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In this paper we study a utility maximization problem with random horizon and reduce it to the analysis of a specific BSDE, which we call BSDE with singular coefficients, when the support of the default time is assumed to be bounded. We prove existence and uniqueness of the solution for the equation under interest. Our results are illustrated by numerical simulations.

Introduction

In recent years, the notion of risk in financial modeling has received a growing interest. One of the most popular direction so far is given by model uncertainty where the parameters of the stochastic processes driving the financial market are assumed to be unknown (usually referred as drift or volatility uncertainty). Another source of risk consists in an exogenous process which brings uncertainty on the market or on the economy. This kind of situation fits, for instance, in the credit risk theory. As an example, consider an investor who may not be allowed to trade on the market after the realization of some random event, at a random time τ , which is thought to be unpredictable and external to the market. In that context τ is seen as the time of a shock that affects the market or the agent. More precisely, assume that an agent initially aims at maximizing her expected utility on a given financial market during a period r0, T s, where T ą 0 is a fixed deterministic maturi ty. However, she may not have access to the market after the random time τ . In that context we think of τ as a death time, either for the agent herself, or for the market (or a specific component of it) she is currently investing in. Though very little studied in the literature, our conviction is that such an assumption can be quite relevant in practice. Indeed, for instance many life-insurance type markets consists of products with very long maturities (up to 95 years for universal life policies and to 120 years for whole life maturity). It is therefore reasonable to consider that during such a period of time an agent in age of investing money in the market will die with probability 1. Another example is given by markets whose maximal lifetime is finite and known at the beginning of the investment period, like for instance carbon emission markets in the United States.

Mathematically, while her original problem writes down as

sup πPA ErU pX π T qs, (1.1) 
with A the set of admissible strategies π for the agent with associated wealth process X π and where U is a utility function which models her preferences, due to the risk associated with the presence of τ , her optimization program actually has to be formulated as

sup πPA ErU pX π T ^τ qs, (1.2) 
which falls into the class of a priori more complicated stochastic control problems with random horizon.

The main approach to tackle (1.2) consists in rewriting it as a utility maximization problem with deterministic horizon of the form (1.1), but with an additional consumption component using the following decomposition from [START_REF] Dellacherie | Capacités et processus stochastiques[END_REF] that we recall:

sup πPA E rU pX π T ^τ qs " sup πPA E « ż T 0 U pX π u qdF u `U pX π T qp1 ´FT q ff ,
with F t :" Pp τ ď t| F t q and F :" pF t q tPr0,T s being the underlying filtration on the market. This direction was first followed in [START_REF] Karatzas | Utility maximization with discretionary stopping[END_REF] when τ is a F-stopping time, then in [START_REF] Blanchet-Scalliet | Optimal investment decisions when time-horizon is uncertain[END_REF] and in [START_REF] Bouchard | Wealth-path dependent utility maximization in incomplete markets[END_REF] if τ is a general random time. In all these papers, the convex duality theory (see e.g. [START_REF] Bismut | Contrôle des systèmes linéaires quadratiques: applications de l'intégrale stochastique[END_REF] and [START_REF] Karatzas | Martingale and duality methods for utility maximization in an incomplete market[END_REF]) is exploited to prove the existence of an optimal strategy. However, this approach does not provide a characterization of either the optimal strategy or of the value function (note that in [START_REF] Blanchet-Scalliet | Optimal investment decisions when time-horizon is uncertain[END_REF] a dynamic programming equation can be derived if one assumes that F is deterministic and U is a Constant Relative Risk Aversion (CRRA) utility function). Another route is to adapt to the random horizon setting the, by now wellknown, methodology in which one reduces the analysis of a stochastic control problem with fixed deterministic horizon to the one of a Backward Stochastic Differential Equation (BSDE) as in [START_REF] Hu | Utility maximization in incomplete markets[END_REF][START_REF] Rouge | Pricing via utility maximization and entropy[END_REF]. This program has been successfully carried out in [START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF] in which Problem (1.2) has been proved to be equivalent to solving a BSDE with random horizon of the form

Y t " 0 ´ż T ^τ t^τ Z s ¨dW s ´ż T ^τ t^τ U s dH s ´ż T ^τ t^τ
f ps, Y s , Z s , U s qds, t P r0, T s, (1.3) in the context of mean-variance hedging, with H s :" 1 τ ďs and W a standard Brownian motion. The interesting feature here lies in the fact that under some assumptions on the market, the solution triplet pY, Z, U q to the previous BSDE is completely described in terms of the one of a BSDE with deterministic finite horizon. More precisely, if we assume that F is the natural filtration of W and if τ is a random time which is not a F-stopping time, then the BSDE with deterministic horizon associated with BSDE (1.3) is of the form

Y b t " 0 ´ż T t Z b s ¨dW s ´ż T t f b ps, Y b s , Z b s qds, t P r0, T s, (1.4) 
with f b related to τ through a predictable process λ (see Section 2.2 for a precise statement on this relationship). The usual hypothesis, for instance in credit risk modeling, is to assume λ to be bounded (as in [START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF]). This assumption, which looks pretty harmless, leads in fact to several consequences both on the modeling of the problem and on the analysis required to solve Equation (1.3). Indeed, λ is bounded implies that the support1 of τ is unbounded. As a consequence, the probability of the event tτ ą T u is positive. Hence it does not take into account the situation where τ is smaller than T with probability one. Note that from the very definition of (1.2), assuming τ to have a bounded or an unbounded support leads to two different economic problems: if the support is unbounded, with positive probability the agent will be able to invest on the market up to time T , whereas if τ is known to be smaller than T with probability one, the agent knows she will not have access to the market on the whole time interval r0, T s.

The main goal of this paper is to solve (1.2) when the support of τ is assumed to be a bounded interval in r0, T s. As explained in the previous paragraph, this assumption leads to the unboundedness of λ. More precisely, it generates a singularity in Equation (1.3) (or in (1.4)) as λ is integrable on any interval r0, ts with t ă T , and is not integrable on r0, T s. This drives one to study a new class of BSDEs, named as BSDEs with singular driver according to [START_REF] Jeanblanc | A Note on BSDEs with singular drivers[END_REF], which requires a specific analysis. We stress that the study of the BSDE of interest of the form (1.4) with f b to be specified later is not contained in [START_REF] Jeanblanc | A Note on BSDEs with singular drivers[END_REF], and hence calls for new developments presented in this paper. Incidentally, we propose a unified theory which covers both cases of bounded and unbounded support for τ (see Conditions pH2q, pH2'q for a precise statement).

The rest of this paper is organized as follows. In the next section we provide some preliminaries and notations and make precise the maximization problem under interest.

Then in Section 3, we extend the results of [START_REF] Hu | Utility maximization in incomplete markets[END_REF][START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF] allowing to reduce the maximization problem with exponential utility to the study of a Brownian BSDE. The analysis of this equation is done in Section 4. To illustrate our findings, and to compare problems of the form (1.1) and (1.2), we collect in Section 5 numerical simulations together with some discussion.

Notations: Let N ˚:" Nzt0u and let R `be the set of real positive numbers. Throughout this paper, for every p-dimensional vector b with p P N ˚, we denote by b 1 , . . . , b p its coordinates and for α, β P R p we denote by α ¨β the usual inner product, with associated norm }¨}, which we simplify to | ¨| when p is equal to 1. For any pl, cq P N ˚ˆN ˚, M l,c pRq will denote the space of l ˆc matrices with real entries. When l " c, we let M l pRq :" M l,l pRq. For any M P M l,c pRq, M T will denote the usual transpose of M . For any x P R p , diagpxq P M p pRq will stand for the matrix whose diagonal is x and for which off-diagonal terms are 0, and I p will be the identity of M p pRq. In this pape r the integrals ş s t will stand for ş pt,ss . For any d ě 1 and for any Borel measurable subset I Ă R d , BpIq will denote the Borel σ-algebra on I. Finally, we set for any p P N ˚, for any closed subset C of R p and for any a P R p dist C paq :" min bPC t}a ´b}u, and Π C paq :" tb P C t pωq, }a ´b} " dist C paqu .

Preliminaries

The utility maximization problem

Set T a fixed deterministic positive maturity. Let W " pW t q tPr0,T s be a d-dimensional Brownian motion (d ě 1) defined on a filtered probability space pΩ, G T , F, Pq, where F :" pF t q tPr0,T s denotes the natural completed filtration of W , satisfying the usual conditions.

G T is a given σ-field which strictly contains F T and which will be specified later. Unless otherwise stated, all equalities between random variables on pΩ, G T q are to be understood to hold P ´a.s., and all equalities between processes are to be understood to hold P b dt ´a.e. (and are as usual extended to hold for every t ě 0, P ´a.s. if the considered processes have trajectories which are, P ´a.s., càdlàg2 ). The symbol E will alwa ys correspond to an expectation taken under P, unless specifically stated otherwise.

We define a financial market with a riskless bond denoted by S 0 :" pS 0 t q tPr0,T s whose dynamics are given as follows:

S 0
t " S 0 0 e rt , t P r0, T s, where r is a fixed deterministic non-negative real number. We enforce throughout the paper the condition r :" 0, and emphasize that solving the utility maximization problem considered in this paper with a non-zero interest rate is a much more complicated problem.

Moreover, we assume that the financial market contains a m-dimensional risky asset S :"

pS t q tPr0,T s (1 ď m ď d) S t " S 0 `ż t 0 diagpS s qσ s dW s `ż t 0 diagpS s qb s ds, t P r0, T s.
In that setting, σ is a M m,d pRq-valued, F-predictable bounded process such that σσ T is invertible, and uniformly elliptic3 , Pbdt´a.e., and b a R m -valued bounded F-predictable process.

We aim at studying the optimal investment problem of a small agent on the abovementioned financial market with respect to a given utility function U (that is an increasing, strictly concave and real-valued function, defined either on R or on R `), but with a random time horizon modeled by a (G-measurable) random time τ . More precisely the optimization problem writes down as:

sup πPA ErU pX π T ^τ ´ξqs, (2.1) 
where A is the set of admissible strategies which will be specified depending on the definition of U . The wealth process associated to a strategy π is denoted X π (see (3.3) below for a precise definition) and ξ is the liability which is assumed to be bounded, and whose measurability will be specified later. The important feature of the random time τ is that it cannot be explained by the stock process only, in other words it brings some uncertainty in the model. This can be mathematically translated into the fact that τ is assumed not to be an F-stopping time.

Enlargement of filtration

In a general case, τ can be considered as a default time (see [START_REF] Bielecki | Credit risk modelling[END_REF] for more details). We introduce the right-continuous default indicator process H by setting

H t " 1 τ ďt , t ě 0.
We therefore use the standard approach of progressive enlargement of filtration by considering G the smallest right continuous extension of F that turns τ into a G-stopping time. More precisely G :" pG t q 0ďtďT is defined by

G t :" č ǫą0 Gt`ǫ ,
for all t P r0, T s, where Gs :" F s _ σpH u , u P r0, ssq, for all 0 ď s ď T .

The following two assumptions on the model we consider will always be, implicitly or explicitly, in force throughout the paper (H1) (Density hypothesis) For any t, there exists a map γpt, ¨q : R `ÝÑ R `, such that pt, uq Þ ÝÑ γpt, uq is F t b Bpp0, 8qq-mesurable and such that Prτ ą θ|F t s "

ż 8 θ γpt, uqdu, θ P R `,
and γpt, uq " γpu, uq1 těu .

Under (H1), we recall that the "Immersion hypothesis" is satisfied, that is, any Fmartingale is a G-martingale. then, the immersion hypothesis may not be satisfied and in general we can only say that the Brownian motion W is a G-semimartingale of the form dW t " dW G t `µt dt where W G is a G-Brownian motion and µ t dt " dxγp¨,uq,W yt γpt,uq | u"τ . Hence, it suffices to write the dynamics of S as

S t " S 0 `ż t 0 diagpS s qσ s dW G s `ż t 0 diagpS s qpb s `σs µ s qds, t P r0, T s.
The difficulty is that there is no general condition to ensure that µ is bounded. Nonetheless, if, for instance, we were to assume that there are no arbitrage opportunities on the market and that we restricted our admissible strategies to the ones which are absolutely continuous, then we could prove that Er ş T 0 }µ s } 2 dss ă `8, which may be enough in order to solve the problem.

In both cases, the process H admits an absolutely continuous compensator, i.e., there exists a non-negative G-predictable process λ G , called the G-intensity, such that the compensated process M defined by

M t :" H t ´ż t 0 λ G s ds, (2.2) 
is a G-martingale.

The process λ G vanishes after τ , and we can write λ G t " λ F t 1 tďτ , where

λ F t "
γpt, tq Ppτ ą t|F t q , is an F-predictable process, which is called the F-intensity of the process H. Under the density hypothesis, τ is not an F-stopping time, and in fact, τ avoids F-stopping times and is a totally inaccessible G-stopping time, see [START_REF] Karoui | What happens after a default: the conditional density approach[END_REF]Corollary 2.2]. From now on, we use a simplified notation and write λ :" λ F and set Λ t :" ż t 0 λ s ds, t P r0, T s.

Let T pFq (resp. T pGq) be the set of F-stopping times (resp. G-stopping times) less or equal to T .

In this paper we will work with two different assumptions. The first one corresponds to the case where the support of τ is unbounded, and the second one refers to the situation where this support is of the form r0, Ss with S ď T . In the latter, without loss of generality, we will assume for the sake of simplicity, that S " T . More precisely, we will assume that one of the two following conditions is satisfied We emphasize that assuming pH2q or pH2'q implies in particular that the martingale M is in BMOpGq (see below for more details), which implies by the well-known energy inequalities (see for instance [START_REF] Izumisawa | Remark on a characterization of BMOmartingales[END_REF]) the existence of moments of any order for Λ. More precisely, we have for any p ě 1

(H2) esssup ρPT pGq E « ż T ρ λ s ds ˇˇˇˇG ρ ff ă `8. ( H2 
(H2) ñ E «˜ż T 0 λ s ds ¸pff ă `8, (2.3) 
(H2') ñ E « ˆż t 0 λ s ds ˙pff ă `8 for all t ă T . (2.4)
Furthermore, since by [START_REF] Karoui | What happens after a default: the conditional density approach[END_REF]Proposition 4.4], Prτ ą t|F t s " e ´Λt , for every t ě 0 we have:

• (H2) ñ Supppτ q Ľ r0, T s,

• (H2') ñ Supppτ q " r0, T s,

where Supp denotes the support of the G-stopping time τ .

The previous remark entails in particular that (H2) and (H2') lead to quite different maximization problems. The model under Assumption (H2) is the one which is the most studied in the literature and expresses the fact that with positive probability, the problem (2.1) is the same as the classical maximization problem with terminal time T . Naturally, the expectation formulation puts a weight on the scenarii which, indeed, lead to the classical framework. Assumption (H2') expresses the fact that with probability 1 the final horizon is less than T (see Figure 2 for an example). This makes the problem completely different since in the first case the agent fears that some random event may happen, whereas in the second case she knows that it is going to happen. As a consequence, these two different assumptions should make some changes in the mathematical analysis. This feature will become quite transparent when solving BSDEs related to the maximi zation problem.

For any m P N ˚, we denote by PpFq m (resp. PpGq m ) the set of F (resp. G)-predictable processes valued in R m . If m " 1 we simply write PpFq for PpFq 1 , and the same for G.

We recall from [START_REF] Jeulin | Semi-martingales et grossissement d'une filtration[END_REF]Lemma 4.4] the decomposition of any G-predictable process ψ, given by ψ t " ψ 0 t 1 tďτ `ψ1 t pτ q1 tąτ .

(2.5)

Here the process ψ 0 is F-predictable, and for a given non-negative u, the process ψ 1 t puq with t ě u, is an F-predictable process. Furthermore, for fixed t, the mapping ψ 1 t p¨q is F t b Bpr0, 8qq-measurable. Moreover, if the process ψ is uniformly bounded, then it is possible to choose ψ 0 and ψ 1 p.q to be bounded.

We introduce the following spaces 

' S 2 F :" # Y " pY t q tPr0,
|Y t | ă `8+ , ' H 2 F :" # Z " pZ t q tPr0,T s P PpFq d , E « ż T 0 }Z s } 2 ds ff ă `8+ , ' H 2 G :" # Z " pZ t q tPr0,T s P PpGq d , E « ż T 0 }Z s } 2 ds ff ă `8+ , ' L 2 G :" # U " pU t q tPr0,T s P PpGq, E « ż T 0 |U s | 2 λ s ds ff ă `8+ .
In the following, let Y be in S 8 F (resp. S 8 G ), for the sake of simplicity, we use the notation }Y } 8 :" }Y } F,8 (resp. }Y } 8 :" }Y } G,8 ). We conclude this section with a sufficient condition for the stochastic exponential of a càdlàg martingale to be a true martingale. Given a G-semimartingale P :" pP t q tPr0,T s , we denote by EpP q :" pEpP q t q tPr0,T s its Doléans-Dade stochastic exponential, defined as usual by: EpP q t :" exp ˆPt ´1 2 rP c , P c s t ˙ź 0ăsďt p1 `∆s P q exp p´∆ s P q , with ∆ s P :" P s ´Ps´a nd where P c denotes the continuous part of P . A càdlàg G-martingale P is said to be in BMOpP, Gq if

}P } 2 BMOpP,Gq :" esssup ρPT pGq E " |P T ´Pρ´| 2 |G ρ ‰ ă `8.
For simplicity, we will omit the P-dependence in the space BMOpP, Gq and will only specify the underlying probability measure if it is different from P. Then P is a BMOpGq martingale and EpP q is a uniformly integrable martingale.

We set for B P tF, Gu H 

Exponential utility function

We study in this article a "usual" utility function, namely the exponential function, to solve the utility maximization problem (2.1), which is open in the framework of random time horizon. By open we mean that, even though we have seen that the existence of an optimal strategy for general utility function has been given in [START_REF] Bouchard | Wealth-path dependent utility maximization in incomplete markets[END_REF] using a duality approach, we here aim at characterizing both the optimal strategy π ˚and the value function. To that purpose, we combine the martingale optimality principle and the theory of BSDEs with random time horizon. Note that in the classical utility maximization problem with time horizon T this technique has been successfully applied in [START_REF] Rouge | Pricing via utility maximization and entropy[END_REF] in the exponential framework, and in [START_REF] Hu | Utility maximization in incomplete markets[END_REF] for the three classical utility functions, that is exponential, power and logarithm.

Recall the maximization problem (2.1)

sup πPA ErU pX π T ^τ ´ξqs,
where A denotes the set of admissible strategies, that is G-predictable processes with some integrability conditions (precise definitions will be given later on), and ξ is a bounded G T ^τ -measurable random variable. At this stage we do not need to make precise these integrability conditions and the exact definition of the wealth process X π . Let us simply note that by definition an element π of A will satisfy that π1 pτ ^T,T s " 0. This condition together with the characterization of G-predictable processes recalled in (2.5) entails that π " π1 r0,τ ^T s with π a F-predictable process. Hence in our setting the strategies are essentially F-predictable.

We now turn to a suitable decomposition of ξ when T ă τ or τ ď T .

Lemma 3.1. Let ξ be a G T ^τ -measurable random variable. Then, there exist ξ b which is F T -measurable and an F-predictable process ξ a such that

ξ " ξ b 1 T ăτ `ξa τ 1 τ ďT . (3.1) 
Proof. Let ξ be a G T ^τ -measurable random variable, we have

ξ " ξ1 T ăτ `ξ1 τ ďT ,
which can be rewritten as

ξ " ξ b 1 T ăτ `ξ a 1 τ ďT ,
where ξ b is an F T measurable random variable and ξa is G τ -measurable. According to [30, Theorem 2.5], since the assumption pH1q holds, we get F τ " G τ , where we recall that the σ-field F τ is defined by

F τ " σpX τ , X is an F-optional processq.
Hence, from the definition of F τ , we know that there exists an F-optional process denoted by ξ a such that ξa " ξ a τ , P ´a.s. Since F is the (augmented) Brownian filtration, any F-optional process is an F-predictable process. Remark 3.2. In [START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF], the decomposition (3.1) was taken as an assumption. However thanks to Lemma 3.1, we know that as long as F is the augmented Brownian filtration, it always holds true.

In our framework, the martingale optimality principle can be expressed as follows (we provide a proof for the comfort of the reader even though the arguments are the exact counterpart of the deterministic horizon problem). Proposition 3.3 (Martingale optimality principle for the random horizon problem). Let R π :" pR π t q tPr0,T s be a family of stochastic processes indexed by π P A such that piq R π T ^τ " U pX π T ^τ ´ξq, @π P A, piiq R π ¨^τ is a G-supermartingale for every π in A, piiiq Dc P R, R π 0 " c, @π P A, pivq there exists π ˚in A, such that R π ˚is a G-martingale.

Then, π ˚is a solution of the maximization problem (2.1).

Proof. Let π in A. Conditions (i)-(iv) immediately imply that ErU pX π T ^τ ´ξqs piq " ErR π T ^τ s piiq ď R π 0 piiiq " R π 0 pivq " ErR π T ^τ s piq " ErU pX π T ^τ ´ξqs,
which concludes the proof.

Note that until now, we have used neither the definition of A (provided that the expectation ErU pX π T ^τ qs is finite) nor the definition of U . However, it remains to construct this family of processes pR π q πPA and this is exactly at this stage that we need to specify both the utility function U and the set of admissible strategies A. To this end we set:

V pxq :" sup πPA ErU pX π T ^τ ´ξqs, (3.2) 
where X π T ^τ denotes the value at time T ^τ of the wealth process associated to the strategy π1 rt^τ ,T ^τ s with initial capital x at time 0, defined below in (3.3). This amounts to say that the optimization only holds on the time interval rt ^τ , T ^τ s. From now on, we consider the exponential utility function defined as U pxq " ´expp´αxq, α ą 0.

In that case we parametrize a R m -valued strategy π :" pπ t q tPr0,T s as the amount of numéraire invested in the risky asset S (component-wise) so that the wealth process X π associated to a strategy π is defined as:

X π t " x `ż t 0 π s ¨σs dW s `ż t 0 π s ¨bs ds, t P r0, T s. (3.3) 
Note that under our assumption on σ (that is σσ T is invertible and uniformly elliptic), the introduction of the volatility process does not bring any additional difficulty compared to the case with volatility one. Indeed, as it is well-known, if we set θ :" σ T pσσ T q ´1b and p :" σ T π, the wealth process becomes

X π t " x `ż t 0 p s ¨dW s `ż t 0 p s ¨θs ds ": X p t , t P r0, T s, (3.4) 
and a portfolio is described by the process p, which is now R d -valued. Let C :" pC t q tPr0,T s be a predictable process with values in the closed subsets of R d . As in [START_REF] Henderson | Pseudo linear pricing rule for utility indifference valuation[END_REF] we define the set of admissible strategies by A :"

! p P r A, p P H 2

BMOpGq

) , with r A :" ! pp t q tPr0,T s P PpGq d , p t P C t , dt b P ´a.e., p1 pτ ^T,T s " 0

) .

Since the liability ξ is bounded, according to [15, Remark 2.1], optimal strategies corresponding to the utility maximization problem (2.1) coincide with those of [START_REF] Hu | Utility maximization in incomplete markets[END_REF]. In order to give a characterization of both the optimal strategy p ˚and of the value function V pxq defined by (3.2), we combine the martingale optimality principle of Proposition 3.3 and the theory of BSDEs with random time horizon.

Theorem 3.4. Assume that pH1q and pH2q or pH2 1 q hold. Assume that the BSDE

Y t " ξ ´ż T ^τ t^τ Z s ¨dW s ´ż T ^τ t^τ U s dH s ´ż T ^τ t^τ f ps, Y s , Z s , U s qds, t P r0, T s, (3.5) 
with

f ps, ω, z, uq :" ´α 2 dist 2 ˆz `1 α θ s , C s pωq ˙`z ¨θs `}θ s } 2 2α ´λs e αu ´1 α , (3.6) 
where dist denotes the usual Euclidean distance, admits a unique solution pin the sense of Definition 4.1q such that Y and U are uniformly bounded and such that ş 0 Z s ¨dW s ş¨0 pe αUs ´1qdM s is a BMOpGq-martingale. Then, the family of processes R p t :" ´expp´αpX p t ´Yt qq, t P r0, T ^τ s, p P A, satisfies piq ´pivq of Proposition 3.3, so that V pxq " ´expp´αpx ´Y0 qq, and an optimal strategy p ˚P A for the utility maximisation problem (3.2) is given by

p t P Π Ctpωq ˆZt `θt α ˙, t P r0, T s, P ´a.s. (3.7) 
Proof. Assume that the BSDE (3.5) admits a unique solution (in the sense of Definition 4.1) such that Y and U are uniformly bounded and such that P :" ż 0 Z s ¨dW s `ż 0 pe αUs ´1qdM s , is a BMOpGq martingale.

Following the initial computations of [START_REF] Hu | Utility maximization in incomplete markets[END_REF] (see also [START_REF] Becherer | Bounded solutions to backward SDE's with jumps for utility optimization and indifference hedging[END_REF][START_REF] Morlais | Utility maximization in a jump market model[END_REF] for the discontinuous case) we set: R p t :" ´expp´αpX p t ´Yt qq, t P r0, T ^τ s, p P A. Clearly, the family of processes R p satisfies Properties (i) and (iii). By definition each process R p reduces to

R p t " L p t exp ˆż t 0 vps, p s , Z s , U s qds ˙,
with vps, p, z, uq :" α 2 2 }p ´z} 2 ´αp ¨θ `λs pe αu ´1 ´αuq `α1 tsďτ u f ps, z, uq, and L p t :" ´expp´αpx ´Y0 qqE ˆ´α ż 0 pp s ´Zs q ¨dW s `ż 0 pe αUs ´1qdM s ˙t , which is a uniformly integrable martingale by Proposition 2.3. As in [START_REF] Hu | Utility maximization in incomplete markets[END_REF], the latter property together with the boundedness of Y and the notion of admissibility for the strategies p imply that each process R p is a G-supermartingale and that R p ˚is a Gmartingale with p t P Π Ctpωq `Zt `θt α ˘, t P r0, T s. We conclude with Proposition 3.3.

Remark 3.5. In this paper we have considered exponential utility, however the case of power utility and/or logarithmic utility follows the same line as soon as ξ " 0.

Of course, the above theorem is a verification type result, which is crucially based on the wellposedness of the BSDE (3.5). We have therefore reduced the analysis of the maximization problem to the study of the BSDE (3.5), which is the purpose of the next section.

4 Analysis of the BSDE (3.5)

Some general results on BSDEs with random horizon

As we have seen in the previous section, solving the optimal portfolio problem under exponential preferences (with interest rate 0) reduces to solving a BSDE with a random time horizon. This class of equations has been studied in [START_REF] Darling | Backwards SDE with random terminal time and applications to semilinear elliptic PDE[END_REF], and one could construct a classical theory for these equations. However, in our setting the filtration G is strongly determined by the terminal time τ , and the structure of predictable processes with respect to G is richer than in the general framework. More precisely, from [START_REF] Jeulin | Semi-martingales et grossissement d'une filtration[END_REF] we know that a G-predictable process can be described using F-predictable processes before and after τ as recalled in (2.5).

Recall that by (3.1), any bounded G T ^τ -measurable random variable ξ can be written as

ξ " ξ b 1 T ăτ `ξa τ 1 τ ďT ,
with ξ b a F T -measurable bounded random variable, and ξ a a bounded F-predictable process.

Taking advantage of this decomposition, the solution triple to a BSDE with random horizon τ has been determined in [START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF] as the one of a BSDE in the Brownian filtration F suitably stopped at τ (see (4.7)-(4.9) below for a precise statement). However we would like to stress that this result has been obtained under the assumption that λ is bounded which is a stronger assumption than (H2).

We consider a BSDE with random terminal horizon of the form

Y t " ξ ´ż T ^τ t^τ f ps, Y s , Z s , U s qds ´ż T ^τ t^τ Z s ¨dW s ´ż T ^τ t^τ U s dH s . (4.1) 
From (2.5) (see also (4.28) in [START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF]), we can write

f pt, .q1 tăτ " f b pt, .q1 tăτ , (4.2) 
where

f b : Ω ˆr0, T s ˆR ˆRd ˆR ÝÑ R is F-progressively measurable. Definition 4.1. A triplet of processes pY, Z, U q in S 2 G ˆH2 G ˆL2
G is a solution of the BSDE (4.1) if relation (4.1) is satisfied for every t in r0, T ^τ s, P-a.s., Y t " Y T ^τ , for t ě T ^τ , Z t " 0, U t " 0 for t ą T ^τ on the set tτ ă T u, and

E » - ż T ^τ 0 |f pt, Y t , Z t , U t q|dt `˜ż T ^τ 0 }Z t } 2 dt ¸1{2 fi fl ă `8. (4.3) Remark 4.2. If f is Lipschitz continuous then the fact that pY, Z, U q are in the space S 2 G ˆH2 G ˆL2
G implies that (4.3) holds. However under pH2q or pH2'q, f in (3.6) is not Lipschitz continuous and the fact that pY, Z, U q are in the space

S 2 G ˆH2 G ˆL2 G does not guarantee that E « ż T ^τ 0 |f pt, Y t , Z t , U t q|dt ff ă `8.
Remark 4.3. Note that the term ş t 0 U s dH s is well-defined since it reduces to U τ 1 těτ . Another formulation of a solution would consist in re-writing (4.1) as:

Y t " ξ ´ż T ^τ t^τ rf ps, Y s , Z s , U s q `λs U s sds ´ż T ^τ t^τ Z s ¨dW s ´ż T ^τ t^τ U s dM s , t P r0, T s.
In this case, the integrability condition on the driver basically amounts to ask

E « ż T 0 λ s |U s |ds ff ă `8,
which insures that the process U is locally square integrable 4 , justifying the definition of the stochastic integral ş 0 U s dM s .

Similarly given ξ an F T -measurable map, and f : Ω ˆr0, T s ˆR ˆRd ÝÑ R an Fprogressively measurable mapping, we say that a pair of F-adapted processes pY, Zq where Z is predictable is a solution of the Brownian BSDE:

Y t " ξ ´ż T t f ps, Y s , Z s qds ´ż T t Z s ¨dW s , t P r0, T s, (4.4) 
if Relation (4.4) is satisfied and if

E » - ż T 0 |f pt, Y t , Z t q|dt `˜ż T 0 }Z t } 2 dt ¸1{2 fi fl ă `8. (4.5) 
We recall the following proposition which has been proved in [START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF].

Proposition 4.4. Assume pH1q-pH2q. If the pBrownianq BSDE Y b t " ξ b ´ż T t f b ps, Y b s , Z b s , ξ a s ´Y b s qds ´ż T t Z b s ¨dW s , t P r0, T s, (4.6) 
admits a solution pY b , Z b q in S 8

F ˆH2 F , then pY, Z, U q defined as Y t " Y b t 1 tăτ `ξa τ 1 těτ , (4.7) 
Z t " Z b t 1 tďτ , (4.8) 
U t " pξ a t ´Y b t q1 tďτ , (4.9 
)

is a solution of the BSDE (4.1) in S 8 G ˆH2 G ˆL2 G .
The previous proposition is in fact a slight generalization of the original result in [START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF], since in this reference the authors assume λ to be bounded, which implies condition (H2). In addition, the authors in this reference work with classical solutions in S 8

G ˆH2 G ˆL2
G . However, the proof follows the same lines as the original proof in [START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF], we just notice that [24, Step 1 and Step 2 of the proof of Theorem 4.3] are unchanged and Step 3 holds under Assumption (H2) noticing that

}U } 2 L 2 G ď CErΛ T ^τ s ă `8,
since Y b and ξ a are in S 8 F . Proposition 4.5. We assume pH1q and pH2 1 q. Let A be a real-valued, F T -measurable random variable such that Er|A| 2 s ă `8. Assume that the BSDE Remark 4.6. Note that in the previous result, the fact that Y b is for example bounded would not imply that U is in L 2 G as λ is not integrable. Remark 4.7. The previous result is very misleading since the terminal condition A in (4.10) plays no role. More precisely, assume that for two different random variables A 1 and A 2 such that the associated solutions pY A 1 , Z A 1 , U A 1 q and pY A 2 , Z A 2 , U A 2 q are bounded and verify that ż 0 Z A i s ¨dW s `ż 0 pe αUsA i ´1qdM s is a BMOpGq-martingale pi " 1, 2q.

Y b t " A ´ż T t f b ps, Y b s , Z b s ,
Then obviously Y A 1 ı Y A 2 , and in light of the proof of Theorem 3.4, the maximization problem (3.2) would then be ill-posed as it would have two different value functions.

Even though the notion of strategy we use slightly differs from the one used in [START_REF] Bouchard | Wealth-path dependent utility maximization in incomplete markets[END_REF], this conclusion seems to contradict the well-posedness result obtained in this reference. This remark suggests that it might be possible to solve the Brownian BSDE (4.10) for only one element A. For instance, in the exponential u tility setting, Relation (4.5) suggests that A " ξ a T to solve BSDE (4.10). To illustrate this, we assume that α " 1 and that there is no Brownian part. We consider the following Cauchy-Lipschitz/Picard-Lindelöf problem: y 1 t " λ t pe ξ a t ´yt ´1q, y T " A. Assume that ξ a is deterministic, bounded and continuously differentiable. Set x t :" e yt . Hence, the previous ODE can be rewritten:

x 1 t " λ t pe ξ a t ´xt q, x T " e A .
Thus, we can compute explicitly the unique pglobalq solution, which is Letting t go to T , we obtain that we must have x T " e ξ a T . Therefore there is a solution if and only if A " ξ a T .

x t " e ´Λt C `

BSDEs for the utility maximization problem

In this section we focus our attention on a class of BSDEs with quadratic growth, which contains in particular the one used for solving the exponential utility maximization problem. We assume that the generator f of BSDE (4.1) admits for all pt, ω, y, z, uq in r0, T s ˆΩ ˆR ˆRd ˆR the following decomposition f pt, ω, y, z, uq " gpt, ω, y, zq `λt pωq

1 ´eαu α , (4.14) 
where g is a map from r0, T s ˆΩ ˆR ˆRd to R. We assume moreover that g satisfies Assumption 4.8. piq For every py, zq P R ˆRd , gp¨, y, zq is G-progressively measurable.

piiq There exists M ą 0 such that for every t P r0, T s, |gpt, 0, 0q| ď M , and for every pt, ω, y, y 1 , z, z 1 q P r0, T s ˆΩ ˆR ˆR ˆRd ˆRd , |gpt, ω, y, zq ´gpt, ω, y 1 , zq| ď M |y ´y1 |, and |gpt, ω, y, zq ´gpt, ω, y, z 1 q| ď M p1 `}z} `}z 1 }q}z ´z1 }.

Before going further, notice that under Assumption 4.8, we have the following useful linearization for all t P r0, T s gpt, ω, y, zq ´gpt, ω, y 1 , z 1 q " mpt, ω, y, y 1 qpy ´y1 q `ηpt, ω, z, z 1 q ¨pz ´z1 q, P ´a.s., (4.15) where m : r0, T s ˆΩ ˆR ˆR ÝÑ R is G-progressively measurable and such that |mpt, y, y 1 q| ď M and η : r0, T s ˆΩ ˆRd ˆRd ÝÑ R d is G-progressively measurable and such that }ηpt, z, z 1 q} ď M p1 `}z} `}z 1 }q, P ´a.s.

For simplicity, we will write ηpt, zq instead of ηpt, z, 0q and mpt, yq instead of mpt, y, 0q.

Notice that under Assumption 4.8, there exists µ ą 0 such that for every t P r0, T s and y, z P R ˆRd |gpt, y, zq| ď µp1 `|y| `}z} 2 q, P ´a.s.

A uniqueness result

We start with a uniqueness result for BSDE (4. This estimate together with the BMO properties proved so far, imply that P is a BMOpGq martingale.

Existence results for Brownian BSDEs

We turn to the existence of a solution pY, Zq to the BSDE (4.1) such that Y is in S 8 G and ş 0 Z s ¨dW s `ş¨0 pe αUs ´1qdM s is a BMOpGq martingale under Assumptions pH2q and pH2'q. From Proposition 4.4 and Proposition 4.5, this BSDE can be reduced to the following Brownian BSDE

Y b t " ξ b ´ż T t g b ps, Y b s , Z b s q `λs 1 ´eαpξ a s ´Y b s q α ds ´ż T t Z b s ¨dW s , (4.17) 
where g b satisfies Assumption 4.8 (changing in piq G-progressively measurable by Fprogressively measurable) and inherits the decomposition (4.15) from the one of g as g b pt, ω, y, zq ´gb pt, ω, y 1 , z 1 q " m b pt, ω, y, y 1 qpy ´y1 q `ηb pt, ω, z, z 1 qpz ´z1 q, (4.18)

for any pt, y, y 1 , z, z 1 q P r0, T s ˆR2 ˆpR d q 2 with m b pt, ¨q :" mpt, ¨q1 tďτ and η b pt, ¨q :" ηpt, ¨q1 tďτ . However, neither Assumption pH2q nor Assumption pH2'q guarantee directly that this quadratic BSDE admits a solution. Hence, we use approximation arguments and introduce quadratic BSDEs defined for n ě 1 by Step 1: Uniqueness. Assume that there exist two solutions pY n , Z n q P S 8 

Y b,n t " ξ b ´ż T t g b ps, Y b,n s , Z b,n s q`λ n s 1 ´eαpξ a s ´Y b,n s q α ds´ż T t Z b,
F ˆH2 F and p Ă Y n , Ă Z n q P S 8 F ˆH2 F to BSDE (4.19) such that }Z n } H 2 BMO pFq `} Ă Z n } H 2 BMO pFq is uniformly bounded in n. Set δY n :" Y n ´Ă Y n and δZ n :" Z n ´Ă Z n ,

ˆH2

BMOpFq such that Y b,n t ě ´CY , t P r0, T s, P ´a.s. Then, using a linearization and taking the conditional expectation under Q n , we can compute explicitly Y b,n from BSDE (4.20) Step 3: BMO norm of Z b,n . Let ρ P T pFq be a random horizon and β a positive constant. Using Itô's formula, we obtain Hence, from Assumption pH1q, using the fact that, by Step 2, Y b,n is uniformly bounded in n by C Y and taking conditional expectations, we deduce

Y b,n t " ´EQ n
β 2 2 E « ż T ρ e βY b,n s }Z n s } 2 ds ˇˇˇˇF ρ ff ď e β}ξ b }8 `βE « ż T ρ e βY b,n s |g b ps, Y b,n s , Z b,n s q|ds ˇˇˇˇF ρ ff `βe βCY 1 `eαp}ξ a }8`CY q α E « ż T ρ λ s ds ˇˇˇˇF ρ ff .
Since |g b ps, y, zq| ď µp1 `|y| `}z} 2 q we obtain ˆβ2

2 ´µβ ˙E « ż T ρ e βY n s }Z b,n s } 2 ds ˇˇˇˇF ρ ff ď e β}ξ b }8 `βe βCY T µp1 `CY q `βe βCY 1 `eαp}ξ a }8`CY q α E « ż T ρ λ s ds ˇˇˇˇF ρ ff .
By choosing β ą 2µ, under Assumption (H2) and using the boundedness of Y b,n , we deduce that

E « ż T ρ › › Z b,n s › › 2 ds ˇˇˇˇF ρ ff ď C β ,
where

C β :" e 2βCY « 1 `β ˜1 `eαp}ξ a }8`CY q α E « ż T ρ λ s ds ˇˇˇˇF ρ ff `T µp1 `CY q ¸ff ˆ1 β 2 2 ´µβ
.

Then, under Assumption pH2q, }Z b,n } H 2 BMO pFq is uniformly bounded in n. Proof. The proof is based on an approximation procedure using BSDE (4.20). The aim of this proof is to show that the solution pY n , Z n q to this approached BSDE converges in S 8

F

ˆH2

BMOpFq to the solution of BSDE (4.25). Let p, q ě n, we denote δY t :" Y p t ´Y q t and δZ t :" Z p t ´Zq t for all t P r0, T s. Then, pδY, δZq is solution of the following BSDE α looooooooooooooooooomooooooooooooooooooon :"ϕ p,q s `´λ q s e αpξ a s ´Ysq `mb ps, Y p s , Y q s q ¯δY s ds

δY t " ´ż T t m b ps, Y p s , Y q s qδY s `ηb ps, Z p s , Z q s q ¨δZ s `λp s 1 ´eαpξ a s ´Y p s q α ds ´ż T t λ q s 1 ´eαpξ a s ´Y q s q α ds
´ż T t δZ s ¨dW Q n s ,
where Y is a process lying between Y p and Y q which satisfies for all s P rt, T s, |Y s | ď C Y , P ´a.s., and where W Q n :" W `ş¨0 η b ps, Z p s , Z q s qds is a Brownian motion under Q n given by

dQ n dP " E ˜´ż T 0 η b pt, Z p t , Z q t q ¨dW t ¸,
which is well defined since ş 0 η b ps, Z p s , Z q s q¨dW s is a BMOpFq martingale from Assumption 4.8. Let β ě 0, using Itô's formula Then, using the boundedness of Y n uniformly in n, there exists a positive constant C such that

e
E Q n « sup tPr0,T s |δY t | 2 ff `EQ n « ż T 0 }δZ s } 2 ds ff ď CE Q n « ż T 0 |λ p s ´λq s |ds ff ,
Hence,

E Q n « sup tPr0,T s |δY t | 2 ff ď CE Q n « ż T 0 |λ p s ´λq s |ds ff . (4.26) 
We want to obtain this kind of estimates under the probability P. Notice that

E « sup tPr0,T s |δY t | 2 ff " E Q n » -E ˜´ż T 0 η b pt, Z p t , Z q t q ¨dW t ¸´1 sup tPr0,T s |δY t | 2 fi fl " E Q n « E ˜ż T 0 η b pt, Z p t , Z q t q ¨dW Q n t ¸sup tPr0,T s |δY t | 2 ff .
From Assumption 4.8 and Lemma 4.11, ş 0 η b ps, Z n s q ¨dW s is a BMO(F) martingale and }η b p¨, Z n ¨q} H 2 BMO pFq is uniformly bounded in n. Then according to [START_REF] Kazamaki | Continuous exponential martingales and BMO[END_REF]Theorem 3.3 

], ş 0 η b ps, Z n s q ¨dW Q n s is a BMO(Q n , F)
sup ně1 E Q n « E ˜ż T 0 η b pt, Z p t , Z q t q ¨dW Q n t ¸rff ă `8.
Since Y n is uniformly bounded in n, we deduce that there exists k ą 0 such that

E « sup tPr0,T s |δY t | 2 ff ď E Q n « E ˜ż T 0 η b pt, Z p t , Z q t q ¨dW Q n t ¸rff 1 r E Q n « sup tPr0,T s |δY t | 2r ff 1 r ď kE Q n « sup tPr0,T s |δY t | 2 ff 1 r . (4.27)
Similarly, from the definition of Q n there exists K ą 0 such that Then, we deduce that Y n is a Cauchy sequence in S 2 F . Hence, Y n converges in S 2 F to a process Y . Besides, since Y b,n is uniformly bounded in n, taking a subsequence (which we still denote pY b,n q ně0 for simplicity), of uniformly bounded process in n which converges, P ´a.s., to Y b , we deduce that Y b P S 8 F . Thus, by Lebesgue's dominated convergence Theorem, Y b,n converges to Y b in S p F for every p ě 1. Recall that

E Q n « ż
Y b,n t " ξ b ´ż T t g b ps, Y b,n s , Z b,n s q `λ n s Y b,n s ´λ n s ξ a s ds ´ż T t Z b,n s ¨dW s ,
where λn s :" λ n s ş 1 0 e ´αθpY b,n s ´ξa s q dθ, which can be rewritten Since

Y b,n t " Y b,n 0 `ż t 0 A b,n s ds `ż t 0 Z b,n s ¨dW s , where A n s :" g b ps, Y b,n s , Z b,n s q `λ n s Y b,n s ´λ n s ξ a s . Knowing that lim nÑ8 }Y b,n ´Y b } S p F " 0 for every p ě 1, we deduce from Theorem 1 in [1] that Y b is a semimartingale such that Y b t " Y b 0 `şt 0 A s ds `şt 0 Z b s ¨dW s ,
ş 0 Z b,n s ¨dW s is a BMO(F) martingale, there exists K 1 ą 0 such that }Z b,n } H p F }Z b } H p F ď K 1 .
Besides, using the fact that Y b,n , Y b P S 8 , there exists a positive constant C which may vary from line to line such that

E « ˆż t 0 |A n s ´´g b ps, Y b s , Z b s q `λ s Y b s ´λ s ξ a s ¯|ds ˙pff ď C ˜E « ˆż t 0 |Y b s ´Y b,n s |ds ˙pff `E « ˆż t 0 p1 `}Z b s } `}Z b,n s }q}Z b s ´Zb,n s }ds ˙pff `E « ˆż t 0 ˇˇλsY b s ´λ n s Y b,n s ˇˇds ˙pff `E « ˆż t 0 ˇˇλs ´λ n s ˇˇ|ξ a s |ds ˙pff ḑ C ˜}Y b ´Y b,n } S p `E «˜ż T 0 }Z b,n s ´Zb s } 2 ds ¸pff 1 2 `E « ˆż t 0 |λ s ´λn s |ds ˙pff `}Y b,n ´Y b } S p F ErΛ p t s ÝÑ nÑ8 0.
Then, we deduce that there exists a F-predictable process Z b such that

Y b t " Y b 0 `ż t 0 g b ps, Y b s , Z b s q `λ s Y b s ´λ s ξ a s ds `ż t 0 Z b s ¨dW s .
Following the Step 3 in the proof of Lemma 4.11, we deduce that Z b P H 2 BMOpFq Then, the pair pY b , Z b q P S 8 ˆH2

BMOpFq built previously is the unique solution of BSDE (4.25), the uniqueness coming from Lemma 4.9 together with Proposition 4.4.

We now turn to Assumption pH2'q. Notice that the proof of Theorem 4.12 fails under pH2'q since E rΛ T s " 8. We need more regularity on ξ a to get a sign on Y b,n , the first component of the solution of the approached BSDE (4.19) in order to prove that BSDE (4.17) admits a solution under pH2'q. Assumption 4.13. ξ a is a bounded semi-martingale such that

ξ a t " ξ a 0 `ż t 0 D s ds `ż t 0 γ s ¨dW s ,
where D, γ are bounded processes satisfying for all s P r0, T s, g b ps, ξ a s , γ s q ´Ds ě 0. Before going further, to solve the utility maximization problem (2.1) according to Theorem 3.4, we have to prove that ş 0 Z s dW s `ş¨0 pe αUs ´1qdM s is a BMOpGq-martingale. Under Assumption pH2q, this property comes for free from the BMOpFq-martingale property of ş 0 Z b s dW s and the boundedness of Y b . However, under pH2'q it is not clear that whether the BMOpFq-martingale property implies the BMOpGq-martingale property. It is why we show that under pH2'q, BSDE (4.17) admits a unique solution in S 8

F

ˆH2

BMOpGq , as a consequence of the Immersion hypothesis, which is itself a consequence of pH1q. Lemma 4.14. Assume that pH1q-pH2'q and Assumptions 4.8 and 4.13 hold. Then, the following BSDE

Y b t " A ´ż T t g b ps, Y b s `ξa s , Z b s `γs q ´Ds `λs f pY b s qds ´ż T t Z b s ¨dW s , (4.29) 
where f pxq :" 1´e ´αx α admits a solution in S 8

F

ˆH2

BMOpGq if and only of A " 0. In this case, the solution is unique. Proof. Assume that A " 0. We aim at showing that BSDE (4.29) admits a (unique) solution in S 8

F

ˆH2

BMOpGq . Consider the truncated BSDE

Y b,n t " 0 ´ż T t g b ps, Y b,n s `ξa s , Z b,n s `γs q ´Ds `λn s f pY b,n s qds ´ż T t Z b,n s ¨dW s , (4.30) 
which can be rewritten under Assumption 4.8

Y b,n t " 0 ´ż T t g b ps, ξ a s , γ s q ´Ds `ms Y b,n s `ηs ¨Zb,n s `λ n s Y b,n s ds ´ż T t Z b,n s ¨dW s ,
with m s :" mps, Y b,n s `ξa s , ξ a s q, η s :" ηps, Z b,n s `γs , γ s q and λn s :" λ n s ş 1 0 e ´αθY b,n s dθ. Then, following Step 1 and Step 2 in the proof of Lemma 4.11 and since g b ps, ξ a s , γ s q´D s is nonnegative under Assumption 4.13, we show that BSDE (4.30) admits a unique solution pY b,n , Z b,n q P S 8

F

ˆH2

BMOpFq such that ´eMT pT ´tq M ď Y b,n t ď 0, for all t P r0, T s, P ´a.s.,

where M is a positive constant. We show now that the H 2 BMOpGq norm of Z b,n does not depend on n by following Step 3 of the proof of Lemma 4.11. Let ρ P T pGq be a random horizon and β ă 0. Using Itô's formula, we obtain

e βY b,n ρ " 1 ´ż T ρ βe βY b,n s ˜gb ps, Y b,n s `ξa s , Z b,n s `γs q ´Ds `λn s 1 ´e´αY b,n s α ¸ds ´ż T ρ βe βY b,n s Z b,n s ¨dW s ´β2 2 ż T ρ e βY b,n s }Z b,n s } 2 ds.
Hence, using the fact that Y b,n is non positive and uniformly bounded in n and taking conditional expectations, we have for any ρ P T pGq, from the Immersion property pH1q

|β| 2 2 E « ż T ρ e βY b,n s }Z b,n s } 2 ds ˇˇˇˇG ρ ff ď 1 `|β|E « ż T ρ e βY b,n s |D s |ds ˇˇˇˇG ρ ff `|β|E « ż T ρ e βY b,n s |g b ps, Y b,n s `ξa s , Z b,n s `γs q|ds ˇˇˇˇG ρ ff .
Since ξ a , D and γ are bounded, using the fact that |g b ps, y, zq| ď µp1 `|y| `}z} 2 q, we obtain

ˆ|β| 2 2 ´2µ|β| ˙E « ż T ρ e βY b,n s }Z b,n s } 2 ds ˇˇˇˇG ρ ff ď e |β|}ξ b }8 `|β|e β}Y b,n }8 Cp1 `}Y b,n } 8 q,
with C ą 0. Choosing β ą 4µ and using the boundedness of Y b,n uniformly in n, we deduce that there exists a constant C ą 0 which does not depend on n such that

E « ż T ρ }Z b,n s } 2 ds ˇˇˇˇG ρ ff ď C.
Thus, }Z b,n } H 2 BMOpGq is uniformly bounded in n. We prove now the convergence of the sequence pY b,n q in S p F for every p in order to apply Theorem 1 of [START_REF] Barlow | On convergence of semimartingales[END_REF]. Recall that Y b,n t ď 0, for every t P r0, T s. Then, from the comparison theorem for quadratic BSDEs (see e.g. [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF]Theorem 2.6]) and since Y b,n is non positive, the sequence pY b,n q n is non-decreasing. Hence, it converges almost surely to

Y b t :" lim nÑ8 Y b,n t
such that ´eMT pT ´tqM ď Y b t ď 0 for all t P r0, T s.

Fix 0 ă t 0 ă T , we notice that pY b,n , Z b,n q is also the solution to the following BSDE for

0 ď t ď t 0 Y b,n t " Y b,n t0 `ż t0 t g b ps, Y b,n s `ξa s , Z b,n s `γs q ´Ds `λn s f pY b,n s qds ´ż t0 t Z b,n s ¨dW s .
Hence, for every n ě 1 and p, q ě n, by setting δY :" Y b,p ´Y b,q and reproducing the proof of Theorem 4.12 with t 0 ă T as terminal time instead of T , we deduce that for every r ě 0 there exists C r ą 0 which does not depend on p, q such that

E « sup tPr0,t0s |δY t | 2 ff ď C r ¨E " |δY t0 | 2 ‰ `E « ˆż t0 0 |λ p s ´λq s |ds ˙rff 2 r '.
Hence, there exists C ą 0 such that for every n ě 0 sup p,qěn

E « sup tPr0,t0s |δY t | 2 ff ď C ¨E " |Y b,n t0 ´Y b t0 | 2 ı `E « ˆż t0 0 |λ n s ´λs |ds ˙rff 2 r '.
By Lebesgue's dominated convergence Theorem and since E " Λ r t0 ‰ ă 8, we deduce that the sequence pY b,n 1 r0,t0s q is a Cauchy sequence in S 2 F , and knowing that Y n is uniformly bounded in n, pY b,n 1 r0,t0s q is a Cauchy sequence in S p F for every p ě 1. Thus, Y b,n 1 r0,t0s converges to Y b 1 r0,t0s in S p F for every p ě 1. As in the proof of Theorem 4.12, we deduce from Theorem 1 in [START_REF] Barlow | On convergence of semimartingales[END_REF] that Y b is a semimartingale such that for every t ă T ,

Y b t " Y b 0 `ż t 0 A s ds `ż t 0 Z b s ¨dW s ,
where for all p ě 1 and

0 ď t 0 ă T E «˜s up tPr0,t0s ż t 0 Z b s ¨dW s ¸pff ď K, E « ˆż t0 0 |A s |ds ˙pff ď K,
for some K ą 0, and

lim nÑ8 E « ˆż t0 0 |Z b,n s ´Zb s | 2 ds ˙p 2 ff " 0, lim nÑ8 E « ˆż t0 0 |A n s ´As |ds ˙pff " 0.
Hence, there exists a F-predictable process Z b such that for every

0 ď t ă T Y b t " Y b 0 `ż t 0 g b ps, Y b s `ξa s , Z b s `γs q ´Ds `λ s Y b s ds `ż t 0 Z b s ¨dW s .
Thus, for ε ą 0 we deduce that there exists a F-predictable process Z b such that for every

0 ď t ă T Y b t " Y b pT ´εq_t ´ż pT ´εq_t t g b ps, Y b s `ξa s , Z b s `γs q´D s `λ s Y b s ds`ż pT ´εq_t t Z b s ¨dW s . (4.32)
Moreover using (4.31)

|Y b pT ´εq_t | " lim nÑ8 |Y b,n pT ´εq_t | ď εM e µT ÝÑ εÑ0 0 " Y b T ,
which implies Y b t is continuous at t " T . Then, taking the limit when ε goes to 0 in (4.32), the pair of processes pY b , Z b q satisfies BSDE (4.29). Besides, we have proved that Y b is in S 8

F and non positive. Hence, following the same lines of the proof of the uniform boundedness of }Z b,n } H 2 BMOpGq , we deduce that }Z b } H 2 BMO pGq ă `8. Since Y b is bounded and since }Z b } H 2 BMO pGq ă `8, we deduce that pY b , Z b q is the unique solution in S 8

F

ˆH2

BMOpGq of (4.29), in the sense of Definition 4.5. Assume now that there exists a solution pY b , Z b q. Following the Step 1 of the proof of [18, proposition 3.1], we show that necessarily A " 0. 

ˆH2

BMOpGq . Remark 4.16. Even if Assumption 4.13 is not too restrictive, especially from the point of view of financial application, we would like to point out the fact that it is not a necessary condition. Consider for simplicity the setting corresponding to α " 0, and assume that ξ a is a deterministic continuous function of time pwhich may be of unbounded variation and thus not a semimartingaleq, and consider under pH2'q the following linear BSDE " ρpεq, so that we obtain Y T ´ε ÝÑ ξ a T when ε ÝÑ 0. However, we cannot hope to solve BSDE (4.35) without assuming at least that ξ a is left-continuous at time T . Indeed, assume that ξ a " 1 r0,T q and choose λ s " 1 T ´s . Then, Y T ´ε " ´1 Û εÑ0 ξ a T " 0, which means in this case that BSDE (4.35) does not admit a solution.

Y t " ξ a T `ż T t λ
The previous remark leads us to hypothesize that Assumption 4.13 is not necessary to obtain existence and uniqueness of the solution to BSDE (4.33). We give the following conjecture that we leave for future research.

Conjecture. Assume pH1q-pH2'q hold and that g b ps, 0, 0q is non-negative for every s P r0, T s. s is a BMOpGq-martingale.

Proof. We have shown the uniqueness of the solution in Lemma 4.9. The existence under pH2q (resp. pH2'q) of a triplet of processes pY, Z, U q satisfying BSDE (4. where ϕ s :" g b pt, ξ a s , γ s q´D s is non-negative and Λ s " ş s 0 λ u du. For the sake of simplicity, we set η s :" ηps, Zb s `γs , γ s q and C a positive constant which may vary from line to line. On the one hand, knowing that ϕ is bounded and using the integration by part formula, we obtain where C ą 0 does not depend on ρ. On the other hand, using the fact that Zb P H 2 BMO pGq and from the existence of a positive constant M 1 such that η u :" ηps, Zb u `γu , γ u q ď M 1 p1 `} Zb u }q, we get

E ρ 1 ď C ˜E « ż T
E ρ 2 " CE « lim sÑT ^τ e Λs ż T s e ´Λu |η u ¨Z b u |du ´eΛρ ż T ρ e ´Λu |η u ¨Z b u |du `ż T ^τ ρ |η u ¨Z b u |du ˇˇˇˇG ρ ff ď C 1 ,
where C 1 ą 0 does not depend on ρ. We have thus shown that under pH2'q Finally, under pH2q or pH2'q, ş 0pe αUs ´1qdM s is a BMOpGq-martingale.

esssup ρPT pGq E « ż T ρ |e ´α Ỹ b s ´1| 2 λ s ds ˇˇˇˇG ρ ff ă `8. ( 4 
To conclude the proof, we have just to check that pY, Z, U q is a solution of BSDE (4.1) in the sense of Definition 4.1 which is easily satisfied since Y is bounded and ş 0 Z s ¨dW s ş¨0 pe αUs ´1qdM s is a BMOpGq martingale.

A numerical example under pH2'q

In this section, we solve numerically the exponential utility maximization problem (3.2). We have seen in Theorem 3.4 that it can be reduced to solving BSDE (3.5), whose solution is completely described, using Proposition 4.5, by the solution of BSDE (4.33) that we recall

Y b t " ξ a T ´ż T t f b ps, Y b s , Z b s , ξ a s ´Y b s qds ´ż T t Z b s ¨dW s , t P r0, T s,
where we remind the reader that f b ps, y, z, uq :" g b ps, y, zq `λs 1 ´eαu α , g b ps, y, zq :" z ¨θs `}θ s } 2 2α .

We will work for simplicity in the framework summed up in the following assumption.

Assumption 5.1. pC ξ q We choose ξ b in the decomposition (3.1) equal to 0. pC f q The coefficient λ : r0, T s Ñ R `is defined by λ s " 1

T ´s for all s P r0, T s. Notice that • Under Condition pC f q, Assumption pH2 1 q is satisfied.

• The condition ξ b " 0 is necessary in this paper under pH2'q in view of Proposition 4.5.

5.1 An implicit scheme to solve the Brownian BSDE (4.33)

In this section, we compute numerically the solution of BSDE (4.33) using an implicit scheme, studied in [START_REF] Bouchard | Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations[END_REF] and [START_REF] Bender | A forward scheme for backward SDEs[END_REF] among others, mimicking the so-called Picard iteration method to solve a Lipschitz BSDE. Our aim here is not to bring a numerical analysis of the scheme presented below, but rather to follow the method of the proof of Theorem 4.15 where the Y process is obtained as a monotonic limit of solutions to Lipschitz BSDEs with λ truncated at a level n. In particular, we do not prove any speed of convergence with respect to the truncation level n and leave this aspect for future research. Recall the approached Lipschitz BSDE

Y b,n t " ξ a T ´ż T t g b ps, Y b,n s , Z b,n s q `λn s 1 ´eαpξ a s ´Y b,n s q α ds ´ż T t Z b,n s ¨dW s , (5.1) 
with g b ps, y, zq " }θs} 2 2 `θs ¨z and λ n s :" λ s ^n. Let pt k q k be a subdivision of r0, T s such that 0 " t 0 ă t 1 ă ... ă t N " T , and denote by ∆ k the increment t k`1 ´tk . For the sake of simplicity, we also introduce the notation ∆ k W :" W t k`1 ´Wt k . Denoting by pY b,n,L , Z b,n,L q the solution to the Lth Picard iteration associated to (5.1), the solution of BSDE (5.1) associated to a truncation level n is computed by $

' ' ' ' ' & ' ' ' ' ' % Y b,n,L T " ξ a T , Z b,n,L t k " 1 ∆ k E " Y b,n,L t k`1 ∆ k W ı , Y b,n,L t k " E " Y b,n,L t k`1 ˇˇFt k ı ´∆k ˜gb pt k , Y b,n,L´1 t k , Z b,n,L´1 t k q `λt k ^n 1 ´eαpξ a t k ´Y b,n,L´1 t k q α ¸. (5.2) 
In all this section, we assume that the increment ∆ k is constant, and we set ∆ :" ∆ k .

Remark 5.2. Notice that the truncation does not act as soon as n ě 1{∆. So, this numerical scheme limits us to choose n smaller than 1{∆. Obviously, when ∆ goes to 0, the truncation acts for bigger truncation level n. So, limiting n to be smaller than ∆ is in fact an artifact of the computation coming from the previous numerical scheme.

5.2 Numerical solution of the utility maximization problem (2.1)

In this section, we solve numerically the utility maximization problem (2.1) when d " 1 for simplicity. We need to build a default time τ knowing that its associated intensity λ is given by Relation (2.2). According to [START_REF] Jeanblanc | An explicit model of default time with given survival probability[END_REF], given a positive G-local martingale and an increasing process Λ such that Z t :" N t e ´Λt ď 1, for t ě 0, we can construct a probability measure Q Z such that Q Z pτ ą tq " Z t . In particular, taking N " 1, from [19, Section 2.1], τ is an exponential random variable with intensity λ. Then, by setting φ an exponential random variable with intensity 1, the default time τ n associated with intensity λ ^n is given by

τ n " inf " t ě 0, ż t 0 λ s ^n ds ě φ * ^T. (5.3) 
Notice that pτ n q n is a non-decreasing bounded sequence, which converges to τ defined by

τ " inf " t ě 0, ż t 0 λ s ds ě φ * ^T.
Proposition 5.3. Under Assumption 5.1, Hypothesis pH1q holds for every τ n .

Proof. This result is a direct consequence of [14, Section 12.3.1].

We give now an explicit formula to compute τ n . According to (5.3), τ n satisfies the following equation for φ an exponential random variable ż τn 0 1 T ´s ^n ds " φ.

By considering the two cases s ď T ´1 n and s ď T ´1 n we get φ "

ż τn^pT ´1 n q 0 1 T ´s ds `ż τn τn^pT ´1 n q n ds " log ˆT T ´τn ^pT ´1 n q ˙`n ˆτn ´τn ^ˆT ´1 n ˙˙.
If τ n ď T ´1 n , then τ n " T p1 ´e´φ q and if τ n ą T ´1 n then τ n " φ`nT ´1´logpnT q n . Thus, the simulation of τ n can be easily achieved from the simulation of the exponentially distributed random variable φ.

Assume that when the default time appears before the maturity T , the agent has to buy a put with strike K. Then, ξ a is given by ξ a s :" ˆK ´S0 e σWs`´µ´σ (5.4)

From now on, we use the following data Data. T " 1, α " 0.25, ∆ " 0.02, S 0 " 0.5, σ " 1.0, µ " 1.0, K " 1.0, θ " 1.0.

We take three truncation level n 1 " 50, n 2 " 10, n 3 " 2, n 4 " 1 and we simulate M " 10 6 paths of the solution pY b,ni , Z b,ni q for i P t1, 2, 3, 4u. The same path of the solutions of BSDE (5.1) for a truncation level n i , for i P t1, 2, 3, 4u, denoted pY b,ni , Z b,ni q are given in Figure 1. Given a truncation level n, we would like emphasize the dependence between the probability that the default time appears after T and the value of the utility maximization problem (2.1). Denote p n :" Ppτ n ą T q and notice that p n is non-increasing with respect to n since pτ n q n is non-decreasing. According to [START_REF] Jeulin | Semi-martingales et grossissement d'une filtration[END_REF] p n " e ´şT 0 λs^n ds .

We can compute easily p n as a function of n by considering the cases T ď 1 n and T ą 1 n . Then we obtain

p n " # e ´nT if T ď 1 n e ´1 nT if T ą 1 n .
Besides, the case n " 0 corresponds to the classical utility maximization problem without default time. Moreover, we know that lim nÑ`8 τ n " τ and recall that under Assumption (H2'), the support of τ is r0, T s we obtain lim nÑ`8

p n " 0. The value V n p1q of the utility maximization problem (2.1) associated to the default time τ n is given by V n p1q :" ´e´αp1´Y b,n 0 q . Since p n (resp. Y n 0 ) is non-increasing (resp. non-decreasing) with respect to n, V n p1q is a non-increasing function of n and thus V n p1q " F pp n q with F : r0, 1s ÝÑ R ´a non-decreasing mapping. Interpretation of Figure 2 When there is a default time, which corresponds to the case n Ñ `8, the value of Problem 2.1 is obviously less than the case without default time (which corresponds to n " 0). We can interpret this by the fact that the performance of the investor when she knows that her default time appears before the maturity is less than her performance in the case without default time.

We now study the influence of p n on the indifference price of the claim ξ, denoted by P n .

Recall that: P n :" inf p ě 0, V px `pq ě V 0 pxq ( , where V 0 corresponds to the value of Problem 2.1 when ξ " 0. We denote by py b,n , z b,n q the unique solution to BSDE (5.1) when ξ " 0: We deduce that P n satisfies V px `Pn q " V 0 pxq ðñ ´e´αpx`Pn´Y b,n 0 q " ´e´αpx´y b,n 0 q ðñP n " Y b,n 0 ´yb,n 0 . Proposition 5.4. P n is a non-negative and non-increasing function G of p n .

Proof. Denote by pY n , Z n q a pair of adapted processes defined by Y n t :" Y b,n t ´yb,n t , and Z b,n t :" Z b,n t ´zb,n t for t P r0, T s where pY b,n , Z b,n q (resp. py b,n , z b,n q) is the unique solution of BSDE (5.1) (resp. (5.5)). Then, pY n , Z n q is the unique solution of the following (Lipschitz) BSDE and y b,n s for s P rt, T s. From the comparison Theorem for Lipschitz BSDEs and since ξ a given by (5.4) is a non-negative process, we deduce that Y n is non-decreasing in n. Thus P n :" Y n 0 is a non-increasing mapping of p n . Besides, by noticing that Y 0

Y n t "
s " E Q rξ a T |F s s,

dQ dP :" E ˜´ż T 0 θ s dW s ¸,
we deduce that P n :" Y n 0 ě Y 0 0 ě 0 for all n.

We now compute P n " Gpp n q in Figure 3. Some remarks concerning Figure 3 • P n seems to be a non-convex function of p n .

• When n " 0 (i.e. p n " 1), we get P 0 " Y 0 0 ´y0 0 . Note that py 0 , z 0 q is the unique solution of the following BSDE Recall that this BSDE solves the utility maximization problem (2.1) through the Y and the Z components. We give numerically a path of this BSDE in Figure 4, obtained by computing τ pωq " 0.562075 with ω P Ω. According to Theorem 3.4, an optimal strategy p ˚is given by p ˚" pZ t `θ α q1 tďτ . We compute an optimal strategy to Problem (2.1) in Figure 5 associated to an initial wealth

y 0 t "
x " 1 and we compare it with the classical case without jump. Interpretation of Figure 5 In this very particular case, when we assume that the default time τ appears almost surely before the maturity, the investor tends to be more cautious by investing less in the risky asset. It is quite reasonable since she knows that she will pay ξ a τ which is a non-negative random variable at default. Note that contrary to what happens for small times where the trading strategies are merely mirrors of each other, the strategy in the default problem becomes more and more similar to the one in the non-default case and the former tends to coalesce with the latter.

« ξ b e ´şT t γ n u du `ż T t e ´şs t γ n u du ´gb ps, 0, 0q ´λ n s ξ a ¯ds ˇˇˇˇF t ff ď e MT p}ξ b } 8 `

 8 M pT ´tq `}ξ a } 8 q.

e

  βY b,n s }Z b,n s } 2 ds.

Theorem 4 . 12 . 2 F

 4122 Let Assumptions pH1q-pH2q and Assumption 4.8 hold. Then the Brownian BSDE Y b t " ξ b ´ż T t g b ps, Y b s ¨dW s , t P r0, T s, (4.25)admits a unique solution pin S ˆH2 F q. In addition, Y b is bounded and ş 0 Z b s ¨dW s is a BMOpFq-martingale.

2 BMO

 2 martingale. Moreover, following the proof of [23, Theorem 3.3] together with the proof of [23, Theorem 2.4], it is easily verified that }η b p¨, Z n ¨q} H pQ n ,Fq is uniformly bounded in n. Thus, from [23, Theorem 3.1] there exists r ą 1 (its conjugate being denoted by r) such that

  Inequalities (4.26), (4.27) and (4.28), we deduce that there exists a positive constant κ such that Inequality (4.26) rewrites

where for all p ě 1 E

 1 
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  Taking f pxq " 1´e ´αx α , δ " 1 in [18, Theorem 4.4] and changing λ in [18, Relation (4.4)] by λ `mb . Since Ỹ b is bounded and non-positive, it holds that E ´Λu pϕ u `|η u ¨Z b u |qdu e Λs λ s ´Λu pϕ u `|η u ¨Z b u |qdu e Λs λ s ds ˇˇˇˇG ´Λu ϕ u du e Λs λ s ds ˇˇˇˇG ´Λu |η u ¨Z b u |du e Λs λ s ds ˇˇˇˇG ρ ff .

  .37) By considering p Ỹ b , Zb q the unique solution of BSDE (4.34), previously studied, and denoting by pY b , Z b q the unique solution of BSDE (4.33), we know that Y b " Ỹ b `ξa s . So according to Inequality (4.37), we obtain esssup ρPT pGq E « ż T ρ |e αpξ a s ´Y b s q ´1| 2 λ s ds ˇˇˇˇG ρ ff ă `8. (4.38)

Figure 1 :

 1 Figure 1: Solutions of BSDE (5.1) with truncation levels n 1 " 50, n 2 " 10, n 3 " 2, n 4 " 1 and n " 0 with Y 0 0 " ´1.37.

Figure 2 :

 2 Figure 2: V n p1q as a function of p n , n P t0, . . . , 50u.

Figure 3 :

 3 Figure 3: Indifference price P n as a function of p n , n P t0, ¨¨¨, 50u.

Figure 4 :

 4 Figure 4: Components Y, Z of the solution of BSDE (5.6).

Figure 5 :

 5 Figure5: An optimal strategy associated to the exponential utility maximization problem (2.1) with ω such that τ pωq " 0.562075 and without default time.

  For any t, there exists a map γpt, ¨q : R `ÝÑ R `, such that pt, uq Þ ÝÑ γpt, uq is F

	Remark 2.1. If instead of considering Assumption pH1q, we had considered the following
	weaker assumption
	(H1')

t b Bpp0, 8qq-mesurable and such that Prτ ą θ|F t s " ż 8 θ γpt, uqdu, θ P R `,

  Proposition 2.2. [11, VII.76] The jumps of a BMOpGq martingale are bounded.

	The previous proposition together with the definition of a BMOpGq martingale imply
	that it is enough for P to be a BMOpGq martingale, that it has bounded jumps and
	satisfies:	esssup	Er |P T ´Pρ | 2 ˇˇG ρ s ă `8.
		ρPT pGq	
	For the class of BMOpGq martingale we have the following property.
	Proposition 2.3. [17, Theorem 2] Assume that P is a G martingale such that there
	exists c, δ ą 0 such that ∆		

τ P ě ´1 `δ and |∆ τ P | ď c, and which satisfies esssup ρPT pGq ErxP y T ´xP y ρ |G ρ s ă `8.

  We reproduce the proof of[START_REF] Kharroubi | Mean-variance hedging on uncertain time horizon in a market with a jump[END_REF] Theorem 4.3]. Step 1 and Step 2 are unchanged and prove that for all t P r0, T s, pY, Z, U q defined by (4.11), (4.12) and (4.13) satisfied BSDE (4.1). From the definition of Y , since Y b and ξ a are in S 2 F we deduce that Y P S 2 G . from the definition of Z, we deduce that Z P H 2 G .

	F	ˆH2 F . Then pY, Z, U q given by
	Y t " Y b t 1 tăτ	`ξa τ 1 těτ ,	(4.11)
	Z t " Z b t 1 tďτ ,	(4.12)
	U t " pξ a t	´Y b t q1 tďτ ,	(4.13)
	is a solution of (4.1) and pY, Z, U q belongs to S 2 G	ˆH2 G	ˆS2 G .
	Proof.		
		ξ a s	´Y b s qds	´ż T

t Z b s ¨dW s , t P r0, T s, (4.10) 4 Consider ρn :" inftt ě ρn´1, |Ut| ě nu and τ0 :" 0, and remark that ş ρn 0 |Us| 2 λsds " ş ρn0 |Us| 2 λsds ď n ş T 0 |Us|λsds ă 8, P´a.s.

admits a solution pY b , Z b q in S 2

  From the orthogonality of W and M , notice that ż 0 Z s ¨dW s `ż 0 pe αUs ´1qdM s is a BMOpGq martingale ðñ ż 0 Z s ¨dW s and ż 0 pe αUs ´1qdM s are two BMOpGq martingales. Y s , Z s q ´gps, r Y s , r Z s q ´λs e αUs ´eα r U s is a point between U s and r U s , m and η are given by Relation(4.15). Knowing that ş 0 Z s ¨dW s and ş 0 r Z s ¨dW s are two BMOpGq-martingales, from Assumption 4.8piiq we deduce that ş 0 ηps, Z s , Zs q ¨dW s is a BMOpGq-martingale and the previous relation re-writes again as: We deduce that the jump of P at time τ is bounded and greater than ´1 `δ with δ :" e ´αc ą 0.

												Us
												α	.
	The equation linearizes to obtain
	δY t " 0	´ż T	^τ	δY s mps, Y s , p Y s q `δZ s ¨ηps, Z s , p Z s q ´λs e α p Us δU s ds
								t^τ	
		´ż T	^τ	δZ s ¨dW s	´ż T	^τ	δU s dH s , t P r0, T s,
						t^τ				t^τ
	where p										
	δY t " 0	´ż T	^τ	δZ s ¨dW Q s	´ż T	^τ	δU s dM Q s	´ż T	^τ	δY s m s ds, t P r0, T s,	(4.16)
		t^τ							t^τ	t^τ
	with	dQ dP	:" E		ˆ´ż 0 ηps, Z s , p Z s q ¨dW s	`ż
	Y t " ξ f ps, Y Proof of Lemma 4.9. Let pY, Z, Uq and p r ´ż T ^τ t^τ Z s ¨dW s ´ż T ^τ t^τ U s dH s ^τ ´ż T t^τ Y, r Z, r Uq be two solutions of BSDE (4.1) above Since p U
	with pY, r Yq P S 8 G	ˆS8 G and such that
	ż 0 Z s ¨dW s	`ż	0 pe αUs ´1qdM s and	ż 0 r Z s ¨dW s	`ż	0 pe α r Us ´1qdM s ,

1) under the Assumption 4.8. Lemma 4.9. Assume that pH1q and Assumption 4.8 hold. Under pH2q or pH2 1 q, the BSDE (4.1): s , Z s , U s qds, t P r0, T s admits at most one solution pY, Z, U q such that Y P S 8 G and ż 0 Z s ¨dW s `ż 0 pe αUs ´1qdM s is a BMOpGq martingale. Remark 4.10. are two BMOpGq martingales. Then pδY :" Y ´r Y, δZ :" Z ´r Z, δU :" U ´r U q solves the BSDE: δY t " 0 ´ż T ^τ t^τ δZ s ¨dW s ´ż T ^τ t^τ δU s dH s ´ż T ^τ t^τ δf psqds, t P r0, T s, where δf psq :" gps, 0 pe α p Us ´1qdM s ˙T , and W Q :" W `ş¨0 ηps, Z s , p Z s q ¨dW s and M Q :" M ´ş¨0 pe α p Us ´1qλ s ds. Note that Q is a well-defined probability measure, as soon as EpP q with P :" ´ż 0 ηps, Z s , p Z s q ¨dW s `ż 0 pe α x Us ´1qdM s , is a true martingale. In that case, the conclusion of the lemma follows by linearization and taking the Q-conditional expectation in (4.16) knowing that m is bounded. It then remains to prove that the process P is a BMOpGq martingale which will imply that its stochastic exponential is a uniformly integrable martingale by Proposition 2.3. Note that since ş 0pe αUs ´1qdM s and ş 0pe α r Us ´1qdM s are two BMOpGq martingales, then according to Proposition 2.2, U τ and r U τ are bounded, hence p U τ is bounded by c ą 0. s is an element between U s and r U s , it is a (random) convex combination of U s and r U s . The convexity of the mapping x Þ Ñ |e αx ´1| 2 implies for any element ρ in T pGq that ż T ρ |e α p Us ´1| 2 λ s ds ď C ˜ż T ρ |e αUs ´1| 2 λ s ds `ż T ρ |e α r Us ´1| 2 λ s ds ¸.

  Brownian motion under the probability Q n , since ş 0 η b ps, p Z n s q ¨dW s is a BMOpFq-martingale from Assumption 4.8piiq. Increasing the constants if necessary, we have ξ a ě ´CY , then taking the conditional expectation under Q n we deduce that

		Step 2: Existence. We turn now to the existence of a solution of BSDE (4.19) in
	S 8 F	ˆH2 BMOpFq . Consider the following truncated BSDE
		p Y n t " ξ b ´ż T t	g b ps, p Y n s , p Z n s q `λn s	1 ´eαpξ a s ´p Y n s _p´CY qq α	ds	t ´ż T	p Z n s ¨dW s .	(4.23)
	Then, the classical quadratic BSDE (4.23) admits a unique solution p p Y n , p Z n q P S 8 F	Ĥ2
	BMOpFq (see e.g. [25]). We can then rewrite BSDE (4.23) as
		p Y n t " ξ b ´ż T t `λn s 1 ´eαpξ a ´gb ps, 0, 0q `´λ n s 1 p Y n s ě´CY s `CY q α 1 p Y n s ă´CY `ηb ps, p `mb ps, p Y n s q ¯p Y n s ´λ n s ξ a s 1 p Y n s ě´CY t Z n s q ¨p Z n s ¯ds ´ż T p Z n s ¨dW s ,	(4.24)
	where λn s :" λ s	^n ş 1 0 e ´αθp p Y n s	´ξa s q dθ.
	Set γ n psq :" λn s 1 | p Y n s |ďCY (4.24)	`mb ps, p Y n s q and Y n :" p Y n e	´ş0 γ n psqds , we obtain from BSDE
	Y n t " ξ b e	´şT 0 γ n u du ´ż T t	e	´şs 0 γ n u du ´gb ps, 0, 0q ´λ n s ξ a s 1 p Y n s ě´CY ¯ds
		´ż T t	e	´şs 0 γ n u du λ n s	1 ´eαpξ a s `CY q α	1 p Y n s ă´CY ds	t ´ż T	e	´şs 0 γ n u du p Z n s ¨dW Q n
									and
									| λ n s :" λ n s e αpξ a s ´Ą Y n s q	ż 1	e ´αθpY n s ´Ą Y n s q dθ.
	0 `mb ps, Y n s , r Y n s q ¯δY n s ds :"I t ě ´eMT ´}ξ ´şs Thus pδY n , δZ n q is solution of δY n t " 0 ´ż T η b ps, Z n s , r Z n s q ¨δZ n s `´| λ n s p Y n t λn u 1 x Y n u ě´C Y looooooooooooooooooooooomooooooooooooooooooooooon ´ż T δZ n s ¨dW s . (4.21) s 1 p Y n s ě´CY ds du λn ˇˇFt ı¯.
	t Hence, knowing that Since I " 1´e ´şT t λn u 1 x ş 0 Z n s ¨dW s and Y n u ě´C Y	t s ¨dW s are two BMOpFq martingales and using ş 0 Zn
	Assumption 4.8, we know that η b is in H 2 BMOpFq and we can define a probability Q by
									dQ dP	:" E	0 ˜´ż T	η b ps, Z n s , r Z n s q ¨dW s	¸.
	Moreover, W Q :" W	`ş¨0 η b ps, Z n s , r Z n s qds is then a Brownian motion under Q. So BSDE
	(4.21) rewrites as
						δY n t " 0	´ż T	´| λ n s	`mb ps, Y n s , r Y n s q ¯δY n s ds	´ż T	δZ n s ¨dW Q s .	(4.22)
									t	t
	Set								Ă δY	n t :" e	´şt 0	| λ n s	`mb ps,Y n s , r Y n s qds δY n t , for all t P r0, T s.
	Then p Ă δY	n	, Ă δZ	n	q satisfies
								Ă δY	n t " 0	´ż T	e	´şs 0	| λ n u	`mb pu,Y n u , r Y n u qds δZ n s ¨dW Q
									t

s , t P r0, T s, which admits p0, 0q as unique solution. s , t P r0, T s,

where dQ n " Ep´ş T 0 η b ps, p Z n s q ¨dW s qdP and W Q n :" W `ş¨0 η b ps, p Z n s qds is a b } 8 `M pT ´tq `}ξ a } 8 E Q n " ż T t e

du ď 1, we deduce that p Y n t ě ´CY . A posteriori, we deduce that the solution p p Y n , p Z n q of BSDE (4.23) is in fact the unique solution pY b,n , Z b,n q of BSDE (4.19) in S 8 F

  βt |δY t | 2 " 0

	´ż T	2e βs δY s ϕ p,q s	`eβs ´2λ q s e αpξ a s ´Ysq `2m b ps, Y p s , Y q s q	`β¯| δY s | 2 ds
	t ´2 ż T	e βs δY s δZ s ¨dW Q n s	´ż T	e βs }δZ s } 2 ds.
		t			t
	Using the non-negativity of λ q and choosing β ą 2M , we deduce that
	e βt |δY t | 2 ď 0	´ż T	2e βs δY s ϕ p,q s ds	´2 ż T
			t	

t e βs δY s δZ s ¨dW Q n s ´ż T t e βs }δZ s } 2 ds.

  Theorem 4.15. Assume pH1q-pH2'q hold. Assume moreover that Assumption 4.13 holds. Then under Assumption 4.8 the BSDE `γt , we deduce that pY b , Z b q is the unique solution of (4.33) in S 8

	Y b t " ξ a T	´ż T	f b ps, Y b s , Z b s , ξ a s	´Y b s qds	´ż T	Z b s ¨dW s , t P r0, T s,	(4.33)
				t				t
	with admits a unique solution such that Y b is bounded and f b ps, y, z, uq :" g b ps, y, zq `λs ş 0 Z b 1 ´eαu α s dW s is a BMOpGq-martingale. ,
	Proof. Consider the following BSDE	
	Ỹ b t " 0	´ż T	g b ps, Ỹ b s	`ξa s , Zb s `γs q ´Ds `λs f p Ỹ b s qds	´ż T	Zb s ¨dW s ,	(4.34)
		t						t
	where f pxq :" 1´e ´αx α solution p Ỹ b , Zb q P S 8 ˆH2 . Then, according to Lemma 4.14, BSDE (4.34) admits a unique BMOpGq . By setting Y b t :" Ỹ b t `ξa t and Z b t :" Zb
								F

t

  Then under Assumption 4.8 the BSDE Theorem 4.17. Let Assumptions 4.8 and pH1q-pH2q be in force. Then under pH2q prespectively under pH2 1 q and Assumption 4.13q, BSDE (4.1) precalled belowq Y s , Z s , U s qds, t P r0, T s, admits a unique solution pY, Z, U q such that Y and U are in S 8G and ş 0 Z s ¨dW s `ş¨0 pe αUs 1qdM

	4.3 Existence and uniqueness Theorem for BSDE (4.1)
	Y t " ξ	´ż T	^τ	Z s ¨dW s	´ż T	^τ	U s dH s	´ż T	^τ	f ps,
		t^τ			t^τ			t^τ
	Y b t " ξ a T	t ´´ż T	f b ps, Y b s , Z b s , ξ a s	´Y b s qds	t ´ż T	Z b s ¨dW s , t P r0, T s,
	with admits a unique solution such that Y b is bounded and f b ps, y, z, uq :" g b ps, y, zq `λs ş 0 Z b 1 ´eαu α s dW s is a BMOpGq-martingale.

  1), comes directly from Theorem 4.12 (resp. Theorem 4.15) together with Proposition 4.4 (resp. Proposition 4.5). We know moreover that Y and U are in S 8 G and using the Immersion hypothesis, as a consequence of pH1q, ş 0 Z s ¨dW s is a BMOpGq martingale. Recall that U s " pξ a s ´Y b s q1 sďτ , where Y b is the first component of the solution of the Brownian BSDE (4.17). We prove that ş 0pe αUs ´1qdM s is a BMOpGq martingale Under pH2q. We obtain directly from the definition of pH2q and since Y b , ξ a are bounded Since m b is bounded by M ą 0, following the proof of [18, Theorem 4.4] we can easily show 5 that

							esssup ρPT pGq E	ρ « ż T	|e αpξ a s	´Y b t q ´1| 2 λ t dt	ˇˇˇˇG ρ	ff	ă `8.
	Under pH2'q. We first consider the Brownian BSDE (4.34) that we recall
		Ỹ b t " 0	´ż T	g b ps, Ỹ b s	`ξa s , Zb s `γs q ´Ds `λs f p Ỹ b s qds	´ż T	Zb s ¨dW s ,
							t	t
	where f pxq :" 1´e ´αx α	. Using Decomposition (4.18), we obtain
	Ỹ b t " 0	´ż T	g b pt, ξ a s , γ s q ´Ds	`mb pt, Ỹ b s	`ξa s , ξ a s q Ỹ b s	`ηb pt, Z b s `γs , γ s q ¨Z b s ds
				t		
		´ż T t	λ s	1 ´e´α Ỹ b s α	ds	t ´ż T	Zb s ¨dW s ,
	which can be rewritten
	Ỹ b t " 0	´ż T	g b pt, ξ a s , γ s q ´Ds `pm b pt, Ỹ b s	`ξa s , ξ a s q `λ s q Ỹ b s	`ηb pt, Zb s `γs , γ s q ¨Z b s ds
			t				
	´ż T	Zb s ¨dW s , t P r0, T s,	(4.36)
		t					
	where λs :" λ s s dθ. ´eMT e Λt E ş 1 0 e ´αθ Ỹ b « ż T e ´Λs pϕ s `|ηps, Zb s `γs , γ s q ¨Z b s |qds	ˇˇˇˇG t	ff	ď Ỹ b t ď 0, @t P r0, T s,
							t

  Now, we denote by pY, Z, U q the solution of the following BSDE Y s , Z s , U s qds, t P r0, T s.

						0	´ż T t	z 0 s θ	`θ2 2α	ds	t ´ż T	z s dW s .
	The (unique) solution is given by y 0 t "
	Y t " ξ	´ż T	^τ	Z s dW s	´ż T	^τ	U s dH s	´ż T	^τ	f ps, (5.6)
		t^τ		t^τ					t^τ
	Then, from Proposition 4.5,					
						Y t " Y b t 1 tăτ	`ξa τ 1 těτ ,
						Z t " Z b t 1 tďτ ,
						U t " pξ a t	´Y b t q1 tďτ .

´θ2

2α pT ´tq and z 0 t " 0 for t P r0, T s.

i.e. the smallest closed Borelian set A such that Prτ P As " 1

As usual, we use the french acronym "càdlàg" for trajectories which are right-continuous and admit left limits, P b dt-a.e.

i.e. there exists K, ε ą 0, s.t. KI d ě σtσ T t ě εKI d ,
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