
HAL Id: hal-01126551
https://hal.science/hal-01126551

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A semantic approach for semi-automatic detection of
sensitive data

Jacky Akoka, Isabelle Comyn-Wattiau, Cedric Du Mouza, Hammou Fadili,
Nadira Lammari, Elisabeth Metais, Samira Si-Said Cherfi

To cite this version:
Jacky Akoka, Isabelle Comyn-Wattiau, Cedric Du Mouza, Hammou Fadili, Nadira Lammari, et al.. A
semantic approach for semi-automatic detection of sensitive data. Information Resources Management
Journal, 2014, 27 (4), pp.23-44. �10.4018/irmj.2014100102�. �hal-01126551�

https://hal.science/hal-01126551
https://hal.archives-ouvertes.fr

A Semantic Approach for Semi-Automatic
Detection of Sensitive Data

Jacky AKOKA1, Isabelle COMYN-WATTIAU2, Cédric DU MOUZA3, Hammou FADILI4,
Nadira LAMMARI3, Elisabeth METAIS3, Samira SI-SAID CHERFI3

1 CEDRIC-CNAM & Institut Mines-Telecom TEM, Paris, France, akoka@cnam.fr
2 CEDRIC-CNAM & ESSEC Business School, Paris, France, wattiau@cnam.fr

3 CEDRIC-CNAM, Paris, France, {dumouza, lammari, metais, samira.cherfi}@cnam.fr
4 Maison des Sciences de l’Homme, fadili@msh-paris.fr

ABSTRACT
We propose an innovative approach and its implementation as an expert system to achieve the semi-
automatic detection of candidate attributes for scrambling sensitive data. Our approach is based on
semantic rules that determine which concepts have to be scrambled, and on a linguistic component
that retrieves the attributes that semantically correspond to these concepts. Because attributes cannot
be considered independently from each other, we also address the challenging problem of the
propagation of the scrambling process through the entire database. One main contribution of our
approach is to provide a semi-automatic process for the detection of sensitive data. The underlying
knowledge is made available through production rules, operationalizing the detection of the sensitive
data. A validation of our approach using four different databases is provided.

Keywords: Security, integrity, protection, database semantics, expert system.

INTRODUCTION
In an ever-changing competing environment, organizations are under increasing pressure to find
ways of protecting the sensitivity of data regarding both individuals and organizations. Companies
face the challenge of creating and/or updating non-production environments for testing purposes. In
general, companies create a copy of the production system, which may include the data repository
and the administrative settings. They provide a test environment for improving application delivery
process. However, there are many risks associated with the test environments open to external
consultants. In some cases, testing can become a liability. Thus, there is a need to provide realistic
test data. This requires masking techniques for sensitive data. By masking the data, users see only a
representation of the data without having access to the sensitive ones. Data related to customers,
products, materials, and financial accounts may be sensitive and should be masked or anonymized.
Sensitive information like address, telephone numbers, and contact information has to be de-
identified. By scrambling the data, we substitute sensitive information on customers, orders,
products, order profitability, etc., with fictitious, but still consistent data, preserving the overall
structure and semantics of the test database. Data masking, also referred as data obfuscation, data de-
identification, data depersonalization, data scrubbing, etc., represents a solution for data protection
from both internal and external security threats. It enables the creation and/or the updating of data in
non-production environments, without the risk of exposing sensitive information to unauthorized

users, such as external consultants in environments like ERP systems. Let us mention that, unlike
encrypted data, masked data maintain their usability in testing environments. Data masking
encompasses several techniques such as generalization, mutation algorithms, customization, etc. It
can use shuffling techniques for names protecting. A related technique called linked shuffling can de-
identify the address. Phone numbers can be scrambled using random number generators. Date
transformer allows obfuscating dates. Finally, account generator performs data de-personalization of
account numbers. Thus, data masking tasks provides several benefits, such as providing realistic data
for off-site and offshore software testing. Even if techniques and tools are available, scrambling huge
databases is a fastidious process. Surveys reveal that companies often neglect to scramble their
datasets, generating business and financial risks. ERP systems rely on thousands of tables, each one
composed of more than twenty columns. Deciding which column is sensitive and has to be scrambled
is an enormous task.

Protecting data privacy using scrambling is composed of three steps. The first step deals with the
choice of data to be hidden, notably anonymized, randomized, swapped or, more generally,
obfuscated (Bakken, Parameswaran, Blough, Franz, & Palmer, 2004). The second step consists in
choosing, for each sensitive part of the database, the adequate scrambling technique, particularly but
not exhaustively among those mentioned above (Fung, Wang, Chen, & Yu, 2010). The third step is
related to the application of data sanitization to the entire dataset preserving data integrity. To the best
of our knowledge, the literature and industrial solutions are concentrated on this third step
(Ravikumar et al., 2011; Askari, Safavi-Naini,& Barker, 2012). This paper contributes to the first
step by proposing an innovative technique that automates the detection of the sensitive attributes. By
semantically modeling the different data, we enable the semi-automatic detection of data sensitivity.
This technique encompasses two functionalities: (1) automatic detection of the values to be
scrambled; that have to be validated by a domain expert and, (2) automatic propagation to other
semantically linked values.

Our contribution is original in the sense that it encapsulates general and domain knowledge into
rules. We propose a rule-based approach implemented under an expert system architecture. Rules are
devoted to the selection of sensitive data with regard to their semantics. Furthermore we present a
deduction mechanism modeled by a semantic graph to ensure the propagation of the sensitivity on
near values and the consistency with the other relations. Moreover we propose a prototype with a set
of clever interfaces to capture the rules. Let us mention three important aspects of our approach:

i) It is well-known that which information acts as identifying depends on the adversary’s
knowledge. The main assumption underlying our approach is that the adversary model is
embedded in the domain knowledge. To this end, our expert rules capture this domain
knowledge.

ii) Another originality of our approach is that our scrambling process preserves data integrity and
generalizes this notion to take into account a more comprehensive notion of data dependency.

iii) Finally, the automatic detection of sensitive data represents a strength of our approach since
companies facing privacy-preserving problem cannot perform manually this detection especially
with huge databases containing several thousands of tables and columns.

Motivating example
A typical example of a large database which contains sensitive data, and which is often outsourced
when new managing software is developed, is a Human Resources Department (HRD) database. This
database stores basically information about the employees like employee’s id, name, city,

department, wage, etc. As an illustration for our proposal, let’s consider the sample HR schema
provided by Oracle, enriched with additional information on employees such as the evaluation by the
hierarchy (manager_evaluation). We implemented this schema and populated the tables (see Figure
1).

Figure 1. The motivating example database structure

This database contains sensitive information about the employee salary or evaluation, but also
about its coordinates (phone, email, etc.). Some attributes are obviously identified as sensitive and
should be scrambled. Others like manager_id that gave an evaluation or the (start_date, end_date)
that allows isolating an employee, for instance, are not so easily identified, especially when the
number of tables reaches dozens or hundreds.

The paper is organized as follows. Next section summarizes related work. The following sections
are dedicated respectively to the definition of the main concepts involved in our approach and to the
description of the different components of our approach, allowing us to set the rule base for detecting
sensitive values. In the following section, we introduce the propagation mechanism of attributes to be
scrambled. Next section presents the scrambling process. Finally, we validate our approach before
concluding and describing future work.

RELATED WORK
Determining a sanitization strategy which guarantees that the data provided preserve sensitivity is a
complex task. In Atallah, Elmagarmid, Ibrahim, Bertino, and Verykios (1999), the authors prove that
finding the sanitization that minimizes the sensitivity of the values with respect to some sensitive
rules is a NP-hard problem. A large number of heuristics have been proposed (Wang & Lee, 2008;
Chakaravarthy, Gupta, Roy, & Mohania, 2008) to find a satisfying sanitization under precise
hypotheses.

A first family of approaches is based on sensitive association rules. These approaches hide the
frequent itemsets corresponding to these rules by modifying the sensitive transactions that contain
those itemsets. In Oliveira and Zaïane (2003), for instance, the authors present a privacy preservation
heuristic algorithm named sliding window algorithm (SWA) that hides, in one pass on a transactional
database, association rules by decreasing their support. Amiri (2007) proposes three heuristics also
based on rules that outperform SWA in terms of maximizing data utility of the sanitized databases but
that require computational overhead.

Several approaches are semantics-free and rely on the number of occurrences inside each
equivalence class (i.e. a set of records that could not be distinguished w.r.t. a given identifying
attribute). The most famous ones are k-anonymity (Sweeney, 2002) that imposes for a class to
contain at least k records, and l-diversity (Machanavajjhala et al., 2006) that improves the k-
anonymity by forcing equivalence classes to contain at least l well represented values for each
sensitive attribute. Li et al. (2007) go beyond both k-anonymity and l-diversity, and define t-
closeness that requires that the distribution of an attribute in an equivalence class is close to the one
of the real table. Since discovering frequent patterns in databases is largely used for commercial
purposes, some approaches hide sensitive patterns like in (Wang & Lee, 2008). However all these
approaches assume that sensitive attributes or patterns are known and do not consider links between
attributes.

Other proposals have been devoted to the sanitization of free-text, mainly in the medical domain
(Neamatullah et al., 2008). However the problem is different in free-text and consists basically in
identifying sensitive words based on specialized domain semantics. They do not consider any links
between terms except potentially synonymy and usually do not aim at guaranteeing any data utility
after sanitization. One interesting exception for health information is (Gardner & Xiong, 2008) that
presents a prototype for extracting information and identifying entities. They applied an
anonymization process for both structured and unstructured data. Here again authors rely on k-
anonymity and l-diversity to determine sensitive attributes. Chakaravarthy et al. (2008) present the
Erasme framework for sanitization of unstructured documents based on term scoring functions.
However no link between attributes is considered. (To, Dang, & Küng, 2011b) address the problem
of obfuscation of spatiotemporal data, such as users’ location. Conventional querying process
consists of two phases, first querying the database to retrieve the accurate positions of users and then
modifying them to decrease the quality of location information, which is time-consuming. The
authors propose a structure called OST-tree that embeds the user’s privacy policy in its node and
obfuscates the spatiotemporal data. (To, Dang, & Küng, 2011a) is a B+− tree variant that contains
geographic aware information on its nodes to perform obfuscation of location information while
processing database-level queries. Shou, Shang, Chen, Chen, & Zhang (2011) study the
anonymization of time series data while supporting complex queries, such as range and pattern
matching queries, on the published data. They propose an anonymization model called (k,P)-
anonymity for pattern-rich time series.

Anonymization may be required for various applications. For instance, for identity obfuscation in
graphs, Bonchi, Gionis, & Tassa (2011) consider three types of methods: the first category provides
k-anonymity in graphs by adding or deleting edges. The second category consists in adding noise to
the data in the form of random additions, deletions or switching of edges. The last category does not
alter the graph data; instead, they group together vertices into super-vertices of size at least k, which
is the threshold of anonymity. The graph obfuscation is a hot topic in social networks. In another
context, Saini, Atrey, Mehrotra, & Kankanhalli (2011) deal with the problem of anonymity dedicated
to the images in the context of video surveillance. Hiding the faces is not sufficient when the context
on the image is sufficient to de-anonymize the picture, given the adversary knowledge.

Several softwares are proposed to de-identify databases (Datamasker, n.d.; Camouflage, n.d.;
Solix, n.d.; Datavantage Globa, n.d.; Pse Data Security, n.d.; JumbleDB Orbium Software, n.d.;
HCM Data Scrambler, n.d.; HCM Data Scramble Tool, n.d.). They basically offer the same
functionalities, i.e., to select sensitive attributes, to choose a scrambling technique among a set
(shuffling, replacing with synthetic data, masking, deleting, encrypting, etc.) to apply for each

attribute. (Datamasker, n.d.) proposes enhanced functionalities like using templates for replacing
data with adapted synthetic data or respecting integrity constraints (within tuples, between tuples or
between tables). (JumbleDB Orbium Software, n.d.) capitalizes on domain knowledge by allowing
database administrators to store simple rules such as column names containing SAL string (for
salary). However this detection is limited to a comparison between columns in tables and words in a
dictionary which is supposed to contain the names of sensitive columns. (HCM Data Scrambler, n.d.;
HCM Data Scramble Tool, n.d.) are dedicated to human resources databases. Vinogradov and
Pastsyak (2012) present an evaluation of different anonymization tools. Nonetheless, no tool
provides any help for detecting sensitive attributes that can lead to important security flaws.

SENSITIVE INFORMATION
A database in production may contain sensitive information that must not be visible (or at least
exploitable) when the database is used during development or test phases. We distinguish identity
information that allows identifying a person or an entity stored in the database from confidential
information whose content may be harmful if revealed. We are convinced that both kinds of
information must be considered when sanitizing a database. Thus we consider the following
definitions.

Let D be a database and S be the set of all attributes in D. Let k be a parameter that depends
on the application and that represents the minimal number of occurrences required for assuming
anonymity (see the k-anonymity approach).

Definition 1 Confidential attribute. The confidential attributes set, denoted Sc ⊆ S is the set of
attributes whose content is confidential, whatever their number of occurrences.

Definition 2 Identifying attribute. The k-identity attributes set, denoted Si ⊆ S is the set of
attributes such that for any x ∈ Si it exists a subset si ⊆ Si within a single table T of D and with
x ∈ si , such that (i) each instance of si occurs less than k times in the records from T and (ii) there
is an attribute y ∈ Sc in T . We call in the following, an element from Si , a k-identifying attribute
(identifying attribute for short).

In other words, each instance of an (or a group of) identifying attribute has less than k
occurrences, and is considered selective enough to identify a small number of persons. If there is a
confidential attribute in the same table, it means that the individual privacy is endangered. Note that
we assume k set for the application, but we can easily extend our definition to capture applications
where a different value for k is set for each table. Our notion of identifying attribute is similar to the
notion of quasi-identifier in (Sweeney, 2002) except it cannot be considered independently from
the confidential attributes. Observe that Si ∩ Sc may be not empty. Finally we define a sensitive
attribute as follows:
Definition 3 Sensitive attribute. The sensitive attributes set, denoted Ss, is the set of identifying
and confidential attributes for the table D, i.e., Ss = Si ∪ Sc .

The rationale for considering both confidential and identifying attributes in the scrambling
process is based on the following observations. The scrambling of identity attributes preserves
anonymity. However confidential attributes keep their initial distribution, which is clearly not
sufficient when the presence of some instances of attributes must remain itself sensitive or at least
difficult to exploit. Conversely, the scrambling of confidential attributes aims at protecting

individual privacy by modifying their value while information that identifies persons remains
unchanged. But in this case, local (e.g., value range, precision, etc.) and global (e.g., average, min,
max, etc.) properties of the concerned attributes are changed. This may invalidate a test phase.
Consequently, both types of attributes must be simultaneously considered as sensitive and thus
candidates for scrambling.

Example 1. In our HRD database example, employee_id or (first_name, last_name) permit to
identify an employee. So Si = {employee_id, first_name, last_name}. Information on address,
department and wage properties are apparently less sensitive. Nonetheless, one may avoid revealing
the highest salary or the minimal salary of a given job. Such properties must then be considered as
confidential (Sc = {min_salary, max_salary}). Moreover in smaller companies one can argue that
the couple (start_date, end_date) for a job is sufficient to identify a small subset of employees and
consequently must be added to the k-identity set also, while for larger companies this information is
not identifying enough. So finally for our large company we have to scramble Ss = {employee_id,
first_name, last_name, min_salary, max_salary, start_date, end_date}.

The main concepts of our approach are represented in a meta-model described at Figure 2.
Information in a database is structured within tables. Tables are composed of columns on which
constraints are defined. There is a variety of constraints such are primary key, referential integrity,
domain constraints, etc. In our approach we are interested in what we call sensitive information. The
latter refers to a single column or to a group of columns and could also include constraints that allow us,
under certain conditions, to infer sensitive information upon non sensitive information. Information to
be scrambled appears in grey. Sensitive information includes identifying data and confidential data.
Notice that identifying data comprise not only keys but also quasi-identifiers (e.g. birth date, sex, and
postal codes are considered as quasi-identifiers, since some surveys have shown that very few persons
share the same birth date, sex and postal codes). In some cases, only some instances are sensitive. For
example, all salaries may be considered as sensitive: in this case Salary as a type is sensitive
information. We can also consider that only turnovers of important customers are sensitive. In this case,
only some instances of turnovers are sensitive.

Figure 2. Meta-model of sensitive information

One main interest of our approach is that it scrambles data while maintaining existing semantic
links expressed as semantic constraints. These semantic constraints are not always completely
defined in existing databases. Therefore, our approach encompasses semantic rules enabling to
detect hidden semantic links such as functional dependencies resulting from database de-
normalization. Our process scrambles data by processing all these semantic links. Therefore test
teams are faced with fictitious but realistic data.

The scrambling problem is complicated by the fact that attackers may have access to other
information sources, which permit to de-anonymize data by joining these sources with the
scrambled database. This external knowledge is often called adversarial knowledge (Chen,
LeFevre, & Ramakrishnan, 2007). In our approach, we aim to scramble test databases. We suppose
that we don’t have any knowledge about attackers. However we propose to model potential
adversarial knowledge using domain rules. As an example, in the chemistry industry, potential
attackers have fine-grain knowledge on their competitors. A domain rule will edict that competitors
turnovers are sensitive information in a given activity sector. Thus, the adversarial model is
embedded in domain rules.

DETECTING SENSITIVE DATA
While most existing tools need as an input the attributes to be scrambled, our tool aims at helping
in the detection of sensitive attributes. We automate the detection of sensitive attributes with a
combination of techniques based on deduction rules, statistics and natural language processing
(NLP). Deduction rules are mainly used to build Sc, statistics to compute Si, and NLP to expand
Ss with semantically close attributes. The whole process may be enriched by a human expert
validation consisting in either adding new rules or modifying sensitivity scores.

The Rule based approach
Our approach, automating the identification of sensitive attributes, relies mainly on rules that
represent the knowledge of experts on the sensitivity of the data in a given context. The rule based
approach is divided into two steps: (i) the acquisition step that implies the human expertness, and (ii)
the rules application step that can be fully automated. We distinguish the two following kinds of
rules:

• intentional rules with conditions on the database schema (mainly attribute names);

• extensional rules with conditions on the attribute’s instances.

Example 2 Rules like “Salary is a highly sensitive attribute” or “attributes with type
autoincrement must be scrambled” (they generally denote identifiers) are examples of the first
type of rules. Conversely, rules based on the fact that a column with some instances that contain
words like euros or street may refer respectively to private data on salary or on address of the
employees, belong to the second kind of rules.

Let ∆ be the set of all possible domains of application, Φ the set of all possible attribute names and
Ψ the set of all possible attribute values. An attribute instance is an instance (δ, φ, ψ) ∈ ∆ × Φ × Ψ

of the triple (domainName, attributeName, attributeValue). While theoretically rules may be
complex, we adopt the simple following rule definition.

Definition 4 Rule condition. A rule condition 1 2χ χ θχ= is a condition with

1 { , , }domainName attributeName attributeValueχ ∈ , 2χ ∈ ∆ ∪ Φ ∪ Ψ , and θ is an operator in
{ ,! , , , , , ,! }contains contains= = < > ≤ ≥ .

Observe that an attribute value could be set during the rule definition if it holds for all databases of
the related domain (such as a pathology name) or set by the expert during the scrambling process if
the attribute value is dependent of specific applications such as the maximal salary value.

Definition 5 Rule. A rule is composed of a couple (,)α σ where α ∈ Ω and σ is composed of
disjunctions and conjunctions of rule conditions along a rule sensitivity score [0,1]σ ∈ , where σ
permits to evaluate how sensitive is an attribute that satisfies the rule.

Similarly to the attribute values, the sensitivity score value could either be set during the rule
definition or during the scrambling process by an expert.

The sensitivity score is set by the expert to express how sensitive are data that match a given rule,
the higher the score is, the more sensitive the data are. This sensitivity score allows us to order the
different attributes according to their sensitivity. Thus the user can decide the security level she wants
for her application by deciding the sensitivity threshold. All attributes with a sensitivity score above
this threshold must be scrambled. A rule example follows.
Example 3. Assume we consider that a column whose name contains “SALAR”, if the domain is
HRD and there are values greater than 15,000 or lower than 5,000 then this column is highly
sensitive (score=0.9). The corresponding rule is defined by the following expression:
((domainName='HRD') ∧ (attributeName contains 'SALAR') ∧ (attributeValue>15000 ∨
attributeValue<5000)) , 0.9).

Finally, if an attribute α has one or several instances or metadata that satisfy at least one rule, this
attribute is candidate for scrambling. The sensitivity score of α for a given set of rules is defined as
follows:

Definition 6 Attribute’s sensitivity score. Let I be the set of instances and metadata for α and R be

the set of rules such that , ,R Iρ ι ι ρ∀ ∈ ∃ ∈ ‘ . The sensitivity score of the attribute α is defined as:

0
()

()R

if R
score

max otherwiseρ ρ
α

σ∈

= ∅
= 



where σρ denotes the score of the rule ρ. In other words, we consider that either the attribute doesn't

satisfy any rule and its sensitivity score is null, or several rules are satisfied for this attribute and

consequently its sensitivity score is the highest of all the rule sensitivity scores. We have chosen this

way of computation among other candidate formulae (min, average, Bonczek-Eagin, hybrid mixture,

etc. See (Blanning, 1988)) since we give priority to the highest security.

The existence or not of the domainName in a rule allows us to classify the rules in two families.
On the one hand there are context-free rules (when no domainName is set) that are applied whatever
the domain. On the other hand, we have noticed domain-dependent rules: they may be valid in a
given domain and false in other domains. A practical way to define some rules is based on expert
knowledge. Simple rules concerning one single attribute may be acquired from the experts by the
mean of a matrix such as the one depicted Figure 3. The given marks allow them to set the sensitivity
scores of the attributes. A mark is given for an attribute in a given domain starting from A which
corresponds to "highly sensitive" to E "not at all sensitive" (public). Of course many other techniques
may be applied to populate our knowledge database, such as Delphi questionnaire methodologies
querying non-experts impacted by the disclosure, limiting expert’s bias.

Figure 3: Matrix for acquisition by voting

The statistical computation
First we suppose that the primary key and the unique integrity constraints are always stored in the
metabase. They directly give indications on candidates for Si, that is the set of attributes for which
a restriction query will return only one tuple. Some candidates for the set Si of identity attributes
can be computed via the statistics of the database. In most DBMS the selectivity of each attribute
is stored in the metabase for query optimization purpose. Thus the system may know if an
apparently mild attribute such as car brand is in fact an identifying attribute for some databases with
few tuples and some unusual cars.

Unfortunately the statistics stored in the metabase are generally not sufficient to supply all the
required information on the distribution and the selectivity since they consider only single
attributes. Generally, no information about the selectivity of a subset of attributes is stored in
metadata tables. SQL queries sent to the database can be performed to fulfill this requirement.
However with large databases this method is costly: if we assume n attributes for a table, 2n

queries must be performed. When considering a large application like an ERP, with thousands of
tables with dozens of attributes, this solution is not conceivable. Actually it has been shown that
determining the optimal k-anonymity in a database is NP-hard (Meyerson & Williams, 2004).

However several heuristics have been proposed to provide fast k-anonymization algorithms (Park
& Shim, 2007). We do not aim in this paper at presenting a new heuristic for detecting composed
identity attributes so we rely on existing ones. Finally, to determine Si we consider in turn the
different candidates found and we check if the table they belong to also presents sensitive attributes.

Natural Language Processing
Rules are stated upon concepts. However in a given application the attributes may not have been
named with exactly the same term that the one used in the rules. Thus the matching between the
term used in the rule and the attributes name involves NLP techniques. Since the nineties
numerous works have been proposed using ontologies like WordNet (WordNet: An Electronic
Lexical Database, n.d.) enabling measuring the similarity between two terms (Lin & Sandkuhl,
2008). In our WordNet based solution the matching between names in the rules and names in the
relations requires a function SIMILAR(att_name,att_desc,att_name_in_rule)ssim. The inputs of this
function are att_name the attribute name in the relation, att_desc the explanatory text on the
attribute that can be found in the metabase and att_name_in_rule the name of the attribute as
specified in the rule. The explanatory text is essential in case of particularly inexpressive attribute’s
names. For example early versions of the SAP ERP allowed only 5 characters terms for naming
attributes (e.g. PERNR, KUNNR, SPTXT, etc.). Those original names are often still in use; fortunately
an attribute called “short description” is systematically filled with a description like “total amount
of premium”.

In a first step att_name is the object of a cleaning process aiming at avoiding a lack or an overuse
of stop words or delimiters (space, underscore, etc.), as for example in customername,
employee_id, num_of_customers and at homogenizing notations. Basically, for these text pre-
processing techniques the following operations may be performed:

• removal of word-separators like “_” or “-”;

• word-completion when an abbreviation is found, like “number” for “#” or “num”,

“identifier” for “id”, etc;

• stop-words removal, while generally rarely present in table or column names;

• stemming of the words, since two words with the same root have a similar meaning

regarding a given rule. For instance we keep “salar” for words “salary”, “salaries”, etc.

Several tools exist for performing this preprocessing, like (The Apache Lucene Project, n.d.) that
presents modules for stopwords removal or stemming. As an example, a morphological analyzer is
able to recognize conceptual relationships (mainly hyponymy) between parts of the expression
(Morin & Jacquemin, 2004). In a first implementation we haven’t yet explored these relationships
and we simply state that there is matching in the following cases: att_name and att_name_in_rule
are members of the same set of synonyms, or are naming the same concept in different languages, or
are hyponym/hyperonym.

A score ssim ∈]0, 1[corresponds to any other proximity distance regarding the semantics of the two
terms. The membership of att_name and att_name_in_rule to the set of hyponyms of the same

hyperonym is considered as an expansion of the rule and is treated in the following section. In case
of failing in the matching between att_name and att_name_in_rule an attempt of matching is
triggered using att_desc and att_name_in_rule. Terminological variations have been mainly studied
between two terms and fewer works include comparisons between multi-terms expressions based on
the analysis of the relationships between parts of the expression (Morin & Jacquemin, 2004). In a
first implementation we haven’t yet explored these relationships and we simply state that there is
matching in the following cases: att_name includes att_name_in_rule; or att_desc shares more than
80% with the description of att_name_in_rule in Wordnet.

PROPAGATING SENSITIVITY SCORES
Applying the previous techniques to a database results in a set of attributes Sinits identified for
scrambling. However up to now we have considered each table separately. Halting the process at that
step would probably lead to an incomplete result since there exist links between attributes from
diferent tables and any sensitivity score for an attribute must be propagated to another. First we
present shortly the propagation algorithm proposed in (Mouza et al., 2010) that exploits both
referential and semantic links between attributes.

The propagation graph model
We consider two kinds of links between attributes: links explicitly defined in the database schema as
integrity referential constraints, and implicit links based on semantics.

Referential integrity links

 Since a foreign key attribute references a primary or secondary key attribute, any modification of
the former must impact the latter. However the foreign keys are generally not detected neither as
identity attribute since their selectivity is low (a primary key value is referenced by the foreign key of
many tuples) nor as sensitive data since they are not explicitly targeted by rules.

Example 4 Back to our HRD database example, since many employees share the same manager, the
techniques presented above do not detect the attribute manager_id as sensitive. However we decided
to scramble the id of the employee (primary key), then we have to propagate and to scramble also
the attribute manager_id (foreign key).

Since referential integrity constraints are explicitly stored in the database we can extract them to
propagate sensitivity scores. Assume the set PK of primary or secondary keys, we use the following
notation to refer to the referential integrity constraints: | | | |: 2 2S S

rγ → (| |2 S denotes the power set of S

) {we use the traditional | |2S notation to denote the power set of S } defined as | |2 , ()S
rx xγ∀ ∈ =

| |{ | 2 , }

Sy y y foreign key referring to x if x PK

otherwise

 ∈ ∈

∅

Finally we denote for any set P S⊆ , the result set ()r PΓ defined as
| |2

() ()
P

r r
x

P xγ
∈

Γ = U

Semantic links

Referential integrity constraints are not the only links that exist between attributes. For instance an
attribute in a table may have the same semantics than another one in another table. The NLP

approach for the rules allows firing rules on attributes based on the semantics, whatever the
attribute’s name is. So if a rule is applied to a given attribute, this same rule will also be applied to
any other attribute sharing the same meaning. However the expert may also decide that an attribute
has to be scrambled independently of what our system proposes. Such a decision must consequently
propagate to all the “semantically linked” attributes.

Example 5 Assume there does not exist any rule concerning the sensitivity of the salary of employees
and that the expert decides that this information must not be revealed. When she sets the attribute
salary in one table as sensitive, she intends that all the other attributes in any table that refer to the
same kind of information, like salary in another table, but also wages, bonus, income, etc, have to
be set in the same way (e.g. max_salary and min_salary). Later she realizes that the address
attribute must be scrambled too. Starting from this selected attribute, the sensitivity must be
propagated to the couple (street,city) in another table for instance.

These semantic links may be either stored in the rules base or extracted from some general (e.g.
WordNet or domain-based ontologies.

We use the notation | | | |: 2 2S S
sγ → to refer to the semantic constraints defined as:

| |2 , ()S
sx xγ∀ ∈ = | | { | 2 , }Sy y x is semantically linked to y∈

Finally we denote for any set P S⊆ , the result set ()s PΓ defined as
| |2

() ()
P

s s
x

P xγ
∈

Γ = U

Propagation algorithm

We use the referential and semantic links between attributes to extend the set of attributes
init
sS

identified for scrambling and validated by the expert using the techniques presented above. We

proceed to the following iterative algorithm to determine the final set sS of attributes to scramble:

()i (0) init
s sS S=

()ii (1) () () () () ()k k k k
s s r s s sS S S S+ = ∪Γ ∪Γ

Lemma 1 Convergence. The algorithm converges to with at most |S| iterations.

Proof: The proof is straightforward:
() ,k
sS k ∈¥ , is monotonic increasing and is bounded by S ,

therefore it converges. Moreover note that we have
(1) ()k k
s sS S+ = when we reach the convergence and

the algorithm stops since it means that no link permits to extend
()k
sS and the result is stabilized.

While convergence is not reached, the result set extends at each step by at least one attribute.
Consequently the algorithm converges in at most | |S steps.

If the propagation process leads to a conflict set of different sensitivity values for the same
attribute, the maximum level is preferred as presented above. Finally when a candidate attribute has
been selected for scrambling one must determine the adequate algorithm to apply. This is however
out of the scope of the paper and remains as future work.

SCRAMBLING PROCESS
The whole scrambling process is decomposed into three main steps: labeling, detection and

validation (Figure 4). Labeling and detection are performed by the mean of rules that can be either
general rules or application-dependent rules. Validation involves a panel of experts.

Figure 4: Scrambling process

Labeling the database
Detection rules are based on semantics and they are not necessarily connected to the exact attribute’s
names of the database to be scrambled. For example a detection rule can specify that “salaries have
to be scrambled” while in a given application the column of salaries is named wage. Thus to facilitate
rules detection and scores propagation the first step in the scrambling process consists in applying
labeling rules that annotate the database with labels giving the semantics of the attributes, in the
same terms as those used in the rules. The result of this step is a labeled database with meta-
information about the semantics of its attributes. For example the attribute wage has a tag salary
because the latter is the word used in the rules. As mentioned earlier, when the name of the attribute
is not explicit enough, e.g. STX23, this process may imply the analysis of the documentary text
stored in the metabase on each attribute. Among labeling rules, some are general rules, that means
that they are application independent and are supplied in the rule base; and others are application-

dependent rules that can be supplied by the user of the expert system. This latter class of rules
addresses a particular application and gives labeling directives for some of its attributes. An example
of application-dependent labeling rule is “In my application the attribute Sal23 is set for salary”.

Detection of sensitive attributes
Detection rules are applied on the labeled database to detect which attributes have to be scrambled.
For example, thanks to the tag salary on the attribute wage, the rule “salary is sensitive” will be
applied to state that the attribute wage of the table Employee is sensitive and has to be scrambled.

Figure 5: Taxonomy of domains for rule inheritance

As previous labeling rules, detecting rules may be either general rules or application-dependent
rules. Application-dependent rules always have priority on general rules. A taxonomy of domains
enables an automatic inheritance of rules (Figure 5). Context-free rules (e.g. rules concerning
attribute’s types) are placed on the first levels. Application-dependent rules are on the leaves.

After this step the propagation algorithm performs the propagation of sensitivity through
referential constraints and other semantic constraints.

Expert Validation
Both automatic detection and automatic propagation steps' results have to be proposed for validation
to a panel of experts. The same validation process can be proposed to the users for a new application
in order to customize the rule base. In the second case the user can either accept all default choices or
change some that are not relevant for her particular firm’s requirements. It is very important in this
step to propose realistic schemes, leading to an easy and quick process. For this purpose we propose
to the expert:

• a direct access to the rules base filtered according to her domain thanks to the
hierarchy in Figure 5;

• a clear vision of data samples (instances) across several tables, reporting on the
attribute’s deduced sensitivity and the propagation of this sensitivity. This allows the
expert to directly point to the attribute she disagrees with and to correct its level of
sensitivity.

After an expert validation, if she performed any changes on the proposal, the identification and
propagation processes are re-run. This step is iterated until the expert validates the whole proposal.

The process then terminates and provides as output an “identified DB”, i.e. a database with the
different sensitive attributes identified and scored according to their degree of sensitivity.

EVALUATION
In order to validate our approach we developed a first prototype that includes most of the ideas
introduced in this paper. Then we used it to sanitize a sample of databases and made the results
analyzed by a panel of experts.

Prototype presentation
The tool presented in this paper for an automatic detection of sensitive data to be scrambled is part of
a more global prototype gathering two modules:

• the identifying module presented in this paper for the detection of which attributes are
sensitive and have to be scrambled;

• a scrambling module that chooses the most appropriate scrambling algorithms and
applies them on the data to produce a scrambled database.

Figure 6 represents the architecture of the identifying module presented in this paper. This tool has
been implemented in Java mainly for its portability using an Expert System approach. We have
chosen JESS (JESS, the Rule Engine for the Java Platform, n.d.), a rule engine and scripting
environment dedicated to Java applications, as an expert system. JESS stores the rules in files with
clp extension which allows us to easily import/export rules files. Theses files can also be completed
by the expert and/or user (depending on the genericity of the rule) through the tool interface.

Figure 6: Prototype architecture

The NLP treatments are supported by the Wordnet ontology that provides, among other links,
synonymy and proximity links between words. Currently our prototype takes into consideration only
synonymy links to detect if a rule written for a given attribute’s name applies to an attribute in the

database to be scrambled while its name is different but synonym. We intend to consider other links
using existing similarity measures based on path length between concepts like Ich (Leacock &
Chodorow, 1998) or wup (Wu & Palmer, 1994) for instance, or based on information content like res
(Resnik, 1995) or lin (Lin, 1998). The WordNet::Simarity package (Pedersen, Patwardhan, &
Michelizzi, 2004) is another interesting solution. Our implementation relies on the JAWS API as an
interface between our application and WordNet, and JDBC to connect the application to the database.

Validation has been performed on ORACLE. A next prototype will focus on SAP applications.
The tool finally provides as a result an XML file with the set of attributes for each table along their
sensitive score. This XML file is then processed by the second module (not presented here) in charge
of determining adequate scrambling strategies for each sensitive attribute. Using an XML file as an
output also allows the expert or the advanced user to directly edit the XML files for adding or
modifying some rules.

Figure 7: Prototype’s interface

Our experiment has convinced us that, unlike computer scientists, domain experts and users are
more familiar with data than with attribute names. Thus we provide them with some examples of data
in order to help experts making their decisions. Figure 7 shows such a proposal based on simple
select queries on the tables. A sample of a query’s result is proposed with a diferent color for each
attribute, corresponding to the level of sensitivity based on the acquired rules.

The expert can change a color each time she doesn’t agree. This change is propagated in cascade
to other attributes connected either by a referential constraint link or a semantic one (see propagation
mechanism above). Here for instance we decide to increase the sensitivity score for the attribute

department_id from green (score of 0.2) to red (score of 0.6) in table Department. This impacted also
the sensitivity score for attributes department_id and dep_id in respectively tables Employee and
Job_history that get in turn a red label. A visual alert warns the user when tables not currently
displayed have an attribute whose sensitivity has changed when cascading. Moreover the attribute
first_name satisfied a rule on family_name attribute and got a very high sensitivity score symbolized
by the dark blue color.

Our tool also contains an interface to edit, add or delete rules on attributes (see Figure 8) or
instances (see Figure 9).

Figure 8: Adding a rule on a column

Figure 9: Adding a rule on an instance

Validation
We evaluate our proposal and prototype with four different databases: samples based on Dellstore,
IMDB and MediaWiki (used in Wikipedia) databases and a classical sales application that we refer as
“Order”. Table 1 describes the databases.

Database # of tables # of attributes # of rows

Dell store 8 52 172,716

IMDB 47 151 1,834,483

Media Wiki 45 289 756

Order 8 59 3459

Table 1: Description of the databases for the experiments

Our expert system relies on a set of 30 rules collected from a panel of 8 experts. Table 2 presents an
extract from this rules set. They are general rules or rules about the sales domain.

1. A column whose name contains the word "address" (or one of its synonyms or
one of it's abbreviations) is sensitive

2. A column whose name contains the word "income" (or one of its synonyms or
one of it's abbreviations) is sensitive

3. A column whose name contains the word "discount" (or one of its synonyms
or one of it's abbreviations) and for which the standard deviation is high
then is sensitive.

4. A column of type date for which some values occur less than 10 times is
sensitive.

Table 2. Examples of sensitivity rules for the Order and Dell store databases

They concern either attributes’ names (80% of the rules) or both attributes’ names and instances.
In addition implicit rules on the primary keys, unique attributes and attributes with high selectivity
(here we assume that attributes whose single value identifies less than 2% of the data is sensitive) are
also considered. Implicit rules on identifiers or quasi-identifiers (here we assume that attributes with
instances that identify less than 2% of the data are sensitive) are also considered. For each rule a
score that represents the sensitivity of an attribute that follows this rule was a priori set.

Database total time

(in s)

sensitive attributes
 (# and %)

Experts evaluation

mod. (σ≤50) high (σ>50) missed false/positive inadequate approved

Dell store 24.9 25 (48%) 13 (25%) 2 5 2 32

IMDB 566.8 44 (29%) 15 (10%) 3 9 8 42

Media Wiki 1.6 5 (11%) 2 (4%) 2 1 0 6

Order 1.9 25 (42%) 21 (36%) 3 4 4 38

Table 3: Execution time and result of the identification process

We report the results obtained with our prototype for the four databases in Table 2. First we
observe that the execution time greatly depends on the size of the database. For instance Dell
Store and Order databases have approximately the same number of attributes but the former
consists of 172,716 records and the latter consists only of 3,459 records, what results respectively in
24.9s and 1.9s as execution time. This is due to the rules checking process of JESS that performs
linearly in the size of the data that consists of both attribute’s names and attribute’s values. The
execution time remains acceptable since around 9mn are needed for processing a database with 1.8
million of records. The number of sensitive attributes identified by the prototype varies with
applications. As expected, sales applications with much information about customers present more

sensitive attributes than public applications. To simplify analysis we group in this table attributes
with a moderate (resp. high) sensitivity, i.e. with a sensitivity score σ≤50 (resp. σ>50).

We ask to our panel of experts to assign to each column of the four tables a tag among not
sensitive, moderately sensitive, highly sensitive. Comparisons of their
evaluation with the results produced by our prototype are reported in Table 2. We notice that our
prototype has identified around 80% of the sensitive attributes and very few ones were missed
(around 5%). The rate of false positives and the rate of attributes with an inadequate sensitive score
(tagged as highly sensitive instead of moderately or conversely) are respectively around 10%. As
expected, best results are achieved for sales databases since experts provided mainly generic rules
and rules for sales applications. Our recall of 80%, combined with a precision of 90% of correctly
identified sensitive attributes, is not sufficient but is promising. We intend to improve these results by
adding other rules and also by relying on domain ontologies to achieve a more adequate matching
between rules and information. However remember that even if the current recall and precision
scores do not avoid an expert validation, the expert may benefit from our approach since our system
can detect possible sensitive attributes difficult to identify, and also “hidden” semantic links between
attributes that the expert could have missed.

CONCLUSION
Scrambling test databases is a crucial need for an increasing number of companies. However nothing
has been proposed to automatically determine which part of the database needs scrambling. In this
paper we have proposed an approach to detect sensitive attributes and its implementation based on an
expert system architecture. Our approach relies on a meta-model describing the main concepts used
in this scrambling process. We have proposed a rule based approach for determining the attribute
sensitivity level. These rules may be general or specific to one application. General rules are
provided in the rule base with the tool; they are categorized in an inheritance hierarchy of domains.
Application dependent-rules can be added by the user. Primary keys, indexes and statistics on the
database stored in the DBMS for optimization purpose are used to detect attributes that are nearly
identifying for the tuples. Referential integrity constraints and other semantic links are exploited for
the propagation of the sensitivity among attributes. Labeling rules using the WordNet ontology are
provided to match the attribute’s names used in the rules with the exact names of the attributes in a
given application. In addition, referential integrity constraints are preserved as well as other semantic
dependencies.
Our future work will focus on the evaluation of the resulting scrambled database. In particular it is
difficult to be certain that the scrambled database doesn’t contain any inconsistency due to a bad
propagation of the scrambling among all the tables. Experimentation will be performed on an SAP
application, where data are strongly connected together, sometimes through complex deduction and
management rules. Another step will deal with the generalization of rules allowing us not only to
assign a sensitivity score to each attribute but also to map the relevant scrambling technique to be
applied to this attribute.
The presented approach could also be generalized to contexts different from the one tests
environments. In this case, an extension of the actual work will integrate the users' profiles to
elaborate a data access strategy.

ACKNOWLEDGEMENTS. The authors want to thank the reviewers for their helpful comments.

REFERENCES

Amiri, A. (2007). Dare to Share: Protecting Sensitive Knowledge with Data Sanitization. Decision
Support Systems (DSS), 43(1), 181191. The Apache Lucene Project. (n.d.).
(h tt p : // l u ce n e . a p ac h e .o r g/)

Askari M., Safavi-Naini R.,& Barker K. (2012): An Information Theoretic Privacy and Utility
Measure for Data Sanitization Mechanisms. In Proc. Intl. ACM Conf. on Data and Application
Security and Privacy (CODASPY) (p 283-294).

Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino, E., & Verykios, V. (1999). Disclosure
Limitation of Sensitive Rules. In Proc.Intl. Workshop on Knowledge and Data Engineering
Exchange (KDEX) (p. 45-52).

Bakken, D. E., Parameswaran, R., Blough, D. M., Franz, A. A., & Palmer, T. J. (2004). Data
Obfuscation: Anonymity and Desensitization of Usable Data Sets. IEEE Security & Privacy, 2(6),
34-41.

Blanning, R. (1988). Sensitivity Analysis in Hierarchical Fuzzy Logic Models. In Proc. Intl Conf.
on Decision Support and Knowledge Based Systems Track (pp. 471–476).

Bonchi, F., Gionis, A., & Tassa, T. (2011). Identity Obfuscation in Graphs Through the
Information Theoretic Lens. In Proc. Intl. Conf. on Data Engineering (ICDE) (p. 924-935).
Camouflage. (n.d.). (h tt p : //ww w .d a t a m a s k i ng. c om)

Chakaravarthy, V. T., Gupta, H., Roy, P., & Mohania, M. K. (2008). Efficient Techniques for
Document Sanitization. In Proc. Intl. Conf. on Information and Knowledge Management (CIKM)
(p. 843-852).

Chen, B.-C., LeFevre, K., & Ramakrishnan, R. (2007). Privacy Skyline: Privacy with
Multidimensional Adversarial Knowledge. In Proc. intl. conf. on very large data bases (vldb) (pp.
770–781).

Datamasker. (n.d.). (h tt p : //ww w .d a t a m a s k e r . c om)

Datavantage Globa. (n.d.). (h tt p : //ww w .d a t a v a n t a g e . c om)

Fung, B. C., Wang, K., Chen, R., & Yu, P. S. (2010). Privacy-Preserving Data Publishing: A
Survey on Recent Developments. ACM Computing Surveys, 42(4).

Gardner, J., & Xiong, L. (2008). HIDE: An Integrated System for Health Information DE-
identification. In Proc. Intl. Symp. on Computer-Based Medical Systems (CBMS) (p. 254-259).

http://lucene.apache.org/
http://lucene.apache.org/
http://www.datavantage.com/
http://www.datamasker.com/
http://www.datamasking.com/

HCM Data Scrambler. (n.d.).

Meyerson, A., & Williams, R. (2004). On the HCM Data Scramble Tool. (n.d.).
(h tt p : // m ud i a mi n c . c o m /H c m -D a t a -scrambel-tool.html)

JESS, the Rule Engine for the Java Platform.(n.d.). (h tt p : //ww w . j e ss ru l e s . c om)

JumbleDB - Orbium Software. (n.d.). (h tt p : //ww w .orb i u ms of t w a r e . c o m /)

Leacock, C., & Chodorow, M. (1998). Combining Local Context and WordNet Similarity for
Word Sense Identification. MIT Press, 265-283.

Li, N., Li, T., & Venkatasubramanian, S. (2007). t-Closeness: Privacy Beyond k-Anonymity and l-
Diversity. In Proc. Intl. Conf. on Data Engineering (ICDE) (p. 106-115).

Lin, D. (1998). An Information-Theoretic Definition of Similarity. In Proc. Intl. Conf. on Machine
Learning (ICML) (p. 296-304).

Lin, F., & Sandkuhl, K. (2008). A Survey of Exploiting WordNet in Ontology Matching. In Proc.
Intl. Conf. on Intelligent Information Processing, Artificial Intelligence in Theory and Practice
(IFIP AI) (p. 341-350).

Machanavajjhala, A., Gehrke, J., Kifer, D., & Venkitasubramaniam, M. (2006). lDiversity: Privacy
Beyond k-Anonymity. In Proc. Intl. Conf. on Data Engineering (ICDE) (p. 24). Complexity of
Optimal K-Anonymity. In Proc. Intl. Symp. on Principles of Database Systems (PODS) (p. 223-
228).

Morin, E., & Jacquemin, C. (2004). Automatic Acquisition and Expansion of Hypernym Links.
Computer and the Humanities, 38(4).

Mouza, C. du, Métais, E., Lammari, N., Akoka, J., Aubonnet, T., Comyn-Wattiau, I., et al. (2010).
A Semantic Approach to Improve Automatically Data Security During Test of Information
Systems. In Proc. Intl. Conf. on Advances in Databases, Knowledge, and Data Applications
(DBKDA) (p. 247-252).

Neamatullah, I., Douglass, M. M., H Lehman, L. wei, Reisner, A., Villarroel, M., Long, W. J., et
al. (2008). Automated DeIdentification of Free-Text Medical Records. BMC Medical Informatics
and Decision Making, 8(32).

NooJ, a free linguistic development environment. (n.d.). (h tt p : //ww w .noo j 4n l p.n e t)

Oliveira, S. R. M., & Zaïane, O. R. (2003). Protecting Sensitive Knowledge By Data Sanitization.
In Proc. Intl. Conf. on Data Mining (ICDM) (p. 613-616).

http://www.nooj4nlp.net/
http://www.orbiumsoftware.com/
http://www.jessrules.com/
http://mudiaminc.com/Hcm-Data-
http://mudiaminc.com/Hcm-Data-

Park, H., & Shim, K. (2007). Approximate Algorithms for K-Anonymity. In Proc. intl. conf. on
management of data (sigmod) (p. 67-78).

Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). WordNet: : Similarity Measuring the
Relatedness of Concepts. In Proc. Nat. Conf. on Artificial Intelligence (AAAI) (p. 1024-1025).

Pse Data Security. (n.d.). (h tt p : //ww w .p s e d a t a s ec ur it y . c om)

Ravikumar, G. K., Manjunath, T. N., Ravindra, S. H., & Umesh, I. M. (2011). A survey on recent
trends, process and development in data masking for testing. International Journal of Computer
Science, (8), 2.

Resnik, P. (1995). Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In
Proc. Intl. Conf. on Artificial Intelligence (IJCAI) (p. 448-453).

Saini, M. K., Atrey, P. K., Mehrotra, S., & Kankanhalli, M. S. (2011). Anonymous Surveillance. In
Proc. Intl. Conf. on Multimedia and Expo (ICME) (p. 1-6).

Shou, L., Shang, X., Chen, K., Chen, G., & Zhang, C. (2011). Supporting Pattern-Preserving
Anonymization For Time-Series Data. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 99(PrePrints).

Solix. (n.d.). (h tt p : //ww w . s o li x. c om)

Sweeney, L. (2002). Achieving k-Anonymity Privacy Protection Using Generalization and
Suppression. Intl. Jour. of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 571-588.

To, Q. C., Dang, T. K., & Küng, J. (2011a). Bob-Tree: An Efficient B + -Tree Based Index
Structure for Geographic-Aware Obfuscation. In Proc. Intl. Conf. on Intelligent Information and
Database Systems (ACIIDS) (p. 109-118).

To, Q. C., Dang, T. K., & Küng, J. (2011b). OST-Tree: An Access Method for Obfuscating
Spatio-Temporal Data in Location Based Services. In Proc. Intl. Conf. New Technologies, Mobility
and Security (NTMS) (p. 1-5).

Vinogradov, S., & Pastsyak, A. (2012). Evaluation of Data Anonymization Tools. In Proc. Intl.
Conf. on Advances in Databases, Knowledge, and Data Applications (DBKDA) (p. 163-168).

Wang, E. T., & Lee, G. (2008). An Efficient Sanitization Algorithm for Balancing Information
Privacy and Knowledge Discovery in Association Patterns Mining. Data Knowl. Eng.(DKE), 65(3),
463-484.

WordNet: An Electronic Lexical Database. (n.d.). (h tt p : // w ordn e t .pr i n ce t on. e du)

http://wordnet.princeton.edu/
http://www.solix.com/
http://www.psedatasecurity.com/

Wu, Z., & Palmer, M. S. (1994). Verb Semantics and Lexical Selection. In Proc. of the
Association for Computational Linguistics (ACL) (p. 133-138).

