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Central limit theorems for the shrinking target problem

Suppose B i := B(p, r i ) are nested balls of radius r i about a point p in a dynamical system (T, X, µ). The question of whether T i x ∈ B i infinitely often ( i. o.) for µ a.e. x is often called the shrinking target problem. In many dynamical settings it has been shown that if E n := n i=1 µ(B i ) diverges then there is a quantitative rate of entry and lim n→∞ 1 En n j=1 1 B i (T i x) → 1 for µ a.e. x ∈ X. This is a self-norming type of strong law of large num-

bers. We establish self-norming central limit theorems (CLT) of the form lim n→∞ 1 an n i=1 [1 B i (T i x)µ(B i )] → N (0, 1) (in distribution) for a variety of hyperbolic and non-uniformly hyperbolic dynamical systems, the normalization constants are a 2 n ∼ E[ n i=1 1 B i (T i x)µ(B i )] 2 . Dynamical systems to

Introduction

Suppose (T, X, µ) is an ergodic dynamical system and B i (p) is a nested sequence of balls about a point p ∈ X. Recently there have been many papers concerning the behavior of the almost sure limit of the normalized sum 1 En n i=1 1 B i (p) (x) where [START_REF] Chernov | Dynamical Borel-Cantelli lemmas for Gibbs measures[END_REF][START_REF] Kim | The dynamical Borel-Cantelli lemma for interval maps[END_REF][START_REF] Galatolo | Skew products, quantitative recurrence, shrinking targets and decay of correlations[END_REF][START_REF] Gouëzel | A Borel-Cantelli lemma for intermittent interval maps[END_REF][START_REF] Gupta | A Borel-Cantelli lemma for non-uniformly expanding dynamical systems[END_REF][START_REF] Haydn | A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems[END_REF][START_REF] Jaerisch | A Frécehet law and an Erdös-Philipp law for maximal cuspidal windings[END_REF]. If the limit is known to exist almost surely then {B i (p)} is said to satisfy the Strong Borel Cantelli property.

E n := n i=1 µ(B i (p)) diverges
Many of the references we mentioned consider more general sequences of sets than nested balls. The study of hitting time statistics to a sequence of nested balls is sometimes called the shrinking target problem. In this paper we study self-norming central limit theorems for the shrinking target problem, namely the distribution limit of 1 an n i=1 [1 B i (p) -E n ] where a n is a sequence of norming constants. For reasons of exposition we focus on the case where µ(B i (p)) = 1 i , a critical case, where E n = log n. Our results extend (with obvious modifications to the norming sequences) to balls satisfying C 1 i γ 1 ≤ µ(B i (p)) ≤ C 2 i γ 2 where C 1 , C 2 are positive constants and 0 < γ 2 ≤ γ 1 ≤ 1. The main difficulty is to establish that the non-stationary variance has a limit in probability. Our results are limited to non-uniformly expanding systems i.e. those without a contracting direction and are based upon the Gordin [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] martingale approximation approach (see also [START_REF] Liverani | Central limit theorem for deterministic systems[END_REF]). More generally, this paper is also an attempt to study the statistics of nonstationary stochastic processes arising as observations (which perhaps change over time) on an underlying dynamical system (which may change over time). Conze and Raugi [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0,1[END_REF] studied similar problems for sequential expanding dynamical systems.

Somewhat related results were obtained by Nándori, Szász and Varjú [START_REF] Nándori | A central limit theorem for time-dependent dynamical systems[END_REF] who obtained central limit theorems in the setting in which a fixed observation φ : X → R was considered on a space on which a sequence of different transformations acted T i : X → X act, preserving a common invariant measure µ. The main difficulty in [START_REF] Nándori | A central limit theorem for time-dependent dynamical systems[END_REF] was also controlling the variance, but the setting in which the underlying maps change but the observation is fixed is simpler in some respects and more difficult in others.

We obtain fairly complete results in the case in which the transfer operator with respect to the invariant measure is quasicompact in the bounded variation norm.

These results are contained in Proposition 5.1 and Theorem 6.4. For systems in which the transfer operator is quasicompact in a Hölder or Lipschitz space we show that under the assumption we call (SP) (derived from a Gal-Koksma lemma as formulated by Sprindzuk [START_REF] Vladimir | Metric theory of Diophantine approximations[END_REF]) or a form of short returns assumption called Assumption C we have a central limit theorem ( Theorem 3.1). Assumption C and the SP property have been shown to hold for generic points in a variety of non-uniformly expanding systems [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems[END_REF][START_REF] Gupta | Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and Lorenz-like maps[END_REF][START_REF] Holland | Extreme value distributions for nonuniformly hyperbolic dynamical systems[END_REF].

In Section 2 we discuss the set-up, describe the martingale approach we use, prove some general results on variance and discuss the SP property and Assumption C. Section 3 gives our results under the assumption of quasi-compactness in Hölder norms and also some applications. In Section 4 we give our results when we have quasi-compactness of the transfer operator in the bounded variation norm, and we give applications to piecewise expanding maps in higher dimensions. The last section is a concluding discussion, while the Appendices describe the Gal-Koksma lemma we use and show that Assumption C is satisfied for generic points in many of our applications.

The setup.

We suppose that (T, X, µ) is an ergodic dynamical system. Let the transfer operator P be defined by φψ•T dµ = P φψdµ for all φ, ψ ∈ L 2 (µ) so that P is the adjoint of the Koopman operator Uφ := φ • T with respect to the invariant measure µ. Suppose B α is a Banach space of functions and φ 1 ≤ C φ α where . α is the Banach space norm and . 1 is the L 1 norm with respect to µ. We assume P restricts to an operator

P : B α → B α such that P n φ α ≤ C 1 θ n φ α for all φ ∈ B α such that φ dµ = 0.
This implies exponential decay of correlations of the form, that for some 0 < θ < 1,

| φψ • T n dµ -( φ dµ)( ψ dµ)| ≤ Cθ n φ α ψ 1
for all φ ∈ B α , ψ ∈ L 1 µ. In our applications we will have the pairs (BV (X), L 1 (µ))

or (H γ (X), L 1 (X)) where BV (X) is the space of function of bounded variation and H γ (X) is the space of Hölder functions of exponent γ. For example if T is a smooth uniformly expanding map of the unit interval X then B α could be taken as the Banach space of functions of bounded variation BV (X). In this paper we will consider Lipschitz rather than Hölder functions, as our results and proofs immediately generalize to the Hölder setting with the obvious changes.

Remark 2.1 The weaker assumption of exponential decay of correlations

| φψ • T n dµ -( φ dµ)( ψ dµ)| ≤ Cθ n φ α ψ ∞
implies that P n φ 1 ≤ Cθ n φ α (by taking ψ to be sign(P n φ)) and hence P contracts exponentially in the L 1 norm. This assumption is sufficient for all our results on variance in Section 2, with the exception of the proof of the boundedness of the terms w j , given in Lemma 2.9 which seems to require our stronger assumption that P n φ α ≤ C 1 θ n φ α . These estimates on the growth of w j are used in the proof of Theorem 3.1. If B α is the space of functions of bounded variation then the w j terms are easily seen to be uniformly bounded under the assumption P n φ BV ≤ Cθ n φ BV .

Let p ∈ X and let B n (p) be a sequence of nested balls about p such that µ(B n (p)) = 1 n . Let 1 Bn(p) be the characteristic function of B n (p). We will sometimes write E[φ] or φ for the integral φ dµ when the context is understood. Our results generalize immediately to sequences of nested balls with bounds We define φ α n = φα n -φα n so that φ α n = 0. For ease of notation we will subsequently drop the superscript α on φ α n and φα n . Define φ 0 = 0 and for n ≥ 1

C 1 n γ 1 ≤ µ(B n (p)) ≤ C 2 n γ 2 for constants C 1 , C 2 > 0 and 0 < γ 2 ≤ γ 1 ≤ 1 (
w n = P φ n-1 + P 2 φ n-2 + . . . + P n φ 0 = n j=1
P j φ n-j so that w 1 = P φ 0 , w 2 = P φ 1 + P 2 φ 0 , w 3 = P φ 2 + P 2 φ 1 + P 3 φ 0 etc... For n ≥ 1 define

ψ n = φ n -w n+1 • T + w n
Recall our assumptions φn α ≤ Cn k (so φ n α ≤ Cn k ) and

P n φ α ≤ C 1 θ n φ α for all φ ∈ B α such that φdµ = 0. Hence w n α ≤ C 2 φ n α , w n • T α ≤ C 3 φ n α
(since UP φ α ≤ C φ α for all φ ∈ B α ) and hence ψ n α ≤ C 4 φ n α . Using the fact that P (w n+1 • T ) = w n+1 P 1 = w n+1 one may show that P ψ n = 0.

Since UP (•) = E[•|T -1 B], P ψ j = 0 implies that E[ψ j |T -1 B] = 0 and in turn E[ψ j • T j |T -1-j B] = 0 (since T preserves µ). Furthermore ψ j • T j is T -j B measurable for all j ≥ 0.
Following the approach of Gordin we will express n j=1 φ j • T j as the sum of a (non-stationary) martingale difference array and a controllable error term and then use the following Theorem 3.2 from Hall and Heyde [START_REF] Hall | Martingale limit theory and its application, Probability and Mathematical Statistics[END_REF]:

Theorem 2.3 (Theorem 3.2 [16]) Let {S n,i , F n,i , 1 ≤ i ≤ k n ,
n ≥ 1} be a zeromean square-integrable martingale difference array with differences X n,i and let η 2 be an almost sure finite random variable. Suppose that:

(a) max i |X n,i | → 0 in probability; (b) i X 2 n,i → η 2 in probability; (c) E(max i X 2 n,i ) is bounded in n; (d) the σ-fields are nested: F n,i ⊂ F n+1,i for 1 ≤ i ≤ k n , n > 1.
Then S n,kn → Z (in distribution) where the random variable Z has the character-

istic function E(exp(-1 2 η 2 t 2 )).
As is common in the application of martingale theory to non-invertible dynamical systems we will have to consider the natural extension so that we have a martingale in backwards time. We outline our scheme of proof.

Let (σ, Ω, m) be the natural extension of (T, X, µ). Each ψ j lifts to to a function ψ * j on Ω in a natural way, ψ * j (. . . ω -2 ω -1 .ω 0 ω 1 . . .) := ψ j (ω 0 ). To simplify notation we write simply ψ j instead of ψ * j . We define scaling constants by a 2 n = E( n j=1 φ j • T j ) 2 . This sequence of constants play the role of non-stationary variance. Giving estimates on the growth and nondegeneracy of a n in this non-stationary setting is more difficult than in the usual stationary case.

We define a triangular array X n,i = 1 an ψ n-i • σ -i , i = 1, . . . , n, n ∈ N, and put S n,i = i j=1 X n,j for the partial sums (along rows). Then X n,i is F i := σ i B 0 measurable where B 0 is the σ-algebra B lifted to Ω. Note that in Theorem 2.3 we take F n,i := F i for all n and k n = n. The F i form an increasing sequence of σ-algebras. We obtain 

E[S n,i+1 |F i ] = S n,i + E[X n,i+1 |F i ] where by stationarity E[X n,i+1 |F i ] = E[ψ n-i-1 |σ -1 B 0 ] = 0. Hence E[S n,i+1 |F i ] = S n,i
[w j • T j -w j • T j+1 ] → 0 in L 1 which implies that lim n→∞ 1 an n-1 j=0 φ j •T j → N(0, 1) in distribution.

Some lemmas on variance

In this section we establish some preliminary results on the growth of the variance E[( n j=1 φ j ) 2 ] that will be useful in determining the scaling constants a n . For further reference let us notice that P n φ α ≤ C 1 θ n φ α and φ 1 ≤ C 1 φ α and that there exists a constant a such that

j>a log i P j φ i 1 ≤ 1 i 3 . (2.1) Lemma 2.4 lim sup n→∞ 1 log n E( n i=1 φ i • T i ) 2 ≥ 1
Proof: By exponential decay of correlations and (2.1) we get for the long term interactions:

j>a log i+i φ i • T i φ j • T j ≤ c 1 i 2 ,
where we used exponential decay and our bound φ j 1 ≤ C 1 φ j α ≤ Cj k , where C,k are independent of j. This bound is from assumption (ii). Recall φ j = φjφj and φj 1 ≤ C 3 j (for some C 3 ). Thus for the short term interactions we get

i+a log i j=i+1 φ i • T i φ j • T j = i+a log i j=i+1 φi • T i φj • T j + O( a log i i 2 ) whence n i=1 j>i E[φ i • T i φ j • T j ] = O(1) + n i=1 i+a log i j=i+1 E[ φi • T i φj • T j ]. Since E( n i=1 φ i • T i ) 2 = n i=1 E(φ 2 i ) + 2 n i=1 j>i E[φ i • T i φ j • T j ] and n i=1 i+a log i j=i+1 E[ φi • T i φj • T j ] ≥ 0 the lemma is proved. Lemma 2.5 n i=1 n j=i+1 φ i • T i φ j • T j = n i=1 (φ i w i ) • T i
Proof: Recalling that φ 0 = 0 this follows by a direct calculation and rearrangement of terms as

n-1 i=1 n j=i+1 φ i • T i φ j • T j = n j=2 j-1 i=1 φ i • T i φ j • T j = n j=2 j-1 i=1 P j-i φ i φ j = n j=2 ( j-1 i=1 P j-i φ i )φ j = n j=2 w j φ j .
The following lemma is the main result of this subsection:

Lemma 2.6

a n = E( n i=1 φ i • T i ) 2 = n i=1 E[ψ 2 i ] -w 2 1 + w 2 n+1
Proof: Let us first observe that factoring out yields

ψ 2 j = φ 2 j + 2φ j (w j -w j+1 • T ) + (w j -w j+1 • T ) 2 = φ 2 j + 2φ j (w j -w j+1 • T ) + w 2 j + w 2 j+1 • T -2w j w j+1 • T
which when integrated leads to

ψ 2 j = φ 2 j + 2 φ j (w j -w j+1 • T ) + w 2 j + w 2 j+1 -2 w j w j+1 • T = φ 2 j + 2 φ j w j -2 P φ j w j+1 + w 2 j + w 2 j+1 -2 P w j w j+1 = φ 2 j + 2 φ j w j -2 P φ j w j+1 + w 2 j + w 2 j+1 -2 (w j+1 -P φ j )w j+1 = φ 2 j + 2 φ j w j + w 2 j -w 2 j+1 .
Since by Lemma 2.5

a n = n i=1 E(φ 2 i ) + 2 n i=1 n j=i+1 φ i • T i φ j • T j = n i=1 E(φ 2 i ) + 2 (φ i w i ) • T i
the statement follows by substituting ψ 2 j -w 2 j + w 2 j+1 for the terms inside the sum on the RHS and then telescoping out the expected values of w 2 j .

Property (SP)

Several authors [START_REF] Kleinbock | Logarithm laws for flows on homogeneous spaces[END_REF][START_REF] Chernov | Dynamical Borel-Cantelli lemmas for Gibbs measures[END_REF] have used a property derived from the Gal-Koksma theorem (see Appendix) to prove the SBC property for sequences of balls. Later we will show that in certain settings the (SP) property also implies a CLT.

Suppose B i are balls and let

f i = 1 B i • T i . If n i=m n j=i+1 E(f i f j ) -E(f i )E(f j ) ≤ C n i=m E(f i ) (SP )
for arbitrary integers n > m then the balls are said to have the (SP) property.

Short returns and Assumption (C)

In this section we discuss a condition on short return times first considered, to our knowledge, by P. Collet [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems[END_REF]. We have called it Assumption (C). This condition has been used to establish extreme value statistics [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems[END_REF][START_REF] Holland | Extreme value distributions for nonuniformly hyperbolic dynamical systems[END_REF][START_REF] Gupta | Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and Lorenz-like maps[END_REF] and dynamical Borel-Cantelli lemmas [START_REF] Gupta | A Borel-Cantelli lemma for non-uniformly expanding dynamical systems[END_REF][START_REF] Haydn | A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems[END_REF].

Suppose p ∈ X and B i (p) is a nested sequence of balls centered at a point p, with lim i µ(B i (p)) = 0.

Assumption (C):

We say (B i (p)) satisfies assumption (C) if there exists η(p) ∈ (0, 1) and κ(p) > 1 such that for all i sufficiently large

µ(B i (p) ∩ T -r B i (p)) ≤ µ(B i (p)) 1+η
for all r = 1, . . . , log κ i.

If (B i (p)) satisfies assumption (C) then we can say more about the behavior of the constants a n .

Lemma 2.7 Under Assumption (C) there exists a constant C 1 so that

|φ j w j | ≤ C 1 log j j 1+η .
Proof: By the contraction property of the transfer operator one has by (2.1) for a sufficiently large constant a i<j-a log j

φ j P j-i φ i ≤ 1 j 2 .
Let φ j = φjφj where φj is the B α approximation to 1 B j (p) and note that φj 1 , φ j 1 ≤ c 1 j (for some c 1 ). Hence we obtain in the L 1 -norm: (as φj ≥ 0)

|φ j w j | ≤ a log j n=1 φj P n φj-n + φ2 j-n + φj P n φj-n + φj φj-n + O 1 j 2 = a log j n=1 φj P n φj-n + 3µ( φj-n ) 2 + O 1 j 2 = a log j n=1 φj P n φj-n + O log j j 2 ,
where we used that φj = O(j -1 ). Now by assumption (C) we have

φj P n φj-n ≤ φj-n • T n φj-n ≤ µ(B j-n ∩ T -n B j-n ) ≤ c 2 (j -n) 1+η ,
for n ≤ a log j, and thus a log j n=1 φj P n φj-n ≤ c 3 j 1+η a log j, proving the lemma.

Lemma 2.8 If (B i (p)) satisfies Assumption (C) then E( n i=1 φ i • T i ) 2 = n i=1 E[φ 2 i ] + O(1) = log n + O(1)
.

Proof: Rearranging the sums yields by Lemma 2.5

E( n i=1 φ i • T i ) 2 = n i=1 E[φ 2 i ] + 2 n-1 i=1 n j=i+1 φ i • T i φ j • T j = n i=1 E[φ 2 i ] + 2 n j=2 w j φ j
and hence the result follows by Lemma 2.7 as η > 1

Bounds on w j

We now assume that φ ∞ ≤ C φ α which under our assumption on the transfer operator implies that for a mean-zero function φ ∈ B, P n φ ∞ ≤ Cθ n φ α for some C, 0 < θ < 1 independently of φ. For example if . α were the Banach space of Hölder functions of exponent γ on the unit interval then φ ∞ ≤ C φ α . In the BV or quasi-Hölder norm indicator functions are bounded, and the proof that w j is uniformly bounded is straightforward in this case.

Lemma 2.9 Assume P n φ ∞ ≤ Cθ n φ α then there exist a constant C 2 such that w j ∞ < C 2 for all j where E n = n j=1 µ(B i ).

Proof: For some a > 0 we can achieve

n j=a log n |P j φ n-j | ∞ ≤ c 1 n j=⌊a log n⌋ θ j (n - j) k = O(n -2 ) and in particular |P j φ n-j | ∞ = O(n -2
) for all j ≥ a log n and all n. As in the previous lemma let φj be the B α approximation for 1 B j and φ j = φj -µ( φj ). In view of the tail estimate it is only necessary to bound ⌊a log n⌋ j=1 P j φ n-j independently of n.

(i) Bound from below: Since φ j ≥ -µ( φj ) = O(j -1 ) one obtains ⌊a log n⌋ j=1

P j φ n-j ≥ ⌊a log n⌋ j=1 c 2 (n -j) -γ 1 ≥ -c 3 log n n γ 1
for some constants c 2 , c 3 independent of j and n. Hence w n ≥ -c 4 for some c 4 > 0 and all n (independent of γ1, γ 2 ).

(ii) Bound from above: Since 1 B j+1 ≤ 1 B j one has φj+1 ≤ φj and in particular µ( φj+1 ) ≤ µ( φj ). Hence φ j+1 -φ j ≤ µ( φj ) -µ( φj+1 ) and (as φ 0 = 0)

w m -w m-1 = m-1 j=1 P j (φ m-j -φ n-1-j ) + P m φ 0 ≤ m-1 j=1 µ( φm-1-j ) -µ( φm-j ) ≤ ⌊a log m⌋ j=1 µ( φm-1-j ) -µ( φm-j ) + O(m -2 ).
Consequently (w 1 = P φ 0 = 0)

w n = n m=2 (w m -w m-1 ) + w 1 ≤ n m=2   ⌊a log m⌋ j=1 µ( φm-1-j ) -µ( φm-j ) + O(m -2 )   = ⌊a log n⌋ j=1 n m=2∨⌈e j a ⌉ µ( φm-1-j ) -µ( φm-j ) + O(m -2 ) = ⌊a log n⌋ j=1 µ( φ2∨⌈e j a ⌉-j ) -µ( φn-j ) + O((2 ∨ e j a ) -1 ) ≤ C 3 for a constant C 3 independent of n because ⌊a log n⌋ j=1 µ( φn-j ) ≤ c 5 a log n n γ 2 → 0 as n → ∞ and ⌊a log n⌋ j=1 µ( φ2∨⌈e j a ⌉-j ) ≤ c 6 ⌊a log n⌋ j=1 (e j a ) -γ 2 = O(1)
for constants c 5 , c 6 independent of n.

3 Decay in Lipschitz versus L 1

We take B α to be the space of Lipschitz functions, the arguments we give hold for Hölder norms with obvious modification. We assume that the transfer operator P , when restricted to Lip(X), contracts exponentially:

||P n φ|| Lip ≤ Cθ n ||φ|| Lip (3.1)
for all Lipschitz functions φ such that φ dµ = 0 for some θ ∈ (0, 1), where θ and C independent of φ.

This implies

φψ • T n dµ -E[φ]E[ψ] ≤ Cθ n φ Lip ψ L 1 (3.2)
for the same θ ∈ (0, 1) and C independent of φ, ψ.

For a sequence of (nested) balls B i we put E n = n i=1 µ(B i ) and S n = n i=1 1 B i •T i for the 'hit counter' for an orbit segment of length n. The sequence of balls B i satisfies the strong Borel-Cantelli (SBC) property if

lim n→∞ S n (x) E n = 1 (3.3)
for almost every x ∈ X.

Theorem 3.1 Assume that the transfer operator, when restricted to Lip(X), contracts exponentially as in (3.1) for some θ ∈ (0, 1).

Suppose B i (p) be nested balls about a point p with µ(B i ) = 1 i . Let a 2 n = E( n j=1 (1 B i -1 i )) 2 .
(I) If the nested sequence of balls (B i (p)) satisfies Assumption (C) and the SBC property (3.3) then

a 2 n = log n + O(1)
and 1 √ log n n j=1 1 B i - 1 i → N(0, 1)
in distribution.

(II) If (B i (p)) has the SP property then

1 √ a n n j=1 (1 B i • T i - 1 i ) → N(0, 1).
Proof: We will let φ j = φjφj ,where φj be a Lipschitz approximation to 1

B j , such that        φj -1 B j 1 < 1 j 2 φj Lip ≤ Cj k φj ≥ 0 .
We define w n = P φ n-1 + P 2 φ n-2 + . . . + P n φ 0 and put ψ n = φ n -w n+1 • T + w n .

Then P ψ n = P φ n -w n+1 + n j=2 P j φ n-j+1 = 0 which corresponds to ψ n χ • T dµ = χP ψ n dµ = 0 for any integrable χ. Note that

||φ j || ∞ ≤ ||φ j || Lip , ||φ j || 1 ≤ ||φ j || Lip . Lemma 3.2 There exist constants C 4 , k, a so that (I) w n Lip ≤ C 4 n k , (II) w n ∞ ≤ C 4 , (III) w n 1 ≤ C 4 log n n .
Proof of Lemma 3.2. (I) By the contraction of the transfer operator for Lipschitz continuous functions one obtains

w n Lip ≤ ∞ j=0 P j φ n Lip ≤ ∞ j=0 C 1 θ j φ n Lip ≤ c 1 n k
(II) Is a consequence of Lemma 2.9.

(III) For sufficiently large a we get

||w n || 1 ≤ a log n j=1 ||P j φ n-j || 1 + n j=a log n+1 ||P j φ n-j || 1 ≤ a log n j=1 ||φ n-j || 1 + ∞ j=a log n+1 ||P j φ n-j || Lip ≤ a log n j=1 ||φ n-j || 1 + n j=a log n+1 C 1 θ j ||φ n-j || Lip ≤ a log n n -a log n + c 4 log 2 n n 2 ≤ c 5 log n n
for some c 4 , c 5 independent of n.

Now put C 4 = max(c 1 , c 5 ).
As before let (σ, Ω, m) be the natural extension of (T, X, µ) and put a 2 n = E( n j=1 φ j • T j ) 2 for the rescaling factors where the ψ j lift to Ω in a natural way. By Assumption (C), a 2 n ∼ log n by Lemma 2.8. Again we put X n,i = 1 an ψ n-i • σ -i , i = 1, . . . , n which are F i = σ i B 0 measurable where B 0 is the σ-algebra B lifted to Ω. The F i form an increasing sequence of σ-algebras. We put S n,i = i j=1 X n,j , i = 1, . . . , n (k n = n), where the X n,i and obtain

E[S n,i+1 |F i ] = S n,i + E[X n,i+1 |F i ] but by sta- tionarity E[X n,i+1 |F i ] = E[φ n-i-1 |σ -1 B] = 0. Hence E[S n,i+1 |F i ] = S n,i
and X n,i is a martingale difference array with respect to F i .

We now show condition (a) and (c) hold (clearly (d) holds). To see (a) and (c)

calculate ψ 2 n dµ ≤ ψ n ∞ ψ n 1 ≤ C log 2 n n .
Hence condition (a) and (c) hold. We now prove (I) and show that under Assumption (C), n i=1 X 2 n,i → 1 in probability and hence condition (b) holds.

Lemma 3.3 1 log n n j=1 ψ 2 j • T j → 1 in probability as n → ∞.
Proof. We follow an argument given by Peligrad [START_REF] Peligrad | Central limit theorem for triangular arrays of non-homogeneous Markov chains To appear in Prob. Theory and Related Fields[END_REF]. As ψ j = φ j + w j -w j+1 • T we obtain

ψ 2 j = φ 2 j + 2φ j w j + w 2 j + w 2 j+1 • T -2w j+1 • T (φ j + w j ) = (φ 2 j + 2φ j w j + w 2 j + w 2 j+1 • T -2w j+1 • T (ψ j + w j+1 • T ) = φ 2 j + (w 2 j -w 2 j+1 • T ) -2ψ j w j+1 • T + 2φ j w j .
We want to sum over j = 1, . . . , n and normalize by log n and wish to estimate the error terms which are the last four terms on the RHS. The terms w 2 j -w 2 j+1 • T are bounded and telescope so may be neglected.

In order to estimate the third of the error terms, ψ j w j+1 • T we proceed like Peligrad (page 9) using a truncation argument. Let w ǫ j = w j 1 {|w j |≤ǫ √ log n} , where for simplicity of notation we have left out the dependence on n. Then

n j=1 ψ j • T j w ǫ j+1 • T j+1 2 = n j=1 ψ j • T j w ǫ j+1 • T j+1 2 ≤ ǫ 2 n j=1 ψ 2 j
since the cross terms vanish (for j > i), as

(ψ j w ǫ j+1 • T ) • T j (ψ i w ǫ i+1 • T ) • T i = (ψ j w ǫ j+1 • T ) • T j-i (ψ i w ǫ i+1 • T ) = (ψ j w ǫ j • T ) • T j-i-1 P (ψ i w ǫ i • T ) = (ψ j w ǫ j+1 • T ) • T j-i-1 w ǫ i+1 P ψ i = 0 as P (ψ i w ǫ i+1 • T ) = w ǫ i+1 P ψ i .
For any a > ǫ we obtain using Tchebycheff's inequality (on the second term):

P 1 log n n j=1 ψ j • T j w j+1 • T j+1 > a ≤ P max 1≤j≤n 1 √ log n w j+1 • T j+1 > ǫ + P 1 log n n j=1 ψ j • T j w ǫ j+1 • T j+1 > a ≤ P ( max 1≤j≤n |w j+1 • T j+1 | > ǫ log n) + ǫ 2 a 2 log n n j=1 ψ 2 j = P ( max 1≤j≤n |w j • T j+1 | > ǫ log n) + c 1 ǫ 2 a 2 .
In the last line we used n j=1 E[ψ 2 j ] ∼ log n by Lemma 2.6 and Lemma 2.8. By boundedness of the w j (Lemma 2.9) one gets that P (max

1≤j≤n |w j+1 • T j+1 | > ǫ √ log n) → 0 for every ǫ > 0 as n → ∞. Choosing a = ǫ 1 2
we conclude that 1 an n j=1 ψ j • T j w j+1 • T j+1 converges to zero in probability as n → ∞. For the fourth error term 1 log n 2 n j=1 (φ j w j ) • T j we obtain by Lemma 2.8: we proceed as in the proof of (I) except for the verification of condition (b). We will prove a SBC property for φ 2 j +2w j φ j . Decomposing φ j = φj -µ( φj ) and defining wj = P φj-1 +...+P [a log j] φj-[a log j] we see that φ 2 j -φ2 j 1 ≤ C j 2 and w j φ j -wj φj 1 ≤ C log j φ2 j • T j + 2( wj φj ) • T j → 1 almost surely. For this we want to use Proposition 8.1 with f j = φ2 j + 2 wj φj , g j = f j and h j to be determined below. We need to estimate the terms in

n j=1 (φ j w j ) • T j 1 ≤ n j=1 φ j w j 1 ≤ c 2 ∞ j=1 log j j 1+η < ∞ uniformly in n.
n i=m φ2 j + 2 wj φj 2
In order to verify the condition of the proposition we look at the three individual sums as follows:

(i) The fact that condition (SP) holds for the functions φj implies

n i=m n j=i+1 φj • T j-i ( φi ) -E[ φj ]E[ φi ] ≤ C n i=m E[ φj ]. Since E( φ2 j ) -E( φj ) = O(j -k ) we obtain n i=m n j=i+1 φ2 j • T j-i φ2 i -E[ φ2 j ]E[ φ2 i ] ≤ C n i=m E[ φj ] + n i=m O(i -k+1 ). (ii) Lemma 3.2 (| wj | ∞ ≤ C 4 ∀j) now yields n i=m n j=i+1 ( φj wj ) • T j-i ( φi wi ) -E[ φj wj ]E[ φi wi ] ≤ CC 2 4 n i=m E[ φj ] + n i=m O(i -k+1
).

(iii) In the same way we obtain for the 'mixed' terms

n i=m n j=i+1 ( φj wj ) • T j-i φ2 i -E[ φj wj ]E[ φ2 i ] ≤ CC 4 n i=m E[ φj ] + n i=m O(i -k+1 ) .
Combining (i), (ii) and (iii) yields for all m < n and some constant c 1 :

n i=m φ2 j + 2 wj φj 2 ≤ c 1 n i=m E( φj ) + O(i -k+1 )
which by Proposition 8.1 implies that 1

En n j=1

φ2 j • T j + 2( wj φj ) • T j → 1 almost surely, provided k ≥ 2.
4 Applications to dynamical systems.

Theorem 3.1 applies to a variety of dynamical systems including Gibbs-Markov maps [START_REF] Aaronson | Denker Local Limit Theorems for Gibbs-Markov Maps[END_REF] and rational maps [START_REF] Haydn | Convergence of the transfer operator for rational maps[END_REF]. For Gibbs-Markov maps it has been shown [14, Theorem 1] that nested sequences of balls (B i (p)) satisfy both the Strong Borel Cantelli property and assumption C, so that (I) applies. For rational maps [START_REF] Haydn | Convergence of the transfer operator for rational maps[END_REF]Theorem 10] shows that the transfer operator contracts exponentially in the L ∞ norm hence if the (SP) property is also proved then (II) holds. More generally (II) shows that proving the (SP) property for systems whose associated transfer operator has exponential decay suffices to prove the SBC property and the CLT for shrinking targets.

Decay in BV (X) versus L 1

It is known that summable decay of correlations in BV (X) versus L 1 implies the SP property by work of Kim [25, Proof of Theorem 2.1] (see also Gupta et al [START_REF] Gupta | A Borel-Cantelli lemma for non-uniformly expanding dynamical systems[END_REF]Proposition 2.6]). Hence the statement in this setting is simpler.

Let the transfer operator P be defined by φψ • T dµ = P φψ dµ for all φ, ψ ∈ L 2 (µ), that is P is the adjoint of the Koopman operator Uφ := φ • T .

We assume that the restriction of P to the space BV (X) is exponentially contracting, i.e. P : BV (X) → BV (X) satisfies

P n φ BV ≤ Cθ n φ BV (5.1)
for all φ ∈ BV (X) such that φ dµ = 0.

This implies that (T, X, µ) has exponential decay of correlations in BV versus L 1 , so that for some 0 < θ < 1,

φψ • T n dµ -( φ dµ)( ψ dµ) ≤ Cθ n φ BV ψ 1 (5.2) 
for all φ ∈ BV (X), ψ ∈ L 1 (µ). In particular the measure µ is ergodic.

Proposition 5.1 Assume the transfer operator P contracts exponentially as given by (5.1)

Let B i := B(p, r i ) be nested balls of radius r i about a point p such that µ(B i ) = 1 i , and

a 2 n = E( n j=1 (1 B i • T i -1 i )) 2 . Then: (I) lim sup n→∞ an √ log n ≥ 1 and 1 a n n j=1 (1 B i • T i - 1 i ) → N(0, 1). 
(II) If the nested sequence of balls (B i (p)) about p satisfies Assumption (C) then

a 2 n = E[( n j=1 (1 B i • T i - 1 i )) 2 ] = log n + O(1)
and

1 √ log n n j=1 (1 B i • T i - 1 i ) → N(0, 1)
in distribution.

Proof: The proof is the same as for Theorem 3.1 with the simplification that the SP property holds automatically as we have summable decay of correlations in BV (X)

versus L 1 (see proof of [25, Theorem 2.1]). Furthermore Lemma 2.4 shows that the variance is unbounded and Lemma 2.8 gives a precise rate of growth in the case that Assumption (C) holds. 1 Bn (p). The rates of growth are given by Lemma 2.4 which shows that the variance is unbounded. Lemma 2.8 gives a precise rate of growth in the case that Assumption (C) holds. In Proposition 6.2 we extend these results to piecewise expanding maps in higher dimensions.

6 Applications of Proposition 5.1.

Proposition 5.1 applies to certain classes of one-dimensional maps such as piecewise expanding maps of the interval T : X → X with 1 T ′ of bounded variation and possessing an absolutely continuous invariant measure with density bounded away from zero (those maps satisfying the assumptions of [25, Theorem 2.1], see also [START_REF] Gupta | A Borel-Cantelli lemma for non-uniformly expanding dynamical systems[END_REF]). For these systems, Assumption (C) has been shown to hold for nested balls about µ a.e. p ∈ X [START_REF] Holland | Extreme value distributions for nonuniformly hyperbolic dynamical systems[END_REF][START_REF] Gupta | Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and Lorenz-like maps[END_REF]. In the next subsection we generalize these results to piecewise expanding maps in higher dimensions.

Piecewise expanding maps in higher dimensions

In this section we prove the Strong Borel Cantelli property and the CLT for shrinking balls in a class of expanding maps in higher dimensions. We also show that assumption C holds for µ-a.e. point.

The Banach spaces will be given by L1 , defined with respect to the Lebesgue measure on R n , and a quasi-Hölder space with properties analogous to BV which we define below. A key property of the quasi-Hölder space is that characteristic functions of balls have bounded norm (as in the BV norm) which turns out to be a very useful property.

The maps are defined on compact sets Z ∈ R N . Denote by dist(•, •) the usual metric in R N and for ε > 0 let B ε (x) = {y ∈ R N : dist(x, y) < ε} be the ε-ball centred at x. Let B ε (A) = {y ∈ R N : dist(y, A) ≤ ε} and write Z • for the interior of Z and Z its closure.

A map T : Z → Z is said to be a multidimensional piecewise expanding map, if there exists a family of finitely many disjoint open sets {Z i } such that Leb(Z \ i Z i ) = 0 and there exist open sets Z i ⊃ Z i and C 1+α maps T i : Z i → R N (for some 0 < α ≤ 1) and some sufficiently small real number ε 1 > 0 such that for all i,

• (H1) T i ( Z i ) ⊃ B ε 1 (T (Z i )) and T i | Z i = T | Z i ; • (H2) For x, y ∈ T (Z i ) with dist(x, y) ≤ ε 1 , | det DT -1 i (x) -det DT -1 i (y)| ≤ c| det DT -1 i (x)|dist(x, y) α ;
• (H3) There exists s = s(f

) < 1 such that ∀x, y ∈ T ( Z i ) with dist(x, y) ≤ ε 1 , we have dist(T -1 i x, T -1 i y) ≤ s dist(x, y). • (H4) Let G(ε, ε 1 ) := sup x G(x, ε, ε 1 ) where G(x, ε, ε 1 ) := i Leb(T -1 i B ε (∂T Z i ) ∪ B (1-s)ε 1 (x)) Leb(B (1-s)ε 1 (x)) (6.1)
and assume that sup

δ≤ε 1 s α + 2 sup ε≤δ G(ε) ε α δ α < 1 1 (6.2)
We now introduce the Banach space of quasi-Hölder functions in which the spectrum of the Perron-Frobenius operator P is investigated. Given a Borel set Γ ⊂ Z, we define the oscillation of ϕ ∈ L 1 (Leb) over Γ as osc(ϕ, Γ) := ess sup

Γ ϕ -ess inf Γ ϕ.
The function x → osc(ϕ, B ε (x)) is measurable (see [?, Proposition 3.1]) For 0 < α ≤ 1 and ε 0 > 0, we define the α-seminorm of ϕ as

|ϕ| α = sup 0<ε≤ε 0 ε -α R N osc(ϕ, B ε (x)) dLeb(x).
Let us consider the space of functions with bounded α-seminorm

V α = {ϕ ∈ L 1 (Leb) : |ϕ| α < ∞},
and endow V α with the norm

• α = • 1 + | • | α
which makes it into a Banach space. We note that V α is independent of the choice of ε 0 and that V α is continuously injected in L ∞ (Leb). According to [?, Theorem 5.1], there exists an absolutely continuous invariant probability measure (a.c.i.p.) µ, with density bounded above, and bounded below from zero, which has exponential decay of correlations against L 1 observables on the finitely many mixing components of V α : in view of the next Theorem 6.4 we will from now restrict ourselves to one of those components, by taking a mixing iterate of T . More precisely, if the map T is as codimension one embedded compact submanifold, then define the quantity:

η 0 (T ) := s α + 4s 1 -s Y (T ) γ N -1 γ N
where

Y (T ) = sup x i # {smooth pieces intersecting ∂V i containing x} ,
is the maximal number of smooth components of the boundaries that can meet in one point and

γ N = π N/2
(N/2)! , the N -volume of the N -dimensional unit ball of R N . We require that η 0 (T ) < 1, and this may replace the condition (6.2) above. defined above and if µ is the mixing a.c.i.p., then there exist constants C < ∞ and

γ < 1 such that Z ψ • T n h dµ -ψdµ hdµ ≤ C ψ L 1 h α γ n (6.3)
for all ψ ∈ L 1 and for all h ∈ V α . Moreover P n φ α ≤ C φ α for all φ ∈ V α and thus equation 5.1 holds.

We now show that characteristic functions of balls are bounded in the • α norm.

Lemma 6.1 Let B i (p) be a nested sequence of balls about a point p ∈ X, then there exists a constant C 3 (α) such that

1 B i α ≤ C 3 (α)
for all i.

Proof: Take any set A with a rectifiable boundary. If p is not in a 2ǫ neighborhood of the boundary of A, then the oscillation is zero, otherwise it is 1. Therefore we have The boundedness of the characteristic functions in the • α -norm allows us to proceed as in Proposition 5.1 (see also [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0,1[END_REF]) and to obtain the following result.

Proposition 6.2 Assume a piecewise expanding map T on a compact set Z ⊂ R n satisfies conditions (H1)-(H4) and is mixing with respect to its absolutely continuous invariant measure µ. Let B i := B(p, r i ) be nested balls of radius r i about a point p

such that µ(B i ) = 1 i . Then the variance a 2 n := E[( n j=1 (1 B i • T i -1 i )) 2 ] satisfies a n √ log n ≥ 1 and 1 √ a n n j=1 (1 B i • T i - 1 i ) → N(0, 1)
in distribution.

Proof: The SBC property (I) is immediate from the decay of correlations, Equation 6.3 and the bound 1 B i α ≤ C 3 (α) by the proof of Proposition 6.1. The growth estimate follows from Lemma 2.3.

We now make an additional assumption. Suppose that we have M domains of local injectivity for the map T ; if we take the join Z j := j-1 i=0 T -i Z, where Z denotes the partition, mod-0, into the closed sets Z In order to prove condition (C) we require a further assumption which is also called the finite range structure. We assume: j) . Then U consists of only finitely many subsets of Z with positive Lebesgue measure, hence U m = inf U ∈U m(U) is bounded below. We now fix j and consider the cylinder, say, Z (j) l . Let us suppose that {z k } k≥1 is a sequence of points in Z (j) l converging to x ∈ Z (j) l , namely dist(z k , x) → 0 when k → ∞, and that dist(T j (z k ), x) → 0 for k → ∞. With abuse of definition we say that such a point x is fixed. If there are points in the sequence {z k } k≥1 which are on the boundary of Z (j) l , we think of T j as its C 1+α extension on Z(j) l . We want to show that in Z(j) l there is only one fixed point x. By contradiction, suppose y is another fixed point and {w k } k a sequence converging to y and whose T j images converge to y as well. Suppose that Z(j) l is a convex set in such a way the segment with at most one fixed point, by taking the sum over the l we finally get

i , i = 1, • • • , M, then on each element Z (j) l , l = 1, • • • , |Z j |,
• (H5) Let U (j) := {f j Z (j) l , ∀l = 1, • • • , |Z j |}, and put U = ∪ ∞ j=1 U ( 
µ{x; dist(T j x, x)} ≤ γ N h M ε N B U m .
and this bound is independent of j.

As a consequence of Lemma 2.8 we have, Theorem 6.4 Assume a piecewise expanding map T on a compact set Z ⊂ R n satisfies conditions (H1)-(H5) and is mixing with respect to its absolutely continuous invariant measure µ. For µ a.e. p if B i (p) are nested balls about p such that µ(B i ) = 1 i . Then

a 2 n = E[( n j=1 (1 B i • T i - 1 i )) 2 ] = log n + O(1) and 1 √ log n n j=1 (1 B i • T i - 1 i ) → N(0, 1)
in distribution.

7 Discussion.

There are several natural questions remaining unanswered. In particular can the CLT for shrinking targets be proved for Anosov systems or non-uniformly hyperbolic diffeomorphisms? Chernov and Kleinbock have proved the SBC property for balls in Anosov systems [START_REF] Chernov | Dynamical Borel-Cantelli lemmas for Gibbs measures[END_REF] but the SBC property is unknown for non-uniformly hyperbolic diffeomorphisms. More generally can a limit theory be developed for the statistics of non-stationary stochastic processes arising as observations (which change in time)

on deterministic dynamical systems which may also may evolve in time, such as sequential dynamical systems?

8 Appendices 8.1 Gal-Koksma Theorem.

We recall the following result of Gal and Kuksma as formulated by W. Schmidt [START_REF] Schmidt | A metrical theory in diophantine approximation[END_REF][START_REF] Schmidt | Metrical theorems on fractional parts of sequences[END_REF] and stated by Sprindzuk [START_REF] Vladimir | Metric theory of Diophantine approximations[END_REF]: for all r = 1, . . . , log κ i.

Proof. Let C 2 = max ρ(x), C 1 = min ρ(x) where ρ(x) = dµ dm (x) is the density of µ with respect to Lebesgue measure m.

Let σ ≥ 1 and γ > σ. We choose ǫ k so that for all x a ball of radius ǫ k about x, 1 A k (y)ρ(y) dm(y).

If x ∈ F k then M k > C 1 k σ-γ .
A theorem of Hardy and Littlewood ([10] Theorem 3.17 where 0 < τ < τ . We need to alter τ to τ to take into account the fact that a ball of radius ǫ has measure roughly ǫ D . Choosing σ < γ < σ(1 + τ ) and σ > 1 the series k m(F k ) converges.

So for m a.e. x 0 there exists an N(x 0 ) such that x 0 ∈ F k for all k > N(x 0 ). Since m(B(x, ǫ k ) -m(B(x, ǫ k+1 )) ≤ 2C 2 k 2 this implies that for µ a.e. x ∈ X there exists η > 0 , κ > 0 such that for all sufficiently large i, if B i (x) is a sequence of nested balls about x, µ(B i (p)) ∼ 1 i then µ(B i (x) ∩ T -r B i (x)) ≤ µ(B i (x)) 1+η for 1 ≤ r ≤ log(i) κ . This is Assumption (C).

  and for every n ∈ N X n,i is a martingale difference array with respect to F i .We will then verify conditions(a), (b), (c) and (d) of Theorem 2.3. The hard part lies in establishing (b). This is in contrast with the stationary setting where condition (b) is usually a straightforward consequence of the ergodic theorem. Condition (b) is established in [29] by using [36, Lemma 3.3.], however in our setting the Lipschitz norms of the observations φi are unbounded and other techniques have to be used. Once we have established (a), (b), (c) and (d) it follows that lim n→∞ 1 an n-1 j=0 ψ j • T j → N(0, 1) in distribution. In the final step we show that 1 an n j=1

  j w j ) • T j → 0 in probability. Since the term 1 log n n j=1 φ 2 j • T j converges to 1 almost surely by the SBC property the proof is complete. Lemma 3.3 completes the proof of part (I) of the theorem. In order to show (II)

j 2 so

 2 it suffices to consider the sequence φ2 j + 2 wj φj . This is becausen j=1 E[ φ2 j + 2 wj φj ] = n j=1 E[φ 2 j + 2w j φ j ] + O(1) and µ almost surely, n j=1 ( φ2 j • T j + 2( wj φj ) • T j ) = n j=1 (φ 2 j • T j + 2(w j φ j ) • T j ) + O(1). Note that both wj and φj are positive functions. Let E n := n j=1 E[ φ2 j + 2 wj φj ]. We will use Proposition 8.1, a form of the Gal and Koksma theorem as stated by Sprindzuk (see Appendix) to show that 1 En n j=1

Remark 5 . 2

 52 For one-dimensional maps of the interval, Proposition 5.1 is basically a consequence of Conze and Raugi [6, Theorem 5.1]. Follow the proof of [6, Theorem 5.1] taking T k = T for all k, m to be the invariant measure µ and choosing f n =

osc( 1 A

 1 , B ǫ (p)) dLeb(p) ≤ c 1 ǫ. Then we must divide by ǫ α . As α ≤ 1 we have the ratio bounded by c 1 * (ǫ 0 ) 1-α .

  each of which is the closure of its interior, the map T j is injective and of class C 1+α on an open neighborhood of Z

Lemma 6 . 3

 63 Under the assumptions (H1)-(H5) Assumption (C) is satisfied.Proof. Denote E k (ε) := {x; dist(f k x, x) ≤ ε}.By Lemma 8.2 (see Appendix) it is enough to prove that there exists C > 0, δ > 0 such that for all k and ε, µ(E k (ε))) < Cε τ .

Proposition 8 . 1 Lemma 8 . 2

 8182 Let (Ω, B, µ) be a probability space and let f k (ω), (k = 1, 2, . . .) be a sequence of non-negative µ measurable functions and g k , h k be sequences of realnumbers such that 0 ≤ g k ≤ h k ≤ 1, (k = 1, 2, . . . , ). Suppose there exists C > 0 such that m<k≤n (f k (ω) -g k ) 2 dµ ≤ C m<k≤n h k ( * )for arbitrary integers m < n. Then for any ǫ > 01≤k≤n f k (ω) = 1≤k≤n g k + O(Θ 1/2 (n) log 3/2+ǫ Θ(n))for µ a.e. ω ∈ Ω, where Θ(n) = 1≤k≤n h k .8.2 Assumption (C) for expanding systemsIn this appendix we show that if we defineE k (ǫ) := {x : d(T k x, x) ≤ ǫ}and if the invariant measure has a density bounded above with respect to Lebesgue then assumption C is valid. Suppose µ has a density ρ with respect to Lebesgue measure which satisfies 0 < C 1 < ρ < C 2 and there exists C > 0, δ > 0 such that for all k, ǫ,µ(E k (ǫ)) < Cǫ δThen for µ a.e. p ∈ X there exists η(p) ∈ (0, 2) and κ(p) > 1 such that for all i sufficiently large µ(B i (p) ∩ T -r B i (p)) ≤ µ(B i (p)) 1+η

  denoted B(x, ǫ k ), satisfies C 1 /k σ ≤ µ(B(x, ǫ k )) ≤ C 2 /k σ . Let A k := {x : d(T j x, x) ≤ ǫ k for some 1 ≤ j ≤ log(k) ρ }. Evidently A k ⊂ log ρ k j=1 E j . By the estimate on E k (ǫ) for all large k, µ(A k ) ≤ Cǫ τ k where τ < δ. Let F k := {x : µ(B(x, ǫ k ) ∩ A k ) ≥ 1/k γ }and define the Hardy-Littlewood maximal functionM k for φ(x) = 1 A k (x)ρ(x) by M k (x) := sup a>0 1 m(B a (x)) Ba(x)

  ) states that m(|M k | > C) ≤ c 3 1 A k ρ 1 C for some constant c 3 , where • 1 is the L 1 norm with respect to m. Hence m(F k ) ≤ m(M k > C 1 k σ-γ ) ≤ µ(A k )C 1 k γ-σ ≤ k γ-σ(1+τ )

  only the norming constants change) but for simplicity we discuss in detail only the case µ(B n (p)) = 1 n . 1 Bn(p) may not lie in B α but we assume we may take an approximation to it, φα Cn k where C, k are independent of n;

	(i) |1 Bn(p) -φα n | 1 ≤ 1 n 3 and;
	(ii) φα n α ≤ (iii) φα n ≥ 0, φα n ≥ φα n+1
	Remark 2.2 If we are taking a Hölder approximation then condition (ii) is satisfied
	for the balls B i = B(p, r i ) if there exists δ(p) > 0 and C > 0 such that µ{x : r <
	d(x, p) < r + ǫ} < Cǫ δ(p) . This condition is satisfied if the invariant measure µ has
	a density h with respect to Lebesgue measure m such that h ∈ L 1+η (m) for some η > 0.
	n
	such that:

This condition could be greatly simplified as follows. Suppose the boundaries of Z i are C 1
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[x, y] is contained in Z(j) l 2 . We now fix η small enough and take k big enough and such that dist(x, z k ), dist(x, T j (z k )), dist(y, w k ), dist(y, T j (w k )), are all smaller than η. We also put D m,j := inf{||DT j (x)||} > 1, where the inf is taken over the points x where the derivative is defined. The norm is the operator norm, which is strictly larger than 1 since the map is uniformly expanding. Then we have

and by applying Taylor's formula

which gives a contradiction, since D m,j > 1, by sending η to 0. Hence x is the only fixed point.

Let us now take a measurable set V ⊂ Z(j) l containing the fixed point x ∈ Z(j) l . We require that the diameter of the image T j (V ) be at most ε; such an image will therefore be contained in the ball of center T j (x) and of radius ε. The Lebesgue measure of this ball will be equal to γ N ε N , where the factor γ N was defined in the preceding footnote. Then we have

for a suitable point κ ∈ Zj l , where in the last inequality we used a local change of variable and the continuity of DT j , finally κ is a point in Z(j) l . By distortion, we could replace this point by another one, say ι such that Leb(T j (Z

l ). We therefore get (with the constant B from (BD))

Since the density of the absolutely continuous invariant measure µ is bounded from above (remember it is in L ∞ (Leb)), by, say, h M , and since each Z (j) l will contribute 2 If not we could join x and y with a chain of segments contained each in Z(j) l : the argument will work again since the sum of the lengths of those segments is larger than the distance between x and y and this is what we need in bounding from below.