
HAL Id: hal-01126550
https://hal.science/hal-01126550

Submitted on 1 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AS-Index: A Structure For String Search Using n-grams
and Algebraic Signatures

Camelia Constantin, Cedric Du Mouza, Witold Litwin, Philippe Rigaux,
Thomas Schwarz

To cite this version:
Camelia Constantin, Cedric Du Mouza, Witold Litwin, Philippe Rigaux, Thomas Schwarz. AS-Index:
A Structure For String Search Using n-grams and Algebraic Signatures. Journal of Computer Science
and Technology, 2016, 31 (1), pp.147-166. �10.1007/s11390-016-1618-6�. �hal-01126550�

https://hal.science/hal-01126550
https://hal.archives-ouvertes.fr

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures. JOURNAL OF COMPUTER SCIENCE
AND TECHNOLOGY : 1– Jul. 2014

Camelia Constantin1, Cédric du Mouza2, Witold Litwin3, Philippe Rigaux2, Thomas Schwarz4

1LIP6 laboratory, University Pierre et Marie Curie, Paris, France
2CEDRIC laboratory, Conservatoire National des Arts et Métiers, Paris, France
3LAMSADE laboratory, University Paris-Dauphine, Paris, France
4DICC laboratory, Catolica del Uruguay, Montevideo, Uruguay

E-mail: camelia.constantin@lip6.fr; dumouza@cnam.fr; witold.litwin@dauphine.fr; philippe.rigaux@cnam.fr;
tschwarz@ucu.edu.uy

AS-Index: A Structure For String Search
Using n-grams and Algebraic Signatures

Abstract We present the AS-Index, a new index structure for exact string search in disk resident databases. AS-index
relies on a classical inverted file structure, its main innovation being a probabilistic search based on the properties of algebraic
signatures used both for n-grams hashing and pattern search. Specifically, the properties of our signatures allow to carry out
a search by inspecting only two of the posting lists. The algorithm thus enjoys the unique feature of requiring a constant
number of disk accesses, independently from both the pattern size and the database size. We conduct extensive experiments
on large datasets to evaluate our index behavior. They confirm that it steadily provides a search performance proportional
to the two disk accesses necessary to obtain the posting lists. This makes our structure a choice of interest for the class of
applications that require very fast lookups in large textual databases.

We describe the index structure, our use of algebraic signatures and the search algorithm. We discuss the operational
trade-offs based on the parameters that affect the behavior of our structure, and present the theoretical and experimental
performance analysis. We next compare the AS-Index to the state-of-the-art alternatives and show that (i) the construction
time matches that of the competitors, due to the similarity of structures, (ii) the search time constantly outperforms the
standard approach, thanks to the economical access to data complemented by signature calculations, which is at the core of
our search method.

Keywords Full text indexing, Large scale indexing, Algebraic signatures

1 Introduction

Databases increasingly store data of various kinds
such as text, DNA records, and images. This data
is at least partly unstructured, which creates the need
for full text searches (or pattern matching) [1]. In
main memory, matching a pattern P against a string
S runs in O(|S|/|P |) at best [2]. Searching very large
data sets requires a disk-resident index, involving some
storage overhead and a possibly long index construc-
tion time.

We address the problem of searching arbitrarily
long strings in external memory. We assume a database
D = {R1, R2, · · · , Rn} of records, viewed as strings
over an alphabet Σ. The database supports record in-
sertion, deletion and updates, as well as search on any
substring, called pattern, of the records’ contents.

Currently deployed systems for textual documents
use almost exclusively inverted files indexing words
for keyword search. However, our need for full pat-
tern matching in records where the concept of word
may not exist rules out this solution. Suffix trees and
arrays form a class of indexes for pattern matching.
Suffix trees work best when they fit into RAM. At-
tempts to create versions that work from disks are re-
cent and experimental. They raise difficult technical
issues [3, 4] due to a bad locality of reference, a nec-
essarily complex paging scheme, and structural dete-
rioration caused by inserts into the structure. A suf-
fix array stores pointers on a list of suffixes sorted in
lexicographic order, and uses binary search for pattern
matching. However, a standard database architecture
stores records in blocks and supports dynamic inser-

2 J. Comput. Sci. & Technol., Jul.. 2014, ,

tions and deletions, which makes difficult the main-
tenance of sequential storage. A suffix array search
needs O(log2N) block accesses, where N is the size
(number of characters) of D. We are not aware of a
generic solution to these difficulties in the literature,
and without one, these costs disqualify suffix arrays for
our needs.

Two approaches that explicitly address disk-based
indexing for full pattern-matching searches are the
String B-Tree [3] and n-gram inverted index [5, 6].
The String B-Tree is basically a combination of B+-
Tree and Patricia Tries. The global structure is that of
a B+-Tree, where keys are pointers to suffixes in the
database. Each node is organized as a Patricia Trie,
which helps guiding the search and insert operations.
A String B-Tree finds all occurrences of a pattern P
in O(|P |/B + logB N) disk accesses, where B is the
block size. Another direction for text search needs are
indexes inverting n-grams (n consecutive symbols) in-
stead of entire words. They are “disk friendly” in that
they rely on fast sequential scans, provide a good lo-
cality of reference, and easily adapt to paging and par-
titioning. However, the search cost is linear, both in the
size of the database and the size of the pattern.

In the present paper, we introduce a new data
structure for index-based full-text search called Alge-
braic Signature Index (AS-Index). It follows the path
of an inverted file based on n-grams, and combines
standard database large-scale indexing (namely hash-
ing) with a new hash calculus based on algebraic signa-
tures, (ASs) [7]. The main originality of our approach
is to take advantage of the interpretation of charac-
ters as symbols in a mathematical structure. The op-
erations in this structure (a Galois Field) contribute
to develop new computational techniques that identify
the result items of a search in constant time. As a
result, our index structure enjoys the attractive prop-
erty, unique at present to our knowledge, of performing
records lookup with constant number of disk accesses,
independent from both the size of the database and the
length of the pattern.

Our experiments show AS-Index to be a very fast
solution to pattern searches in a database. AS-Index
search only needs two disk lookups when the hash di-
rectory fits in main memory. In our experiments, it
proved itself to be up to one order of magnitude faster
than n-gram indexes and twice faster than String B-

Trees. Although the AS-Index is probabilistic by na-
ture and could returns some false-positives, we ana-
lytically demonstrate, and confirm by our experiments,
that they are very unlikely. The basic variant of AS-
Index has a storage overhead of about 5 to 6. A variant
of our scheme only indexes selective n-grams and has
lower storage overhead at the costs of slower search
times and higher rates of false-positives. All these
properties make AS-Index a practical solution for text
indexing.

This paper extends [8] by proposing a complete
theoretical analysis of the expected AS-Index perfor-
mance and of the probability of false-positive. It also
introduces a non-dense indexing variant. This extended
version includes a detailed description of our imple-
mentations for the different structures, incorporating
data compression, and a large revisited experimental
section with larger datasets (20 GB versus 100 MB in
the conference paper, with support of the data compres-
sion), a study of false positives, and evaluation of the
non-dense indexing variant.

The paper is organized as follows. Section 2 gives
an overview of the AS-Index basic principles. We re-
call the theory of algebraic signatures in Section 3. We
then discuss the AS-Index structure in Section 4 and
the search algorithm in Section 5. Section 6 analyses
the scheme’s behavior, especially collision and false
positive probability, as well as performance and Sec-
tion 7 presents the variants.

Section 8 explains the details of our implemen-
tation of String B-Trees, n-gram index and AS-Index
and experiments. We review related work in Section 9.
Finally, we summarize and give future research direc-
tions in Section 10.

2 AS-Index overview

AS-Index is a classical hash file with variable
length disk-resident buckets, (see Fig. 1). Buckets are
pointed to by the hash directory. Simplicity and per-
formance of such files attracted countless applications.
Their main advantage is a constant number of disk ac-
cesses, independent of file and pattern size. Constant
number of disk accesses is not possible for a tree/trie
access method. Each bucket stores a list of entries,
each entry indexing some n-gram in the database. The
basic variant of AS-Index is dense, indexing every n-

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 3

gram. The hash function providing the bucket for an
entry uses the n-gram value as the hash key. The hash
function is particular: it relies on algebraic signatures
of n-grams, to be described in the next section. In what
follows, we only deal with the static AS-Index, but the
hash structure may use standard mechanisms for dy-
namicity, scalability and distribution.

Pattern P

Sp

h(S2)

H
as

h
 d

ir
ec

to
ry

e2

AS(e1, e2, Sp)

success

failure

e1

S1 S2

h(S1)

Fig. 1. A matching attempt with AS-Index

In overview, a search for a pattern P proceeds
as follows (Fig. 1): First, we preprocess P for three
signatures: (i) of the initial n-gram S1, (ii) of the fi-
nal n-gram S2 and (iii) of the suffix Sp of P after S1
(and including S2). Hashing on S1 locates the bucket
with every entry e1 indexing an n-gram in the database
with the same signature as S1. Likewise, hashing on
S2 locates the bucket with every entry e2 indexing an
n-gram with the signature of S2. We only consider
pairs of entries that are in the same record and at the
right distance among them. We thus locate any string
S matching P on its initial and terminal n-gram, at
least by signature.

Finally, an algebraic calculation AS(e1, e2, Sp)

determines whether Sp matches the suffix of S as well.
This calculation is made possible by the specific prop-
erties of the signatures that allow to check some seman-
tics properties (e.g., string matching) in spite of their
very compact representation, something which could
not be achieved with standard hash functions. The
method is probabilistic in nature, with low chances of
false positives. We can avoid even a minute possibility
of a false match by a symbol for symbol comparison
between pattern and the relevant part of the record.

By limiting disk accesses to the two buckets as-
sociated to the first and last n-grams of P , AS-Index

search runs independently from P ’s size. The cost of
the search procedure outlined above is reduced to that
of reading two buckets. The hash directory itself can
often be cached in RAM, or needs at most two ad-
ditional disk accesses, as we will show. With an ap-
propriate dynamic hashing mechanism that evenly dis-
tributes the entries in the structure and scales grace-
fully, the bucket size is expected to remain uniform
enough to let the AS-Index run in constant time, in-
dependently of the database size.

Table 1 compares the analytical behavior of
AS-Index with those of two competitors (String B-
Trees [3] and n-gram index [5, 6]) and summarizes its
expected advantages. The size of all structures is lin-
ear in the size |D| of the database. The ratio directly
depends on the size of index entries. We mention in Ta-
ble 1 the ratio obtained in our implementation, before
any compression. The asymptotic search time in the
database size is linear for n-gram index, logarithmic
for String B-Trees and constant for AS-Index. More-
over, once the pattern P has been pre-processed, AS-
Index runs independently from P ’s size, whereas n-
gram index cost is linear in |P |.

String B-Trees n-Gram AS-Index

Constr. O(|D| × logB |D|) O(|D|) O(|D|)
Storage O(|D|) O(|D|) O(|D|)
(ratio) (∼6-7) (∼6) (∼5-6)

Preproc. none O(|P |) O(|P |)
Search O(|P |/B + logB |D|) O(|D| × |P |) O(1)

Table 1. Disk-based index structures for searching a pattern
P in a database D. B is the block size.

In summary, AS-Index efficiently identifies
matches with only two disk lookups, whatever the pat-
tern length. This efficiency is achieved through exten-
sive use of properties of algebraic signatures, described
in the next section. It also relies on the robustness
of signatures to skewed distributions, analyzed in Sec-
tion 6.

3 Algebraic signatures

We use a Galois field GF (2f) of size 2f . The
elements of GF are bit strings of length f . Selecting
f = 8 deals with ASCII records and f = 16 with Uni-

4 J. Comput. Sci. & Technol., Jul.. 2014, ,

code records. We recall that a Galois field is a finite set
that supports addition and multiplication. These op-
erations are associative, commutative and distributive,
have neutral elements 0 and 1, and there exist additive
and multiplicative inverses. In a Galois field GF (2f),
addition and subtraction are implemented as the bit-
wise XOR. Log/antilog tables provide usually the most
practical method for multiplication [7]. We adopt the
usual mathematical notations for the operations in what
follows. We use a primitive element α of GF (2f).
This means that the powers of α enumerate all the non-
zero elements of the Galois field. It is well known that
there always exist primitive elements.

Symbol Interpretation

f Size (in bits) of a GF element in
GF (2f) (f = 8 or f = 16)

n Size of n-grams

m Size of signature vectors,m ≤ n
M Size of records

K Size of patterns, K > n

L Number of lines in the AS-Index

r0, r1, · · · rM−1 Record characters/symbols

s1, · · · sm One-symbol signatures

S1, · · ·Sm One-symbol n-gram signatures

Table 2. Table of the symbols used in the paper

Let R = r0r1 · · · rM−1 be a record with M sym-
bols. We interpret R as a sequence of GF elements.
Identifying the character set of the records with a Ga-
lois field provides a convenient mathematical context
to perform computations on record contents.

Definition 1. The m-symbols algebraic signature
(AS) of a record R is a vector ASm(R) with m coordi-
nates (s1, s2, . . . sm) defined by

s1 = r0 + r1 · α+ r2 · α2 . . .+ rM−1 · αM−1

s2 = r0 + r1 · α2 + r2 · α4 . . .+ rM−1 · α2(M−1)

...

sm = r0 + r1 · αm + r2 · α2m . . .+ rM−1 · αm(M−1)

(1)
We refer the reader to [7] for more details about

definitions and properties of algebraic signatures.
In our examples, we represent the m-symbol AS

of R as the concatenation of the values sm, · · · , s1
in hexadecimal notation. For instance if s1 = #34

and s2 = #12, then we write the 2-symbol AS as
s2s1 = #1234.

We use different partial algebraic signatures of
pattern and database records, as we now explain.

Definition 2. Let l ∈ [0,M − 1] be any posi-
tion (offset) in R. The Cumulative Algebraic Signa-
ture (CAS) at l, CASm(R, l), is the algebraic signa-
ture of the prefix of R ending at rl, i.e., CASm(R, l) =

ASm(r0 . . . rl).
The Partial Algebraic Signature (PAS) from l′ to l is
the value PASm(R, l′, l) = ASm(rl′rl′+1 · · · rl), with
0 ≤ l′ ≤ l, Finally, we most often use the PAS of sub-
strings of length n, i.e., of n-grams.

Definition 3. The n-gram Algebraic Signature
(NAS) of R at l is NASm(R, l) = PASm(R, l − n +

1, l), for l ≥ n− 1. In other words:

NASm(R, l) = (rl−n+1 + · · ·+ rl · αn−1,
rl−n+1 + . . .+ rl · α2(n−1),

...,

rl−n+1 + . . .+ rl · αm(n−1))(2)

M

l
r

l−n+1
r

l’
r

0
r

M−1

CAS(l) PAS(l’, l) NAS(l)

Record R
r

Fig. 2. Computing CAS(l), PAS(l′, l) and NAS(l) in
record RM

In all the definitions, we may drop R whenever it
is implicit for brevity’s sake. Figure 2 shows the re-
spective parts of the record that define the CAS, PAS
and NAS at offset l. The following simple proper-
ties of algebraic signatures, expressed for coordinate i,
1 ≤ i ≤ m, are useful for what follows. We note the
i-th symbol of a CAS at l as CASm(l)i and proceed
similarly for NAS and PAS.

CASm(l)i = CASm(l − 1)i + rl · αil (3)

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 5

NASm(l)i =
NASm(l − 1)i − rl−n

α
+ rl · αi(n−1)

(4)

NASm(l)i =
CASm(l)i − CASm(l − n)i

αi(l−n+1)
(5)

For 0 ≤ l′ < l:

CASm(l)i = CASm(l′)i + αi(l
′+1)PASm(l′ + 1, l)i

(6)
Properties 3 and 4 let us incrementally calculate

next CAS and NAS while scanning an input record or
the pattern, instead of recomputing the signature en-
tirely. This speeds up the process considerably. Prop-
erty 5 also speeds up the pattern preprocessing, as it
will be shown in the following. Property 6 finally is
fundamental for the match attempt calculus. Table 2
summarizes the symbols used in the paper.

4 Structure

Our database consists of records that are made up
of a Record IDentifier (RID) and some non-key field.
(Extensions to databases with more than one key and/or
non-key field are straight-forward.) We assume that
the non-key field consists of strings of characters in-
terpreted as symbols from our Galois field. Our search
finds all occurrences of a pattern in the non-key field of
any record in the database. When we talk about offsets
and algebraic signatures, we refer only to the non-key
field. IfR is such a field and ri a character (Galois field
element) in R, then we call i the offset. An n-gram
G = rl−n+1 · · · rl is any sequence of n consecutive
symbols in R. By extension, we then call l the offset of
the n-gram.

An AS-Index consists of entries.
Definition 4. Let G be an n-gram at offset o in

R. The entry indexing G, denoted E(G), is a triplet
(rid, o′, c) where rid is the RID ofR, c isCAS1(R, o),
and o′ is o modulo 2f − 1.

We assure constant size of the entries by taking the re-
mainder. The choice of the modulus is justified by the
identity χ2f−1 = χ for all Galois field elements χ.

The indexing is “dense”, i.e., every n-gram in the
database is indexed by a distinct entry. To construct the
index, we process all n-grams in the database.

Buckets

<r2, l2, c>...

entries for CAS c

<ri, li, c’>

entries for CAS c’

Structure of a bucket

e1 e2 <r1, l1, c>

H
as

h
di

re
ct

or
y

D

L−1

0

C

C
0

i
...

Fig. 3. Structure of the AS-index

AS-Index is a hash file, denoted D[0..L−1], with
directory lengthL = 2v being a power of 2 (Fig. 3). El-
ements of D refer to buckets or lines of variable length,
each containing a list of entries. Lines are of variable
length to accommodate a possible uneven distribution
of n-gram values. Each D[i] contains the address of
the i-th bucket.

All together, the AS-Index line structure is simi-
lar to a posting list in an inverted file, except for the
presence of the CAS c in each entry and a specific rep-
resentation of the offset l. Since we use a hash file,
lines should have a collision resolution method such
as classical separate chaining that uses pointers to an
overflow space. Such a technique accomodates moder-
ate growth, but if we need to accomodate large growth,
then we need a dynamic hashing method such as linear
hashing.

We now describe how to calculate the index i of
the line for an entry E(G) = (rid, o, c). We calculate i
from the m-symbol NAS NASm(G) = (s1, . . . , sm).
The coordinates of the NAS are bit strings. By concate-
nating them, we obtain a bit string S = smsm−1 . . . s1
that we interpret as a large, unsigned integer. The index
i is:

i = hL(S) = S mod L

Since L = 2v, this amounts to extracting the last v bits
of S. It is easy to see thatm should be such thatm ≤ n
and m ≥ dv/fe. The choice of AS-Index parameters
m, n and L will be further discussed in Section 6.

Example 1. Consider a 100 GB database with
byte-wide symbols (f = 8). For the sake of example,
let L = 230, leading to buckets with d1011/230e = 93

entries on the average. Let n = 5 and m = 4. To cal-
culate line index i of n-gram G we thus concatenate
s4..s1 of NAS4(G). Then we keep the last 30 bits.

6 J. Comput. Sci. & Technol., Jul.. 2014, ,

Now, consider the record with RID 73 and non-key
field ’University Paris Dauphine’. Assume
that NAS4(’Unive’, 4) is #3456789a. Since this is
the first 5-gram, CAS1(73, 4) has the same value as
the first component, i.e., is #9a. For subsequent 5-
grams, the first coordinate of the NAS and the CAS usu-
ally differ. The entry isE = (73, 4,#9a). Its line index
is #3456789a mod 230 = #3456789a (we remove the
leading 2 bits).

5 Pattern Search

Let P = p0 . . . pK−1 be the pattern to match.
AS-Index search delivers the RID of every record in
the database that contains P . The search algorithm
first prepocesses P , then retrieves (possible) matching
thanks to As-index.

5.1 Preprocessing

The preprocessing phase computes three signa-
tures from the pattern P :
(a) the m-symbols AS of the 1st n-gram in P , called
S1;
(b) the 1-symbol PAS of the suffix of P following the
1st n-gram, Sp = PAS1(P, n,K − 1).
(c) the m-symbols AS of the last n-gram in P , called
S2;

Observe we use a m-symbols AS for the n-grams
to obtain a large range of hash values that fit the direc-
tory length, while we compute a 1-symbol PAS since
for reducing storage costs we store 1-symbol CAS val-
ues in entries. There are several ways to compute these
signatures. For instance, one may compute S1, then
Sp, then calculate the m-symbol value of S2 thanks to
property (5).

Figure 4 shows the parts of the pattern that de-
termine the signatures S1, S2 and Sp on our running
example. Recall that n = 5 and m = 4. We
preprocess the pattern P =’University Paris
Dauphine’ and obtain
(a) S1 = NAS4(P, 4) (for 5-gram ’Unive’);
(b) S2 = NAS4(P, 24) (for 5-gram ’phine’) and
(c) Sp = PAS1(P, 5, 24).
This information is used to find the occurrences of the
pattern in the database.

l =2 l +K−n
1

NAS S
1

PAS S
p

l1

CAS c2CAS c1

Record R

Pattern P

2
NAS S

conference at the University Paris Dauphine

240 5

University Paris Dauphine

Fig. 4. The search algorithm

5.2 Processing

Let i = hL(S1) and i′ = hL(S2). Every en-
try (R, l1, c1) in bucket D[i] indexes an n-gram G in
a record R whose NAS SG is such that hL(SG) =

hL(S1). Likewise, every entry (R′, l2, c2) in bucket
D[i′] indexes an n-gram G′ such that hL(G′) =

hL(S2). Up to possible collisions, G and G′ respec-
tively correspond to the first and last n-grams in P.

We only consider pairs (G,G′) that possibly char-
acterize a matching string S = P . This involves the
additional constraints R′ = R and l2 = (l1 + K − n)

mod (2f − 1). The last component in G′, c2, has to
match the value computed from c1 and Sp thanks to
property 6, namely:

c2 = c1 + αl1+1 · Sp. (7)

check CAS

H
as

h
di

re
ct

or
y

D

L−1

0

i’

i <r1, l1, c1>

<r1, l4, c4> <r3, l6, c6>

...

...

<r3, l2, c2>

<r2, l5, c5>

<r3, l3, c3>

bucket for NAS(’Unive’)

bucket for NAS(’phine’)

and positions

Fig. 5. Using AS-Index for a search

Figure 5 illustrates the process. By hashing on
S1 = ’Unive’, we retrieve the bucket D[i] which
contains, among others, the entries indexing all occur-
rences of ’Unive’ in the database. Similarly, we re-
trieve the bucket D[i′] which contains entries for all
the occurrences of the n-gram ’phine’. A pair of
entries [ei(r1, l1, c1), e

′
i(r1, l4, c4)] in (D[i], D[i′]) rep-

resents a substring s of r1 that begins with ’Unive’
and ends with ’phine’. Checking whether smatches

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 7

P involves two tests: (i) we compute c1 + αl1+1.Sp
and compare it with c4 to check whether the signatures
of the middle parts match, and (ii) we verify as dis-
cussed whether l1 matches l2 given K, i.e., S and P
have the same length. If both tests are succesful, we
report a probable match. The next attempt will con-
sider (r3, l2, c2) in D[i] and (r3, l6, c6) in D[i′]. Note
that (r2, l5, c5) in D[i′] is skipped because there is no
possible match on r2 in D[i]. The pseudo-code of the
algorithm is given below.

Algorithm AS-SEARCH

Input: a pattern P = p0 . . . pK−1, the n-gram size n
Output: the list of records that contain P
begin

// Preprocessing phase
S1 := NASm(P, n− 1)
S2 := NASm(P,K − 1)
Sp := PAS1(P, n,K − 1)
i := hL(S1) // i is the first line index
i′ := hL(S2) // i′ is the second line index
// Processing phase
for each entry E(R, l1, c1) in D[i]
c2 = c1 + αl1+1 · Sp

l2 = (l1 +K − n) mod (2f − 1)
if (there exists an entry E′(R, l2, c2) in D[i′]) then

Report success for R
endif

endfor
end

The selectivity of the process relies on its ability
to manipulate three distinct signatures, S1, S2 and Sp.
Therefore the pattern length must be at least n+ 1.

5.3 Collision Handling

As hashing in general, our method is subject to
collisions delivering false positives. To eliminate any
collisions, it is necessary to post-process AS-Search by
attempting to actually find P in every R identified as
a match. This requires a symbol by symbol compar-
ison between P and its presumed match location. It
will appear however that AS-Search should typically
have a negligible probability of a collision. Hence
post-processing may be left to presumably rare appli-
cations needing full assurance. It is also RAM-based
and therefore typically negligible with respect to the
disk search time.

6 Analysis

We now present a theoretical analysis of the ex-
pected AS-Index performance.

6.1 Hash uniformity

Algebraic signature values tend to have a more
uniform distribution than the distribution of charac-
ter values, due to the multiplications by powers of α
in their calculations. However, the total number of
strings or n-grams in a dataset gives an upper bound
for the number of algebraic signatures calculated from
them. Biological databases often store DNA strings in
an ASCII file, encoded with only four characters ’A’,
’C’, ’G’, and ’T’. There are only 46 ≈ 4K different
6-grams in the file and the number of different NAS
of these signatures cannot exceed this value. Increas-
ing the number of coordinates in the NAS beyond 5
symbols is not going to achieve better uniformity. This
caution applies only to files using a small alphabet.

Nb Collisions Taken Expected

0 16,568,642 16,568,642.3

1 207,274 207,272

2 1,293 1,296.47

3 7 5.40624

> 3 0 0.0169079

Table 3. Actual and expected number of collisions using a
3B signature on a dictionary of 209,881 moderately sized
English words.

Let us consider the more classical setting and nat-
ural language encoding. We chose a list of English
words (209,881 words - 2.25MB) of six or more char-
acters, taken from a word list used to perform a dic-
tionary attack on a password file (by an administrator
trying to weed out weak passwords). We calculated
the 3B three component signature of all possible words
with more than five characters (65,536 words) and cal-
culated the number of words that correspond to each
signature as well as this number for a perfect hash func-
tion (Table 3). So, e.g. we see that only 1,297 signa-

8 J. Comput. Sci. & Technol., Jul.. 2014, ,

tures reveal a collision for 2 words, and only 7 are sig-
natures for 3 words. The χ2 value of 0.479166 shows
very close agreement. When repeating the test using
2B two component signatures, we obtained χ2 = 0.21.

A much smaller set had χ2 = 4.79742, but there were
less signatures attained by a high number (≥ 5) of
words. These results give experimental verification for
the “flatness” of signatures.

6.2 Storage and Performance

Index construction time. The properties (2) - (6)
of algebraic signatures allow us to calculate all entries
with a linear sweep of all records. We need to keep a
pointer to the symbol just beyond the current n-gram
and to the first symbol of the current n-gram. Using
equations (3) and (4), we can then calculate the NAS
of the next n-gram from the old one and update the
running CAS of the record. Since creating the entry
for an n-gram and inserting it into the index take con-
stant time, building the index takes time linear to the
size of the database.

Storage costs. The storage complexity of AS-
Index isO(N) forN indexed n-grams. The actual size
of a RID should be 3-4 bytes since 3 bytes already al-
low a database with 16M records. The actual storage
per entry should be about 5-6 bytes, which results in a
storage overhead of about (5−6)N . We can lower this
storage overhead, e.g. to 125%, by non-dense index-
ing at the expense of a proportional increase in search
time, see Section 7.

Example 2. We still consider a 100 GB database
with 8b symbols. Assuming an average record size of
100 symbols, we have 1G records and our record iden-
tifier needs to be 4B long. We previously set the size of
the CAS to 1B. With the 1B offset into the record, the
entry is 6B. AS-Index should use about 6 times more
space than the original database.

Now assume records of 10KB each. The record
identifiers can be 3B long. This gives a total entry size
of 5B or a storage factor of 5.

Each element of the hash directory stores a bucket
address with at least dlog2(L)e bits. In the case of our
large 100GB database, with L = 230, choosing 4 bytes
for the address leads to the required storage of 4.1GB,
smaller than the current data servers standard capacity.
In most cases, D is expected to fit in main memory.

Pattern preprocessing. To preprocess the pat-
tern, we need to calculate a PAS and two NAS. We
calculate both in a similar manner as above and obtain
preprocessing times linear in the size of the pattern.
Since the result depends on all symbols in the pattern,
we cannot do better.

Search speed. We assume that entries are close
to uniformly distributed. The search algorithm picks
up two cells in the hash directory, in order to obtain the
number of entries and the bucket references of, respec-
tively, D[i] and D[i′]. Then the buckets themselves
must be read. Each of these accesses may incur a ran-
dom disk access, hence a (constant) cost of at most four
disk reads. If the hash directory resides in main mem-
ory, the cost reduces to loading the two buckets.

The main memory cost is an in-RAM join of the
two buckets. With l denoting the expected line length,
and assuming the lines are ordered on document id and
then on position in the document, the average complex-
ity of this phase is (under our uniformity assumption)
2l while the worst case isO(l2). Observe that the worst
case is highly unlikely as all the entries on both lines
should fit into the same record. The optional collision
resolution (symbol-to-symbol) test adds O(|P |). This
test is typically performed in RAM and makes only a
negligible contribution to the otherwise constant cost
Altogether, the search cost is

S = Chash + Cbuck + Cram + Cpost (8)

whereChash represents the Hash Directory access cost,
Cbuck the bucket access cost, Cram the RAM process-
ing cost and Cpost the post-processing.

Device Access time

Processor speed 2 - 3 Gz per core

RAM speed 100ns

Flash disk access 0.4 - 0.5 ms

Magnetic disk 5 - 7 ms

Disk transfert rate 300 MB/s.

Table 4. Hardware characteristics

We now evaluate the actual search time that may
result from the above complexity figures. We take as

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 9

basis the characteristics of the current popular hard-
ware shown in Table 4 (see also [9] for a recent analy-
sis).

Chash is the cost of fetching 2 elements in the hash
directory. The transfer overhead is negligible, and the
(worst case) cost is therefore in the range [10, 14] ms
for magnetic disks. The bucket access cost Cbuck is
similar to Chash regarding random disk accesses, but
we fetch far more bytes per access. We need to trans-
fer 2l entries. Table 4 suggests that we can transfer
up to 300 KB per ms (Flash transfer rate are similar.)
Since the size of an entry is typically 5-6 bytes, each
search loads 10 − 12l. It follows that for l = 1K, the
line transfer cost is negligible. For l = 16K, 160 to
200 KB must be transferred. The cost is about 0.5 to
0.7 ms. This is still negligible with respect to disk ac-
cesses for AS-Index on magnetic disk, but not on solid
one. In the latter case, the transfer cost is equivalent to
an additional disk access.

The basic formula (average cost) forCram, the in-
RAM join of the two lines, is 2l ∗ E where E is a vis-
ited entry processing cost. In detail, we have 2 RAM
accesses to Rids. In this test is successful, we need 2
additional accesses to CASs, 2 to offsets o and 1 access
to the log table for algebraic computations. A conser-
vative evaluation of E = 250ns seems fair. The cost
of the in-RAM join can thus be estimated as 100µs for
l = 200, 500µs for l = 1, 000, and 8ms for l = 16K.
The first cost is negligible whatever the storage media;
next one is so for disk, but not for flash, the latter is not
for either.

Finally, the postprocessing cost P can be esti-
mated based on a unit cost of 100ns per symbol. Even
for a 1,000 symbols long pattern, the postprocessing
costs 100µs, which remains negligible for both mag-
netic disk or flash memories. Its importance also de-
pends on the number of matches, of course.

6.3 Choice of file parameters

The previous analysis leads to the following con-
clusions regarding the choice of AS-Index parameters.
As a general rule of thumb, one must choose parame-
ter L so as to maintain the hash directory D in RAM.
CachingD in RAM, whenever possible, saves two disk
access on four. Setting a limit on L may lead to in-
crease the average line length l, but our analysis shows

that this remains beneficial even when l reaches hun-
dreds or even thousands of entries. Under our assump-
tions, l should reach 16K to add the equivalent of 1
random access to the search cost, at which point one
may consider enlarging the hash directory beyond the
RAM limits.

Large values for l may also be beneficial with re-
spect to other factors. First, larger lines accommodate
a larger database for a fixed n. Second, we may choose
a smaller n, with a smaller minimal size of n + 1 for
patterns.

Let us illustrate this latter impact. We continue
with our running example of a 100 GB database with
byte-wide symbols (f = 8), L is 230, and an aver-
age load of l = d1011/230e = 93 entries per line.
This implies the choice of m, which must be such that
2mf ≥ L, i.e., m ≥ (log2 L)/f . In our example, the
line index i needs to consist of at least 30 bits. Corre-
spondingly,NASm needs to be at least that long. Since
each coordinate of NASm consists of 8b, the value for
m needs to be at least 4. Each NAS then contains at
least 32 bits.

The n-grams used need to contain at leastm sym-
bols. Otherwise, the range of n-gram values is smaller
than L and certain lines will not contain any entries.
If the n-grams are reasonably close to uniformly dis-
tributed, the range of values is 256n and we can pick
n = m. Still referring to our example with L = 230,
we can choose n = 4.

However, the actual character set used is most of-
ten smaller than 256, or only a fraction of the charac-
ters appear frequently. This requires a larger n, since
the range of possible n-grams must contain at least L
values. Let v be the number of values we expect per
symbol. In a simple ASCII text, the number of print-
able character codes is v = 96. DNA encoding rep-
resents an extreme case with v = 4. The n-gram size
must be such that vn ≥ L. With v = 96 (simple ASCII
text) and L = 230, n must be set to 5, the smallest
value such that 96n ≥ L, to generate all required NAS
values. These parameter values were actually used for
Example 1.

Consider now the case of a DNA database where
only 4 of the possible 256 ASCII characters appear in
records. We need to set n = 15 in order to obtain the
230 possible signatures. n + 1 is the minimal pattern
length we allow to search for. Such limit should not be

10 J. Comput. Sci. & Technol., Jul.. 2014, ,

nevertheless a practical constraint for a search over a
small alphabet. The need there is rather for long pat-
terns [10]. If nevertheless it was a concern, one may
choose a smaller n at the price of fewer, hence longer,
lines. For instance choosing n = 10 and L = 220 for
our DNA database results in the average of 95K en-
tries in each line. The minimal pattern size decreases
by five, i.e., to n+ 1 = ˜11 symbols.

6.4 Selectivity

We now evaluate how AS-Index performs with re-
spect to searching random patterns in random files. If
our scheme diagnoses a match at a given offset within
a given record, we call this a diagnosed match. We
now calculate how often we should have diagnosed
matches and later deduce from this value the chance
for false positives in searches for patterns that exist in
the database. We first assume that the non-key fields
for the records are smaller than 2f − 1. The conditions
for a diagnosed match are then:
(1) The m-symbol NAS of the first n-gram in the pat-
tern matches the NAS of the first n-gram in the sub-
string.
(2) The m-symbol NAS of the last n-gram in the pat-
tern matches the NAS of the last n-gram in the sub-
string.
(3) The 1-symbol algebraic signatures of pattern and
substring match.

We further assume that the length of the pattern is
greater than 2n. As functions, NAS and PAS are linear
over our Galois field GF (2f) and – a fortiori – over
the trivial Galois field {0, 1}. We can therefore express
the diagnosed matching of a substring to a given, fixed
pattern P as an inhomogeneous system of linear equa-
tions in the bits of the substring as unknown. If x is
the bit pattern written as a vector over GF (2) = {0, 1}
and p similarly a vector representing the pattern, then
x constituting a diagnosed match is equivalent to the
validity of

M · x = M · p (9)

In this equation, the matrix M has the form

M =

C 0 0

0 0 C

0 A1 A2

 (10)

Here, C is a matrix with nf columns and mf

rows that corresponds to taking the m-dimensional
NAS (a string of size mf) of the n symbol (= nf) bits
n-gram. Recall that we choose m ≥ n. The algebraic
properties of signatures imply that the rank of C is
min(mf, nf). Similarly, matrix (0,A1,A2) encapsu-
lates the calculation of the algebraic signature between
the two n-grams. (Implementations will differ in how
we ascertain (3) without affecting our argument here.)
Its rank is f . The event that a substring at a random off-
set within a random record consisting of random sym-
bols is a diagnosed match for any fixed pattern is the
event that a random vector x satisfies equation (9). The
rank of M is (2n+1)f . The number of possible values
for M · x is 2(2n+1)f . The probability that it is equal
to the given value M · p is hence 2−(2n+1)f .

Example 3. We continue with our previous ex-
ample. Recall that we chose n = 5 for our 100 GB
database with f = 8. Hence, the chance of a random
diagnosed match is 2−88. Even if we throw away all but
the trailing 34 bits, we obtain a chance of a random di-
agnosed match of 2−76. Since the database contains
less than 237 (≈ 100G) substrings the probability of a
random diagnosed match is 2−51.

We can also estimate the chance of a false posi-
tive assuming that we are looking for an existing pat-
tern. Assume that the pattern occurs only once. If the
probability of a random diagnosed match is p, then the
probability that a diagnosed match is a true positive is
1/(1 + p).

We now deal with the possibility of additional
false diagnosed matches introduced by our storing only
the offset of an n-gram modulo 2f − 1. If on average
the record size is larger or equal to K(2f − 1) with in-
teger K, then we have K more chances of a diagnosed
match for test (1) and K more chances of a diagnosed
match for test (2). Test (3) is not affected. We there-
fore have to multiply our probability with K2 to obtain
p = K22−(2n+1)f as an upper bound of the probability
of a random diagnosed match.

7 AS-index variants

While our basic scheme performs well, a skewed
distribution of the n-grams leads to very large AS-
index buckets or oppositely to very small ones, with
an obvious impact on the search performances regard-

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 11

ing the search uses the former or the latter. On the other
hand, the storage overhead of about 500% might be too
high for some applications. We now describe two vari-
ants that address these two issues.

7.1 Skewed n-gram signature distribution

As previously observed, a skewed distribution can
lead to many entries in a single AS-Index bucket.
We now modify our search procedure as follows. In
our pre-processing phase, we choose q n-grams, q ≥
2, among them the starting and final n-gram of the
searched pattern. The simplest choice is to have the
n-grams evenly distributed over the pattern.

The search first determines the shortest bucket
length of all buckets indexed by any of the q n-grams.
If any of these buckets is empty, then we are done:
the pattern is not found in the database. If the short-
est bucket happens to be the one indexed by the initial
n-gram in the pattern, our processing remains the one
of the basic scheme. If it is the one indexed by the final
n-gram in the pattern, the calculation of the PAS still
uses formula (7) unchanged because subtraction and
addition are the same in the Galois field. Now c1 is the
CAS in the bucket indexed by the last n-gram and c2
the one in the first bucket, while l does not change.

Otherwise, let a be the offset of the n-gram with
minimal count of entries and Sa its NAS. For each en-
try in bucket D[hL(Sa)], we search for a matching en-
try in the bucket of the first or of the last n-gram in the
pattern, depending on which one has the smaller count.
This amounts to matching the part of the pattern be-
tween the selected n-gram and either the beginning or
the end of the pattern. If this succeeds, we continue to
use our calculus to match the other part of the pattern.
Since we eliminate most mismatches in the first step,
AS-Index will now come more quickly to a decision
on average.

c) t > n

n
n

n

t

n n n

n n

non−aligned pattern

t t

t t t

t t

a) 1 < t < n

b) t = n

Fig. 6. Non-dense AS indexing: (a) overlapping n-grams,
(b) tiling, (c) lossy

7.2 Non dense indexing

Our next variant lowers the storage overhead by
indexing only some instead of all n-grams. This results
in significant gain for the storage, but implies higher
search costs, a larger minimal size for the patterns that
we can search for and a higher ratio of false-positives.
Figure 6 shows the idea. Starting with the first n-
gram in a record, we only index the n-grams that are
t > 1 symbols apart, where parameter t is the indexing
rate. We thus index only n-grams starting at the offsets
0, t, 2t, · · · . The size of the index is now reduced by a
factor of about 1/t.

We can distinguish three cases, lossless indexing
if n = t, lossy indexing if n < t, and overlapping in-
dexing if n > t (Figure 6). In all cases, trailing charac-
ters of the pattern might not contribute to any indexed
NAS.

The search procedure is the same in all three
cases. It needs to be modified from the base procedure
because the occurrence of a pattern in a string might
not match the tiling of the records by the indexed n-
grams. Assume that the pattern is P = p0p1, . . . pK−1.

We define substrings Pi, i = 0, 1, . . . t−1 of the pattern
as Pi = pi, pi+1, . . . pi+lt+n−1 with l = b(K − n)/tc.
Thus, P0 is the substring of the pattern that begins with
the first n-gram in P , ends with the last n-gram in P
starting at offset lt−1, and contains all symbols of P in
between. P1 starts at the second character and finishes
with the last n-gram starting a multiple of t characters
after the first one, etc. Our search procedure now first

12 J. Comput. Sci. & Technol., Jul.. 2014, ,

tries to match P0 in the database. More precisely, we
process the bucket indexed by the first n-gram. For
an occurrence, the last n-gram in the substring match-
ing the sub-pattern is also in AS-Index and our match-
ing will succeed. We then successively search for sub-
patterns P1, P2, . . . Pt−1. This is guaranteed to find
any occurrence of the pattern in the database. Since we
actually match various subpatterns, a diagnosed match
is not based on all symbols in the pattern and we might
need to verify that the pattern actually occurred.

Consider the search for our pattern P =
’University Paris Dauphine’, in Figure 6.
Let n = 4 and t = 4 (lossless indexing). Suppose
the use of a nondense tiling AS-Index (Figure 6.b). The
search begins, as with the dense index, by attempting to
match S1 = ’Univ’. The last n-gram S2 for the dense
index would be S2 = ’hine’. Now, S2 = ’phin’, in
subpattern P0. The matching n-gram ’hine’ in the
visited record cannot be indexed if ’Univ’ is. Pro-
vided the match of P0 succeeds, we read the record and
attempt to match ’e’ to the symbol following P0 in the
record (provided it exists). Next, we attempt matching
with P1, using thus S1 = ’nive’ and S2 = ’hine’.
If this attempt succeeds, we attempt to mach ’U’ as
above. The matching attempts continue with P2 having
S1 = ’ive’ and S2 = ’auph’. The completion requires
finding ’Un’ and ’ine’ in the record before and after
the P2 match in the record. The final round attempts to
match P3 with S1 = ’vers’ and S2 = ’uphi’ followed
by direct testing of ’Uni’ and of ’ne’. The final result
is the union of all the successful matches.

Compared with dense indexing, the storage space
of this (tiling) AS-Index is reduced by factor of four,
e.g., falls to (only) 125% of the database size. Like-
wise, this is at least four times less than any alternative
method we discussed. In contrast, we need four times
more disk accesses, i.e., 16 or 8 at best usually. Fi-
nally, the minimal indexed pattern is in turn n = 8

symbols, instead of five. Clearly, many applications
may gladly accept the discussed trade-offs. In partic-
ular, since smaller AS-Index may then fit onto a flash
disk. As this one is about ten times faster than a mag-
netic one, all together the AS-indexing gets actually
about 2.5 times faster.

8 Experimental evaluation

We describe in this section our experimental set-
ting and results. We implemented our AS structure as
well as a String B-Tree [3] and an n-gram index, based
on inverted lists [11]. The rationale for String B-Tree,
further discussed in what follows, is that it appears at-
tractive for disk-based use and is among most recent
proposals.

8.1 Implementation of n-gram index

We build the n-gram index in two steps. First, we
scan all record contents in order to extract all n-grams
with their position. For each n-gram, we obtain a triple
<ngram, rid, offset>, which we insert in a temporary
file. The second step sorts all triples and creates lists of
8-bytes entries (4B for the rid, 4B for the offset). The
final step builds the B+-tree which allows to quickly
access to a list given an n-gram. Our simple construc-
tion in bulk is fast and creates a compact structure, il-
lustrated on Figure 7.

Structure of
an entry

inverted list

e1 e2 e3

rid offsetB−tree

Fig. 7. Structure of the n-gram index

We search for a pattern P with n-gram index in
the following manner. First, we tile P into n-grams
(g1, g2, · · · , gk). Let Li denote the list that stores the
positions of n-gram gi. We then merge these lists, stop-
ping whenever the k entries refer to the same record.
We then compare the offsets for these records. A match
is found if for a tuple of offsets (l1, l2, · · · , lk) the rela-
tionships l1 = l2−n = l3− 2n = · · · = lk− (k− 1)n

hold. The merge continues until the smallest list has
been completely examined.

Assume we are searching the pattern
’University Paris Dauphine’, with n = 4.
The tiling n-grams are {’Univ’, ’ersi’, ’ty P’,
’aris’, ’ Dau’, ’phin’, ’hine’}. Note that the

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 13

last n-gram partially covers the previous one. This is
necessary to ensure a full representation of the pattern
content with fixed-size n-grams. The merge combines
seven lists, one for each 4-gram. The search cost
with the n-gram index is linear, both in the size of the
database and in the size of the pattern.

8.2 Implementation of String B-tree

We implemented a String B-Tree structure [3],
making our best efforts to minimize the storage over-
head. Each node contains a compact representa-
tion of a Patricia Trie [12] as a list of entries
< e0, e1, · · · , en >. Each entry ei refers to a
string si (suffix in the String B-Tree terminology)
in the database, and is represented by a triple <

lcpi, lnci, addri >. Here, lcpi is the length of the
longest common prefix between si and si−1 (2 bytes),
lnci is si[lcpi + 1] (1 byte) and addri is the disk ad-
dress of si (8 bytes). The size of a leaf entry is 11
bytes. The size of an internal node entry, which also
stores the sub-node address, is 19 bytes.

We construct a String B-Tree statically by first
sorting the list of suffixes in lexicographic order. From
this sorted list, the B-Tree is built bottom-up. In our
implementation a disk block occupies 4K, and we can
store at most 300 entries in each leaf.

We search for a pattern P with a standard top-
down traversal of the String B-Tree. At each node N ,
the search procedure finds an entry ei. The string si
associated to ei is then loaded from the database, and
the relevant child of N is determined (see [12] for de-
tails.) Unlike traditional B-Trees, two (2) look-ups are
necessary at each level: one for the B-Tree node, and
one for loading si.

8.3 Implementation of the AS-Index

Our implementation of AS-Index is static as
well. First, the n-grams are collected. For each n-
gram at offset l in a record R the hash key k =

hL(NASm(R, l)) and the CAS c = CAS1(R, l) are
computed. The quadruplet < k, c, rid, l > is inserted
in a temporary file. Second, the temporary file is sorted
on the hash key k. This groups together entries which
must be inserted into the same bucket. An entry con-
sists of a CAS (1 byte), a record id (4 bytes) and an
offset (4 bytes). Using the CAS as a secondary sort

key, one places the entries into the required order for
insertion into the bucket.

This implements the basic AS-Index structure
faithfully according to our description in Section 4. In
order to speed up the in-memory join of the two buck-
ets, our implementation proceeds as follows. Let i be
the index of the smallest bucket, and i′ the index of the
greatest one. We first load and scan the bucket D[i′]

and create an index of the CAS present in the bucket.
The index is a simple array of size 2f (at most) that
gives, for each possible CAS value c, the offset inD[i′]

of the sequence of entries with c (the offset is -1 if c
does not appear). The array allows us to access the en-
tries that correspond to a given c in constant time. The
search algorithm checks the size of the targeted buck-
ets, and chooses the smallest one for driving the search.

The search then proceeds by loading and scan-
ning the two buckets D[i] and D[i′]. For each en-
try < r, l, c1 >, we compute the CAS c2 at position
l+ |P | −n using equation (7), look in D[i′] for entries
with CAS c2, using the array on CASs, as explained
above, and search for a matching entry.

8.4 Data compression

For AS-Index and n-gram index, the entries which
are in the memory buckets are compressed before be-
ing written to the disk. We use a variable length encod-
ing for each entry, which are unsigned integers (4-byte
representation), into a succession of bytes in a binary
memory buffer that is further dumped to the disk. For
each byte of the encoding, we used 7 bits of data and 1
bit of overhead. This overhead is 0 for all bytes of the
encoded integer, except for the final byte, for which it
is set to 1.

Example 4. Consider for instance a key with
value 2509. Stored as a long integer, it requires 4 bytes:
00000000 00000000 000001001 11001101. Using
variable length encoding we can store this key using
only two bytes: 00010011 11001101. Observe that
the first bit of the first byte, in bold, is set to 0 which
means that the following byte must be considered for
the current key-value, while the first bit of the second
byte is set to 1 which means that the key-value ends
with this byte.

Moreover, when possible, we reduce the storage
space by only encoding deltas instead of the whole in-

14 J. Comput. Sci. & Technol., Jul.. 2014, ,

teger, since our entries are kept ordered by document
id and by entry offset. More precisely, for each entry
in as-index we store its cas (which is one byte-long and
cannot be further reduced), and information on its doc-
ument id and offset. Both id and offset benefit from
delta encoding. This data compression achieves a 50%
space saving for a negligible decoding time extra-cost
(∼ 1 ms) during search execution.

8.5 Settings

We use four types of datasets with quite dis-
tinct characteristics: alpha, dna, text and
wikipedia. The alpha(Σ) type consists of syn-
thetic ASCII records, with uniform distribution, rang-
ing over an alphabet Σ which is a subset of the ex-
tended ASCII characters. We consider two alpha-
bets: Σ26, with only 26 characters, and Σ256 with all
the 256 symbols that can be encoded with f = 8

bits. We call the resulting datasets alpha(26) and
alpha(256). For these types, we composed datasets
ranging from 20MB to 20GB, each one compound by
20 files. They allow us to compare the behavior of our
structure to the theoretical analysis in Section 6.

The second type, dna, consists of real DNA
records extracted from the UCSC database. This
dataset is composed by 97 files whose size covers a
large range, from dozens of KB to hundreds of MB,
or even for 2 files several GB. Its total size is 9.9GB.
The type text consists of real text records created
from ASCII files of large English books extracted from
the Gutenberg digital library. The typical size of a
text record is 0.5-2 MB, and size distribution is almost
uniform and within that range. We created a 16.6GB
database of 29,539 text files. Finally the last type,
wikipedia, consists of a dump of free encyclope-
dia Wikipedia. This dump appends all XML records
from Wikipedia into a single XML record whose size
is 24GB. To limit collisions for the n-gram signature
due to the alphabet-size, we set the n-gram size to 8
for DNA files, 6 for wikipedia and to 4 for the other
datasets.

Dir. AS-index n-gram index Str. B-Tree
File size (MB) size(MB) (ρ) size(MB) (ρ) size(MB) (ρ)

20 MB 63.6 163 (8.14) 143 (7.14) 153 (7.64)

200 MB 64.0 1,092 (5.46) 892 (4.46) 1,532 (7.66)

2 GB 64.0 9,582 (4.79) 7,540 (3.77) 15,264 (7.63)

20 GB 64.0 94,535 (4.73) 74,034 (3.70) 153,009 (7.65)

Table 5. Index sizes (and ratio) for alpha(256) files

Dir. AS-index n-gram index Str. B-Tree
File size (MB) size(MB) (ρ) size(MB) (ρ) size(MB) (ρ)

20 MB 7.0 100 (5.00) 80 (4.00) 148 (7.37)

200 MB 7.0 818 (4.09) 618 (3.09) 1,473 (7.37)

2 GB 7.0 8,170 (4.08) 6,120 (3.06) 14,761 (7.38)

20 GB 7.0 81,503 (4.07) 61,003 (3.05) 147,334 (7.37)

Table 6. Index sizes (and ratio) for alpha(26) files

Dataset
File Dir. AS-index n-gram index Str. B-Tree

(GB) (MB) size(MB) (ρ) size(MB) (ρ) size(MB) (ρ)

adn 9.9 64.0 35,857 (3.62) 25,814 (2.61) 73,022 (7.37)

text 16.6 36.7 50,028 (2.94) 33,008 (1.94) 139,938 (8.43)

wiki 24 64.0 83,298 (3.47) 54,495 (2.27) 204,482 (8.52)

Table 7. Index sizes in MB for DNA, text and wikipedia
datasets

8.6 Space occupancy and build time

The size of the AS-index is the sum of the size
of cells and the directory which stores the number of
entries for each bucket. The size of the n-gram index
is the sum of the size of inverted lists and the direc-
tory. The size of the String B-Tree is the size of the
B+tree where each node is a serialized Patricia Trie.
Tables 5, 6, and 7 give, for the three indexes, respec-
tively the index sizes (and its ratio w.r.t. dataset size)
for alpha(256), alpha(26) and our three real
dataset. We also report the size of the directory.

The storage efficiency of these indexes heavily de-
pends on the distribution of n-grams. If the distribution
is uniform, the number of n-gram values can become
very high, and this severely impacts the storage effi-
ciency. The alpha(256) dataset shows this behav-

http://hgdownload.cse.ucsc.edu/
http://www.gutenberg.org/
http://dumps.wikimedia.org/

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 15

ior (Table 5). With n = 4, we obtain 2564 = 4.3 109

distinct n-grams. For the 20MB and 200MB datasets,
each list in the n-gram index consists of only one en-
try for a given file (i.e., it is very unlikely to find twice
a same n-gram in the same file), which explains the
important size of the indexes, 7.14 and 4.46 times the
dataset size respectively. When the size of the (uni-
formly generated) dataset reaches the possible number
of distinct n-grams, all lists contain at least an entry for
a given file and the growth of the index becomes lin-
ear in the size of the dataset (see the index whose size
is 3.7 times the size of the dataset for both 2GB and
20GB datasets). The same remark holds for the AS-
index. We observe that the AS-index requires around
25% additional space than n-gram index. This corre-
sponds to the extra-information needed for the struc-
ture, namely the CAS, that is not affected by com-
pression (so one additional byte for GF 8). A naı̈ve
implementation (without clustering entries from a list
with the same document id and without compression)
would exhibit an n-gram (resp. as) index 8 (resp. 9)
times larger than the dataset. Finally we observe a con-
stant size for the directory. Indeed the number of lists
is bound by the number of possible n-grams, the num-
ber of m-symbol NAS possible and the L factor (see
Section 4). Here m is set to 3 which means 3 signa-
tures of one byte concatenated, i.e. 224 possible index
lists. Moreover we have 2564 = 4.3 109 distinct pos-
sible n-grams and L is set to 222. So this latter limits
the number of lists. Since the hash directory needs for
each list 16 bytes to store a pointer and the list size (re-
quired for tha data management on disk), the maximal
directory size is 222× 16 = 64MB. Thus, as expected
for our different dataset and uniform distribution, all
lists are non-empty and we observe a 64 MB directory.
The String B-Tree requires more space (regarding the
dataset between 7.3 or 8.5 times the data indexed) with
11B entries in the leaves and 19B entries for internal
nodes. Moreover String B-Tree can not benefit from
compression techniques which leads to the more im-
portant storage overheads.

We continue to consider a uniform distribution of
characters, but now use a smaller alphabet Σ26 (Ta-
ble 6). The number of possible 4-grams decreases to
264 = 456, 976. m-symbol NAS size and L are un-
changed. Consequently the number of lists is now
bound by the number of n-grams possible which leads

to a 456, 976×16 = 7MB directory. The size for both
index also decreases. The reason is that in all lists we
find for all documents several entries, due to the lim-
ited number of possible n-grams. As a consequence
the compression technique is particularly efficient, es-
pecially for n-gram index.

File Avg. Min Max Std. dev.

dna 2,508 1 242,951,376 2,375.6

text 7,422 1 712,735,151 214,988.3

wiki 6,050 22 303,119,079 5,556.5

alpha(26) 388 276 463 52.8

alpha(256) 5,111 4,497 5,717 115.0

Table 8. Distribution of entries for the real and synthetic
datasets

For real datasets, either dna, text or
wikipedia, the distribution is far from being
uniform. Table 8 shows the distribution of the number
of entries from these real databases. The average num-
ber of entries is 2,508 for the DNA database, 7,422
and 6,050 for respectively the text and wikipedia
database, with an important variance. In the worst case
(text files), the largest list has 712,735,151 entries.
This fully justify our choice of storing the number of
entries in the directory, and of using this information
to scan the smallest list during a search operation.

However, the indexes for the three real datasets
exhibit some differences. For adn, the size of in-
dexes is smaller than the one for uniform datasets:
e.g. 3.62 for AS-index versus 4.73 (resp. 4.07) for
alpha(256) (resp. alpha(26)). Here the com-
pression technique fully benefits from the number of
distinct n-grams, since for our 8-grams only 48 =

65, 536 values are possible. Consequently lists are
larger, with several occurrences inside each file leading
to a better compression. For text dataset, there exist
potentially 2564 = 232 distinct 4-grams. In fact all the
ASCII symbols are not used within this collection and
the number of distinct symbols is close to 128, so 228

possible n-grams. However, most of these n-grams do
not correspond to an existing n-gram in the language of
choice (e.g. qmgw, uaio, etc). Consequently, the real
number of buckets with entries is not that large. More-

16 J. Comput. Sci. & Technol., Jul.. 2014, ,

over, Table 8 shows that there is a large discrepancy in
the bucket size due to the well-known Zipf-distribution
of words (and character-sequences) in common lan-
guages [13]. So, the number of occurrences for fre-
quent words is several orders of magniture larger than
other words. These two phenomena result in a high
compression rate of these large lists and the an n-gram
(resp. AS) index size only twice (resp. three times)
the size of the dataset. Finally the XML syntax of the
wikipedia dataset (with tags, parameter names and
values, etc) and the presence of dozens of hundreds of
author’s name allow more possible n-gram than text.
This explains poorer compression ratios.

Table 9 exhibits the impact of different param-
eters, namely n-gram size, Galois Field size and L

value, on the AS-index size for the wikipedia dataset.
Using GF 16 produces sensibly larger index: 96.6GB
(resp. 104.8GB) versus 69.8GB (resp. 83.3GB) for
GF 8 and 4-grams (resp. 6-grams). The difference is
mainly due to the CAS stored for each entry that re-
quires now 2 bytes instead of 1. Since our dataset
is 24GB large, and the CAS stored in each entry is
not subject to any compression mechanism, the index
size is expected to increase by 24GB (one byte per en-
try). The index size is however not exactly enlarged
by 24GB (+27GB for 4-gram and +22GB for 6-gram)
since modifying signatures also impact entries distri-
bution and consequently compression.

n-gram GF size Hash Dir. AS-index (ρ)

4 GF 8 222 42.9 69,850.6 (2.90)

4 GF 16 222 42.9 96,610.2 (4.03)

6 GF 8 222 64.0 83,298.3 (3.47)

6 GF 16 222 64.0 104,808.5 (4.36)

6 GF 8 224 256.0 84,150.4 (3.51)

Table 9. AS-index sizes in MB for wikipedia datasets and
different settings

For a sameGF size, both directory and index size
increase with the size of the n-gram: e.g. for GF 8 the
directory size is 42.9MB for 4-grams and 64MB for
6-grams, and meanwhile the index size increases from
69.8GB to 83.3GB. Same result holds for GF 16. In-
deed 6-grams provide more combinations (up to 2566)
than 4-grams, so more distinct signatures. With 6-
grams the directory reaches 64MB, which is the max-

imal size for the directory (L = 222, thus maximal size
is 222 × 16B = 64MB). As a consequence, lists are
larger with 4-grams than with 6-grams. This allows
better compression rate and a smaller size for the in-
dex. Finally we see that the value of the L parameter
only impacts the directory size and not the index size.
With L = 224 the maximal size for the directory, when
all buckets are not empty, is 224 × 16B = 256MB.

AS-index n-gram index Str. B-Tree
time speed time speed time speed

File size s KB/s s KB/s s KB/s

20 MB 31 661 31 661 41 484

200 MB 178 1,150 170 1,205 341 587

2 GB 1,572 1,334 1,681 1,248 3,817 524

20 GB 27,721 756 17,022 1,232 36,832 543

Table 10. Building time in ms for alpha(26) files

The building time varies with the size of the in-
dex but remains in a range of 600KB− 1, 400KB per
second. Our structures are built in bulk after sorting all
n-gram entries in a temporary file. This leads to com-
parable performances. On our machine, the building
time for a 20 GB file is about 28,000 s, and the buld-
ing rate is about 756 KB/s. Index construction also
includes compression computation both for temporary
files, and then for the final index. A comparison of dy-
namic builds remains for future work. For AS-Index,
this would reduce mostly to the standard technique of
maintaining a dynamic hash file. The String B-Tree
exhibits the highest building times, due to a larger stor-
age overhead (so more time to write the index on disk).
However, its indexing speed in KB/s is higher since
there is no compression computation.

8.7 Search time

For search experiments, we extracted the patterns
from the files to guarantee that at least one result is
found. Pattern sizes range from 25 symbols to 200
symbols. To avoid initialization costs and side effects
such as CPU or memory contention from other OS pro-
cesses, we performed each search repeatedly until the
search times stabilized. We report the average search
time over a run of 500 search operations.

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 17

We report the results on search time, inms, in Ta-
bles 11, 12, 13, 14 and 15 (with 20GB for the two last
datasets). As expected, the String B-Tree and the AS-
Index behavior is constant regardless of the length of
the pattern, while n-gram index performance degrades
linearly with this length.

K 25 50 75 100 200

AS 103 108 96 101 96

ngram 190 298 386 466 774

Spd-up 1.84 2.76 4.02 4.61 8.04

Str BT 159 170 143 153 147

Spd-up 1.54 1.57 1.49 1.51 1.53

Table 11. Search time in ms for dna files

K 25 50 75 100 200

AS 667 659 677 643 652

ngram 2,293 3,876 5,973 7,507 16,102

Spd-up 3.44 5.88 8.82 11.67 24.70

Str BT 974 942 995 971 958

Spd-up 1.46 1.43 1.47 1.51 1.47

Table 12. Search time for text files

K 25 50 75 100 200

AS 175 188 172 188 181

ngram 716 1,383 2,639 3,480 5,930

Spd-up 4.09 7.36 15.34 18.51 32.76

Str BT 291 320 296 314 304

Spd-up 1.66 1.70 1.72 1.67 1.68

Table 13. Search time for wikipedia files

K 25 50 75 100 200

AS 66 68 68 68 68

ngram 186 314 467 615 1,195

Spd-up 2.82 4.62 6.87 9.04 17,57

Str BT 150 147 147 152 151

Spd-up 2.27 2.16 2.16 2.23 2.22

Table 14. Search time for alpha(26) files

K 25 50 75 100 200

AS 36 40 38 38 37

ngram 97 163 202 259 505

Spd-up 2.69 4.08 5.32 6.82 13.65

Str BT 88 91 90 89 92

Spd-up 2.44 2.28 2.37 2.34 2.49

Table 15. Search time for alpha(256) files

For our 20GB files, the height of the String B-
Tree is 5 independently of the alphabet size, for 20.109

indexed substrings (recall that the fanout is 300, and
that our bulk insertion creates full nodes). The root
is always in the cache, as well as a significant part of
the level below the root, depending on the indexed file
size. The String B-Tree traversal is generally reduced
to (5 − 2) = 3 disk accesses for loading a leaf node.
In addition, each lookup in a node requires an addi-
tional random disk access to the database in order to
fetch the full string. This leads to a final cost of 8-
9 physical disk accesses. The search time with String
B-Tree is independent of the size of the pattern and
of the size of the alphabet. Searching with the AS-
Index takes about 38 ms for alpha(256), 68 ms for
alpha(26) files, 100 ms for dna files, 660 ms for
text files and 180 for wikipedia(real data). This
is consistent with the analytical cost discussed in Sec-
tion 6. The alpha datasets are uniformly generated,
and this results in an almost constant number of entries
per bucket. Accordingly, the search is done in few op-
erations. The difference between alpha(256) and
alpha(26) is explained by the size of the buckets
which are larger for alpha(26) since the n-gram

18 J. Comput. Sci. & Technol., Jul.. 2014, ,

values range over the set of 264 possibilities compared
to 2564 for alpha(256).

For real data (dna, text and wikipedia),
buckets are likely to be larger, either because the alpha-
bet is so small that the set of existing n-gram values is
bounded and cannot fully benefit from the hash func-
tion (see Subsection 6.1 for a discussion), or because
of non uniformity. The former case corresponds to the
DNA, the latter to our real text and wikipedia
files. Table 8 shows that, on average, the number of
entries in a bucket is larger for dna (2,508 entries)
compare to alpha(256) (5 entries on average). The
cost of DNA search is accordingly higher (≈ 100 ms,
against ≈ 38 ms). The impact of the standard de-
viation also explains the higher searching costs for
text and wikipedia files. Indeed for these datasets
the deviation is over 200,000 so two orders of mag-
nitude higher than for dna and three orders than for
alpha(26) and alpha(256). Recall however that
our algorithm chooses the smallest bucket for driving
the search, which limits the impact of skewed datasets
and the variance of search times. This explains theat
the searching time for text and wikipedia files is
one order greater than alpha(256) while the alpha-
bet size is 256 for all these datasets. Finally search-
ing in wikipedia is faster than in text due to
the existence of larger buckets which leads to longer
searches. The ratio of search times, giving the speed-
up of AS-Index over respectively the n-gram index and
the String B-Tree also reported in Tables 11 to 15 sum-
marizes the benefit of our proposal.

File size AS n-gram (Spd-up) Str. BT (Spd-up)

20 MB 24 56 (2.33) 41 (1.71)

200 MB 31 72 (2.32) 62 (2.00)

2 GB 34 87 (2.56) 67 (1.97)

20 GB 36 97 (2.69) 88 (2.44)

Table 16. Index comparison for searching in varying file
size for alpha(256)

Table 16 shows that the search time with the
String B-Tree increases with the size of the file for
alpha(256). The theoretical logarithmic behavior
of the String B-Tree is almost blurred here, because of
the large node fanout (300). For the 20 MB file, its
height is only 3, while it reaches 4 for the 200 MB

and 2 GB files, and even 5 for the 20 GB file. An in-
crease by one of the height corresponds to two (2) addi-
tional disk accesses on average for a search. Even for a
constant tree height of 4, the String B-Tree performs a
search faster with the smallest file (62 for the 200 MB
file versus 67 for the 2 GB file). Indeed the number
of nodes increases with the file size. This accounts for
a lower probability of a buffer hit during tree traversal
and explains the search time increase w.r.t. the file size.

The search time evolves (sub)linearly for n-gram
index, both in the size of the pattern, and in the size
of the database. This is explained by the necessity to
scan a number of inverted lists which is proportional to
the size of the pattern. In addition, larger files imply
larger lists, hence the behavior illustrated by Table 16.
However the cost remains sublinear (the cost for 20 GB
is only 3 times higher than the cost for 20 MB). This
is due to (i) the merge process which stops when the
smallest list has been fully scanned, thereby avoiding
a complete access to all lists, and (ii) the data com-
pression that is more efficient for large datasets since
more entries with the same signature are found within
a given document.

Fig. 8. Search time with AS-index for varying file size

Oppositely, AS-Index exhibits an almost constant
behavior (appr. 25-35 ms), even when searching in
large files (20 GB). This observation is confirmed by
Figure 8 which shows the evolution of search times as
the size of the database increases from 20 MB to 20
GB. Each curve represents the results for a given al-
phabet, with patterns consisting of 25 symbols. Search
time becomes constant for large databases. Indeed a
search corresponds to two disk accesses plus the signa-
tures computation and comparisons for all entries. The

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 19

difference between alpha(256) and alpha(26) is
explained by the size of the buckets due to different n-
gram values ranges (264 possibilities for alpha(26)
vs 2564 for alpha(256), so potentially 84 more
entries for alpha(26), leading to potentially (84)2

times more comparisons). Small databases benefits
from caching and a reduced number of computations
and comparisons.

8.8 Non-dense indexing and false-positives

We study in this Section the non-dense index pro-
posed in Section 7. Our experiments reveal, as ex-
pected, that the gain is significant for the space occu-
pancy. Tables 17, 18, 19, 20, 21 report a gain for space
occupency around 48% when saving one n-gram on
two whatever the alphabet is. When skipping 2 or 3
symbols the memory gain is respectively around 64%
and 73%. Oppositely the matching time increases with
the size of the skip for most of the alphabets. There are
2 phenomena in competition: for t symbols skipped
when indexing, we perform 2t searches when match-
ing instead of 2 for the basic version (i.e. t = 1);
however as observed the size of the index, and conse-
quently of the buckets, also decreases with t which re-
duces the processing time since less combinations have
to be tested. Thus for synthetic datasets (Table 17 and
18) the matching time increases but for t = 2 it is not
twice the time required for the basic version of theAS-
index. Same observation holds for real datasets. For
wikipedia files (Table 21), the matching time over-
head diminishes with i from t = i to t = i+1. For adn
dataset (Table 19), the matching time even decreases
from t = 2 to t = 3 and to t = 4, since the index could
almost be totally cached.

Index size matching time Spd-up f/p

ngram 59.5 GB 181 ms - -

AS t=1 79.5 GB 66 ms 2.74 0.1%

AS t=2 40.9 GB 68 ms 2.68 0.2%

AS t=3 28.1 GB 75 ms 2.41 0.4%

AS t=4 21.6 GB 84 ms 2.15 0.5%

Table 17. Non-dense index characteristics for alpha(26)
files

Index size matchig time Spd-up f/p

ngram 72.2 GB 97 ms - -

AS t=1 92.2 GB 36 ms 2.69 0.0%

AS t=2 48.0 GB 48 ms 2.02 0.0%

AS t=3 32.5 GB 64 ms 1.52 0.0%

AS t=4 24.6 GB 65 ms 1.49 0.0%

Table 18. Non-dense index characteristics for
alpha(256) files

Index size matchig time Spd-up f/p

ngram 25.2 GB 190 ms - -

AS t=1 35.0 GB 103 ms 1.84 0.2%

AS t=2 18.3 GB 145 ms 1.31 14.8%

AS t=3 12.4 GB 127 ms 1.50 25.5%

AS t=4 9.4 GB 119 ms 1.60 43.5%

Table 19. Non-dense index characteristics for adn files

Index size matchig time Spd-up f/p

ngram 25.2 GB 2,293 ms - -

AS t=1 35.0 GB 667 ms 3.44 0.2%

AS t=2 18.3 GB 838 ms 2.74 9.6%

AS t=3 12.4 GB 873 ms 2.63 21.2%

AS t=4 9.4 GB 949 ms 2.42 29.9%

Table 20. Non-dense index characteristics for text files

Index size matchig time Spd-up f/p

ngram 53.2 GB 716 ms - -

AS t=1 81.3 GB 175 ms 4.09 4.1%

AS t=2 43.0 GB 329 ms 2.18 20.7%

AS t=3 29.6 GB 390 ms 1.86 33.8%

AS t=4 22.7 GB 442 ms 1.62 42.6%

Table 21. Non-dense index characteristics for wikipedia
files

20 J. Comput. Sci. & Technol., Jul.. 2014, ,

Non-dense indexing offers consequently an im-
portant space saving for a moderate increase of the
matching time. However it is expected to produce
more false-positives. For synthetic datasets with a uni-
form distribution, the false-postives are uncommon:
less than 0.05% for alpha(256) and less than 0.5%
for alpha(26). For real datasets the number of
false-positives is limited for the basic AS-index ver-
sion for (i.e., t = 2): 0.2% for adn and text files.
wikipedia dataset provides more false-positives,
due to the tag-nature of its content. Indeed when
searching a pattern that starts or ends with a tag, the
bucket that corresponds to the n-gram in this tag is very
large and does not filter out as expected. These results
are coherent with our analysis in Section 6.4. Non-
dense indexing lead to a significant number of false-
positives: around 15% for t = 2 and more than 40%
for t = 4 (see Table 19, Table 20 and Table 21). Indeed
a higher t value leads to a higher number of matching
attempts, so a more important probability to retrieve
false-positives. For synthetic datasets (see Table 17
and Table 18) the uniform distribution guarantees a low
false-positives rate even for the tiling indexing (here for
4-grams it means t = 4). For real data, among t con-
secutive n-grams we have a non-negligible probability
which increases with t, to have a frequent n-gram, so
a higher probability of retrieving false-positives. For
text the probability to retrieve a large bucket is lower
since there exists less large buckets with this distribu-
tion (but existing ones are larger than with other distri-
butions). Consequently this dataset produces less false-
positives than other real datasets on average.

9 Related work

Finding patterns in a large database of sets is a
fundamental problem in Computer Science and its ap-
plications such as bioinformatics. [14] presents a com-
parison of tree-based and hash-based solutions for n-
gram indexing. The theoretically best algorithms and
data structures allow linear construction of the index
in the database, have low storage overhead, and al-
low searches that are processed in time linear on the
size of the pattern. Among the many algorithms, those
based on suffix trees [15] have received much atten-
tion. Recent work by Kurtz [16], Tata, Hankins, and
Patel [17] among others tries to make the theoretically

optimal behavior of suffix trees practical. A great part
of the problem is caused by the blow-up of the in-
dex size over the database size, typically ten to twenty
times [16]. Related data structures such as Manber’s
suffix arrays [18], Kärkkäinen’s suffix cacti [19], or
Anderson and Nilsson [20] suffix tries lower storage
overhead at the prize of an increase in search time. De-
mentiev, Kärkkäinen, Mehnert, and Sanders [21] give
methods to make suffix arrays effective and efficient
for truly large files . A survey of full-text substring
indexes in external memory is presented in [22].

Suffix arrays and suffix trees are static indexes,
designed to index a single file content. If we create
such an index for every record, then search times will
depend on the size of the database. If we however cre-
ate the index for a collection of records – as we ob-
viously should – then deleting and inserting records
becomes very difficult, and it is unclear how we can
adapt the binary search of suffix arrays to the indirec-
tion mechanism used by the storage engine. Life is
much simpler if the database consists of words and we
restrict ourselves to word indexes that can be stored
much more compactly [11].

Signatures files were proposed in [23] and shown
to be inferior to inverted indexing in [24]. Some other
attempts for indexing sequences are the ed-tree [25] for
DNA files, and the q-gram index [26]. Both focus on
the specific problem of homology search in genomic
databases.

Our method is predominantly based on previous
work on n-gram based inverted file indexing. The tech-
nique has been advocated for string search in larger,
hence naturally disk based, partly or totally unstruc-
tured files or databases (full-text, hypertext, protein,
DNA). In bioinformatics, CAFE prototype uses n = 3

for protein and n = 9 for DNA string search, and is re-
ported several times faster than previous systems [27].
All these systems used the basic n-gram index for
many GB disk-resident datasets.

The latest attempt of using n-grams for a large,
(hence diskbased) database, are reported in [6, 28].
In [6], like us, it improves storage overhead and, es-
pecially, search time, over the basic n-gram scheme.
The n-Gram/2L uses a “normalized” representation
with two indexes: (i) one n-gram index on the subse-
quences of size m indexing the n-grams found in each
subsequences, and (ii) one n- gram-index indexing the

AS-Index: A Structure For String Search Using n-grams and Algebraic Signatures 21

subsequences found in the files. The two indexes are
smaller than the original index and though a search
needs to use both indexes, it can use less look-up. If
AS-Index saved storage for larger alphabets it appears
to be slightly less efficient for small ones compared to
n-Gram/2L However like n-gram index this structure
offers a search proportional to the database size and to
the query size oppositely to our constant time claim.
[28] presents a system named Maguro for an efficient
search in very large (Web) collection of texts. It in-
dexes any atoms (n-grams, words or tuples) through a
distributed structure. Moreover it exploits the long tail
distribution of the atoms in Web document thanks to a
two-level hash-structure: popular atoms being stored in
DRAM while less popular are stored on HDD. Observe
that our AS-Index could also benefit from this two-
level hash-structure (and conversly AS-index could be
used to improve Maguro’s performance).

10 Conclusion and Future work

We present a novel approach to string search in
databases, based on Algebraic Signatures and algebraic
computations. The contribution of our paper is a sim-
ple and fast search algorithm which finds a pattern of
arbitrary length in a database of arbitrary size in con-
stant time. We showed through analysis and experi-
ments that our technique outperforms other disk-based
approaches. To our knowledge, our work constitutes
an original approach to indexing, which takes advan-
tage of the interpretation of character as symbols in a
mathematical structure to develop new computational
techniques.

Scalable and distributed AS-Index constitute a
promising research directions that we plan to investi-
gate.

Acknowledgments. This work has been partially
funded by the Advanced European Research Council
grant Webdam.

References

[1] Margaritis G, Anastasiadis S V. SeFS: Unleash-
ing the Power of Full-text Search on File Sys-
tems. In Usenix Conf. on File and Storage Tech-
nology, 2007, pp. 12–12.

[2] Crochemore M, Lecroq M. Pattern Matching and
Text Compression Algorithms. CRC Press Inc,
2004.

[3] Ferragina P, Grossi R. The String B-tree: A
New Data Structure for String Search in Exter-
nal Memory and Its Applications. J. ACM, 1999,
46(2):236–280.

[4] Phoophakdee B, Zaki M J. Genome-scale disk-
based suffix tree indexing. In Proc. Intl. Conf. on
Management of Data (SIGMOD), 2007, pp. 833–
844.

[5] Miller E, Shen D, Liu J, Nicholas C. Performance
and Scalability of a Large-Scale n-gram Based In-
formation Retrieval System. Journal of Digital
Information, 2000, 1(5).

[6] Kim M S, Whang K, Lee J G, Lee M J. n-
Gram/2L: A Space and Time Efficient Two-level
n-Gram Inverted Index Structure. In Proc. Intl.
Conf. on Very Large Databases (VLDB), 2005,
pp. 325–336.

[7] Litwin W, Schwarz T. Algebraic Signatures for
Scalable Distributed Data Structures. In Proc.
Intl. Conf. on Data Engineering (ICDE), 2004,
pp. 412–423.

[8] Mouza C, Litwin W, Rigaux P, Schwarz T J E.
AS-Index: a Structure for String Search using n-
Grams and Algebraic Signatures. In Proc. Intl.
Conf. on Information and Knowledge Manage-
ment (CIKM), 2009, pp. 295–304.

[9] Gray J, Fitzgerald B. Flash Disk Opportunity for
Server Applications. ACM Queue, 2008, 6(4):18–
23.

[10] Charras C, Lecroq T, Pehoushek J D. A Very Fast
String Matching Algorithm for Small Alphabets
and Long Patterns. In Proc. Intl. Symp. on Combi-
natorial Pattern Matching (CPM), 1998, pp. 55–
64.

[11] Witten I, Moffat A, Bell T. Managing Gigabytes:
Compressing and Indexing Documents and Im-
ages. Morgan-Kaufmann, 1999.

22 J. Comput. Sci. & Technol., Jul.. 2014, ,

[12] Na J C, Park K. Simple Implementation of String
B-tree. In Proc. String Processing and Informa-
tion Retrieval (SPIRE), 2004, pp. 214–215.

[13] Baeza-Yates R, Ribeiro-Neto B, editors. Modern
Information Retrieval. Addison-Wesley, 1999.

[14] Robenek D, Platos J, Snásel V. Efficient In-
memory Data Structures for n-grams Indexing. In
Proc. Intl Work. on DAtabases, TExts, Specifica-
tions and Objects (DATESO), 2013, pp. 48–58.

[15] Gusfield D. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[16] Kurtz S. Reducing the Space Requirement of Suf-
fix Trees. Software - Practice and Experience,
1999, 29(13):1149–1171.

[17] Tata S, Hankins R, Patel J. Practical Suffix Tree
Construction. In Proc. Intl. Conf. on Very Large
Databases (VLDB), 2004, pp. 36–48.

[18] Manber U, Myers E W. Sufix Arrays: A New
Method for On-Line String Searches. SIAM Jour-
nal on Computing, 1993, 22(5):935–948.

[19] Kärkkäinen J. Suffix Cactus: A Cross be-
tween Suffix Treee and Suffix Array. In Proc.
Intl.Symp. on Combinatorial Pattern Matching
(CPM), 1995, pp. 191–204.

[20] A Andersson S N. Efficient Implementation of
Suffix Trees. Software– Practice and Experience,
1995, 25(2):129–141.

[21] Dementiev R, Kärkkäinen J, Mehnert J, Sanders
P. Better External Memory Suffix Array Con-

struction. ACM Journal of Experimental Algo-
rithmics, 2008, 12:1–24.

[22] Barsky M, Stege U, Thomo A. Full-Text (Sub-
string) Indexes in External Memory. Morgan &
Claypool Publishers, 2011.

[23] Faloutsos C. Signature Files. In Information Re-
trieval: Data Structures & Algorithms, pp. 44–
65. 1992.

[24] Zobel J, Moffat A, Ramamohanarao K. Inverted
Files Versus Signature Files for Text Indexing.
ACM Trans. on Database Systems (TODS), 1998,
23(4):453–490.

[25] Tan Z, Cao X, Ooi B C, Tung A K H. The
ed-Tree: An Index for Large DNA Sequence
Databases. In Proc. Intl. Conf. on Scientific and
Statistical Databases (SSDBM), 2003, pp. 151–
160.

[26] Cao X, Li S C, Tung A K H. Indexing dna se-
quences using q-grams. In Proc. Database Sys-
tems for Advanced Applications (DASFAA), 2005,
pp. 4–16.

[27] Williams H, Zobel J. Indexing and Retrieval
for Genomic Databases. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2002,
14(1):63–78.

[28] Risvik K M, Chilimbi T, Tan H, Kalyanaraman
K, Anderson C. Maguro, a System for Indexing
and Searching over Very Large Text Collections.
In Proc. ACM Intl Conf. on Web Search and Data
Mining (WSDM), 2013, pp. 727–736.

