν2(t)|dt,

where Fν(t) = ν([0, t]) is the distribution function of ν. We show the following :

Proposition 8.6. The exists t0 > 0 and C > 0 such that for all t > t0 and n ≥ 1 :

µ⊗ P̃

(

{(x, ω) / κ(En(x, ω), µ) >
t√
n
}
)

≤ e−Ct2 .

Proof. We follow closely the proof of Theorem III.1 in [23]. For t ∈ [0, 1], define the function
of n variables

Kn(x0, . . . , xn−1) =

∫ 1

0

|Fn,t(x0, . . . , xn−1) − Fµ(t)|dt,

where Fn,t is given by

Fn,t(x0, . . . , xn−1) =
1

n

n−1
∑

k=0

1[0,t](xk).
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We clearly have κ(En(x, ω), µ) = Kn(x, . . . , T n−1
ω x), and Lipj(Kn) ≤ 1

n
for any 0 ≤ j ≤ n−1.

We derive immediately from the exponential concentration inequality (see the remark just
below Theorem 8.1) that

µ⊗ P̃

(

{(x, ω) / κ(En(x, ω), µ) − Eµ⊗P̃
(κ(En(.), µ)) >

t√
n
}
)

≤ e−Ct2 .

To conclude, it is then sufficient to prove that Eµ⊗P̃
(κ(En(.), µ)) is of order 1√

n
.

Using Schwartz inequality, we have

Eµ⊗P̃
(κ(En(.), µ)) =

∫ 1

0

(
∫

X×Ω̃

|Fn,t(x, . . . , T
n−1
ω x) − Fµ(t)|dµ(x)dP̃(ω)

)

dt

≤
[
∫ 1

0

(
∫

X×Ω̃

|Fn,t(x, . . . , T
n−1
ω x) − Fµ(t)|2dµ(x)dP̃(ω)

)

dt

]

1
2

.

Expanding the square and using the invariance of µ⊗ P̃ by the skew-product, we obtain
∫

X×Ω̃

|Fn,t(x, . . . , T
n−1
ω x) − Fµ(t)|2dµ(x)dP̃(ω) =

1

n

∫ 1

0

(ft − Fµ(t))2dµ

+
2

n

n−1
∑

k=1

(

1 − k

n

)
∫

X

(ft − Fµ(t))(Ukft − Fµ(t))dµ,

where ft is the characteristic function of [0, t] and Ukft(x) =
∫

Ω̃
ft(T

k
ωx)dP̃(ω) as usual.

Since Fµ(t) =
∫

X
ftdµ and ft is bounded independently of t in BV, we can use exponential

decay of annealed correlations to get
∫

X
(ft − Fµ(t))(Ukft − Fµ(t))dµ = O(λk), where λ < 1,

independently of t. This shows
∫

X×Ω̃
|Fn,t(x, . . . , T

n−1
ω x) − Fµ(t)|2dµ(x)dP̃(ω) = O(n−1) and

after integration over t, we finally get Eµ⊗P̃
(κ(En(.), µ)) = O(n− 1

2 ). � �
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