
HAL Id: hal-01126517
https://hal.science/hal-01126517v1

Submitted on 27 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Rule Representation and Verification from
Natural Language Requirements Using an Ontology

Driss Sadoun, Catherine Dubois, Yacine Ghamri-Doudane, Brigitte Grau

To cite this version:
Driss Sadoun, Catherine Dubois, Yacine Ghamri-Doudane, Brigitte Grau. Formal Rule Representation
and Verification from Natural Language Requirements Using an Ontology. RuleML, Aug 2014, Prague,
Czech Republic. pp.226-235, �10.1007/978-3-319-09870-8_17�. �hal-01126517�

https://hal.science/hal-01126517v1
https://hal.archives-ouvertes.fr


Formal Rule Representation and Verification
from Natural Language Requirements

Using an Ontology

D. Sadoun1,2, C. Dubois3,4, Y. Ghamri-Doudane5, and B. Grau1,3

1 LIMSI/CNRS, France
2 University Paris-Sud, France

3 ENSIIE, France
4 CEDRIC/CNAM, France

5 University of La Rochelle/L3i Lab, France

Abstract

The development of a system is usually based on shared and accepted require-
ments. Hence, to be largely understood by the stakeholders, requirements are often
written in natural language (NL). However, checking requirements completeness
and consistency requires having them in a formal form. In this article, we focus
on user requirements describing a system behaviour, i.e. its behavioural rules.
We show how to transform behavioural rules identified from NL requirements
and represented within an OWL ontology into the formal specification language
Maude. The OWL ontology represents the generic behaviour of a system and al-
low us to bridge the gap between informal and formal languages and to automate
the transformation of NL rules into a Maude specification.

Keywords

Knowledge representation, OWL ontology, NL requirements, formal verification;

1 Introduction

Requirements correspond to a specification of what should be implemented.
Among other, they describe how a system should behave. Stakeholders of a
system development often use natural language (NL) for a broader understand-
ing, which may lead to various interpretations, as NL texts can contain semantic
ambiguities or implicit information and be incoherent. Thus, requirements have
to be checked and this requires them to be represented in a formal language. A
transformation of NL requirements into formal specifications is usually costly in
human and material resources and would benefit of an automatic method. A di-
rect transformation is difficult, if not impossible [5], which leads to the need of an
intermediate representation to reduce the gap between the two formalisms. Both
works of [5] and [9] propose a first step in the formalization process by trans-
forming NL specifications into SBVR. Similarly, in [7], the authors use SBVR as



an intermediate representation to transform NL business rules into semi-formal
models such as UML. The tool NL2Alloy [1] also uses SBVR as a pivot rep-
resentation to generate Alloy6 code from NL constraints. To our knowledge,
only NL2Alloy proposes a complete chain of transformation from NL to formal
specifications, but it does not perform formal verifications on the intermediate
representations to validate it. Indeed, verifying extracted information needs for-
mal knowledge representation and inference mechanisms. However, controlled
natural languages as SBVR or semi-formal representation models as UML often
lack validation mechanisms and inference engines. These shortcomings have led
many researchers to explore the transformation of SBVR or UML into languages
such as OWL and SWRL [6, 10] or as Maude [3].

We propose an OWL-DL ontology based on description logics as an interme-
diate representation. We use this ontology to guide the automatic identification of
behavioural rules from NL requirements analysis and to represent them formally
[8]. Behavioural rules are represented in the ontology in order to be transformed
into a formal specification language. Indeed, OWL allows us to check the consis-
tency and the completeness of the modelled rules. However, it cannot represent
state evolution or sequential rules application. Hence, to simulate and validate
the whole system behaviour, we propose to transform the ontology model into a
formal specification Maude. In this article, we focus on the ontology conception
choices and the transformation process that enable us to automate the produc-
tion of formal specifications and to maintain the link between NL requirements
and their formal representation.

This work has been done in the framework of the project ENVIE VERTE 7

which aims to allow a user to configure her own smart space by describing
her requirements in natural language. A smart space is a set of communicating
objects (sensors, actuators and control processes) that may influence, under well
defined conditions, the behaviour of the smart space devices (physical processes).
The behavioural rules determine desired component interactions.

2 Ontology of a system behaviour

2.1 Conceptualisation choices

An ontology defines concepts (C), properties (P) and individuals (I) of a domain.
Concepts and properties of an ontology are defined by terminological axioms (A).
We represent an ontology O as a tuple < C,P,A, I, IC, IP > where:
- C is a set of concepts;
- P is a set of binary properties;
- A is a set of terminological axioms;
- I is a set of individuals;
- IC is a function that associates to each concept a set of individuals;

6 A language and tool for relational model verification. http://alloy.mit.edu/alloy/
7 Funded by DIGITEO, projet DIM LSC 2010.



- IP is a function that associates to each property a set of couples of individuals
or of couples individual/value.

The ontology of a system behaviour has to define the components of the
system, their characteristics and the way they behave. In this framework, it is
important to highlight a distinction between two kinds of individuals within on-
tologies: 1) individuals representing entities; 2) individuals representing a type
characterizing entities, which lead us to distinguish two sorts of concepts: in-
dividual concepts and generic concepts. This distinction is pertinent for both
NL requirement analysis and the automatic ontology translation into the formal
language Maude. Based on that, we define two high level concepts to represent
a system behaviour: Component (CC ⊆ C) and Type (CT ⊆ C) (cf. figure 1).

1. each sub-concept of Component is an individual concept defining sets of in-
dividuals representing entities of the domain (physical components, software
components, phenomena, ...);

2. each sub-concept of Type is a generic concept defining specific types (color,
model, brand, ...) of the domain. It extends predefined data types (integer,
real, boolean, string, ...), used to characterize the components of the system.

Representing the system behaviour requires taking into account the dynamic
aspects of its operation. Thus, we modelled two super-properties in the ontology:
1) Relation for describing an interaction between two components of the system;
2) Attribute for describing a characteristic of a component, defined as follows:

1. sub-properties of Relation are defined exclusively between two sub-concepts
of Component. Within OWL, each property is defined as an ObjectProperty.
Formally PR is the set of properties P of type Relation such that D/P .R8

with D ⊆ CC and R ⊆ CC et IP(P ) ⊆ IC[CC ] ×IC[CC ]9.
2. sub-properties of Attribute are defined between a sub-concept of Compo-

nent or Type and an OWL type. Within OWL, each property is defined
as ObjectProperty between sub-concepts of Component and sub-concepts of
Component or Type, or as a DataProperty between Component or Type and
an OWL type. Formally PA is the set of properties P of type Attribute
such that D / P . R8 with D ⊆ CC ∪ CT and R ⊆ CC ∪ CT ∪ T and
IP(P ) ⊆ (IC[CC ]∪IC[CT ])× (IC[CC ]∪IC[CT ]∪V). We also distinguish two
types of attributes:
– dynamic attribute whose value may evolve over the time, as the balance

of a bank account;
– static attribute whose value is not set to change, such as a bank account

ID. This last kind of attribute corresponds to definitional properties of
a concept that can be used to identify and distinguish its individuals.

The result of our conceptualisation choices is the ontology illustrated in Fig-
ure 1. The ontology is divided in two parts: the upper level ontology models a
8 We note D / P . R to define for each property P its domain D and its range R.
9 IC[CC ] represents the ranges of all the elements of CC by IC (IC[CC ] =

⋃
c∈C

IC(C)).



Sensor

Thing

Component

Location

Actuator SensorPhysical
process

Detecting

Measuring

Event

Measurable

Predicate

User
Requirement

Sensor

Actuate-on

Locate-in

Measure

Detect

Detected-in

Zone-of-
sensing

Consequent
Antecedent

Type
PhenomenonManaged-type

Perceived-type

Type
Pattern

Measured-in

StateHas-statePhysical
process

Type

PP-type

Control

Value

Location
Type

Loc-type

lessThan
Has-
value

greaterThan

Controled-in

Status-on
Status-off

Status-increase
Status-decrease

Phenomenon

Has-type

Occured-in

Status

Fixed-

Turn-on

Turn-off

Increase

Decrease

Located-in

Actuate

in

Managed
-zone

Requirement

Upper level ontology Rule-pattern

Fig. 1. The ontology of smart space behaviour

generic system behaviour and the domain specific ontology models a smart space
behaviour. This specific part contains fourteen concepts : seven sub-concepts of
Component, and seven sub-concepts of Type. The properties are represented
by oriented arrows linking concepts of their domain and range. We only figure
properties corresponding to ObjectProperty, they are thirty one. Dotted Arrows
represents subsumption relations.

2.2 Behavioural rules

As concepts and properties, Behavioural rules participate to the domain def-
inition, by modelling its dynamic aspects. They are formed as antecedent →
consequent. The antecedent defines conditions under which the rule applies.
The consequent defines the result of its application. Each of them corresponds
to a conjunction of predicates denoting instances of a property P (ix, iy) with
(ix, iy) ∈ IP(P ), since, in our approach, rule identification is guided by property
instance identification [8]. Within the ontology, we model a behavioural rule as
two sets of predicates Pk(ix, iy) with Pk a binary predicate referring to a property
instance and ix an individual, a literal (value of a basic data type) or a variable.
We defined a concept Predicate as a sub-concept of the concept Type (cf. figure
1), associated to the two properties Antecedent & Consquent (cf. figure 1) on
which the behavioural rules are constituted.

We distinguish two types of behavioural rules: 1) rules describing the general
behaviour of the system that is independent of the user needs; 2) rules specific
to the user requirements. We propose to model within the ontology the two



concepts Requirement-Pattern and User-Requirement. Requirement-Pattern is a
set of different generic patterns of rules. Its individuals are defined by an expert
of the domain to guide the NL requirement analysis. User-Requirement is a set
of behavioural rules specified by a user. Its individuals are created automatically
from NL requirements analysis and linked to their model pattern by the property
Rule-pattern (cf. figure 1). Within the ontology five requirement patterns have
been defined for guiding the identification of behavioural rules of a smart space.

2.3 Population of the ontology

In [8], we proposed an approach for ontology population based on the identi-
fication of property instances in sentences which leads to recognize triples of
individuals. Instance property recognition enables to resolve some ambiguities
and to infer implicit individuals. The creation of User-Requirement individuals
exploits these property instances and depends on two verifications based on the
use of OWL reasoning and SQWRL queries. First, for each requirement pat-
tern represented in the ontology, we check that all the predicates (i.e. property
instances) specializing it have been recognized and do not introduce any in-
consistency in the ontology, then, that the resulting rule, i.e. the individual of
User-Requirement is correctly formed. If this two verifications hold, an instance
of the concept User-Requirement is created. During the ontology population pro-
cess, several instances of User-Requirement can be associated to an instance of
Requirement-Pattern via the property Rule-Pattern (cf. Figure 1). Each of them
is associated with the sentence number it is extracted from. It enables to keep
the link between textual requirements and formal rules.

We collected user requirements of a smart space behaviour configuration
via a platform available on the web10. We collected about hundred sentences11
(2171 words). Figure 2 presents an example of an individual of User-Requirement
that specializes an instance of Requirement-Pattern. It was created automati-
cally from the NL requirement analysis and was identified from the sentence
number 1 "When I enter a room the door opens automatically." of the analysed
user requirements. Right elements in bold are instances identified from user re-
quirements analysis. Elements preceded by a question mark ’?’ correspond to
variables. The left property in bold is a super-property12 that determines the
type of property to identify from user requirements analysis.

Within the hundred sentences, 62 were manually annotated as containing
a behavioural rule. From user requirements analysis, a total of 28 rules were
completely identified and created in the ontology and 34 rules were partially
recognized. During the ontology reasoning, two rules among the 28 were rejected,
being inconsistent with two existing rules and 3 were identified as containing an
additional (incorrect) predicate. As within the ontology, identified individuals are
linked to the sentence they were extracted, a precise feedback is returned to the

10 http://perso.limsi.fr/sadoun/Application/en/SmartHome.php
11 A rule is extracted from a sentence
12 Actuate is the super-property of Turn-on.



An individual of Requirement-Pattern
(a generic rule).
Detected-in(t,l)
Controlled-in(p,l)
Has-type(?ph,t)
Occurred-in(?ph,?loc)
Perceived-type(?s,t)
Zone-of-sensing(?s,?loc)
Managed-type(?a,t)
Managed-zone(?a,?loc)
Loc-type(?loc,l)
⇒ Actuate(?a,p)

R-1 : When I enter a room the door opens
automatically.
Detected-in(movement-in,room)
Controlled-in(door,room)
Has-type(?s,movement-in)
Occurred-in(?s,?I1-445)
Perceived-type(?I1-280,movement-in)
Zone-of-sensing(?I1-280,?I1-445)
Managed-type(?I1-8,movement-in)
Managed-zone(?I1-8,?I1-445)
Loc-type(?I1-445,room)
⇒ Turn-on(?I1-8,door)

Fig. 2. A user requirement created from NL requirement analysis

user, highlighting missing and incorrect information in order to let her correct
or complete the concerned requirement. Once all the necessary checks have been
performed successfully, the validated rules are transformed into Maude.

3 From the ontology to the Maude formal specifications

3.1 The formal specification language Maude

Maude13 enables to describe the dynamic of a system, i.e. its state changes, and
provides different tools for checking it. The state space of a system is represented
by a signature Σ that defines sorts (i.e. types) of constants and variables ma-
nipulated by Maude and operators that will act upon the manipulated data and
by a set of equations E built between terms using the signature. Within Maude,
the evolution of the system state is described by rewriting rules of the form R : t
→ t

′
, where t and t

′
are terms formed on the signature. Rewriting rules rewrite

each term of the left hand side of the rule into a term of the right hand side.
The rewriting mechanism allows for specification animation and verification of
certain properties as the reachability or the non-reachability of particular states.

Maude defines an object-oriented module that offers an object-oriented syn-
tax which is well adapted for concurrent systems, using sets of objects, and a
communication mechanism based on message transmission between objects. We
use it as a target module for the transformation of the ontology model.

In an object-oriented module, objects are of the form <O : C|a1 : v1, ..., an :
vn> with O the object identifier, C the object class, ai (i ∈ 1..n) its at-
tribute names and vi (i ∈ 1..n) the corresponding attribute values. Messages
represent the dynamic interaction between objects. They have the form msg
Mes : Oid, T1, ..., Tk → Msg . with msg a keyword, Mes the message name,
Oid the type of the recipient object and Ti (i ∈ 1..k) the types of the message
arguments. The state of a system, called configuration, corresponds to a multi-
set of objects and messages. It is defined using a Maude equation of the form: eq
Conf = Ob1 ... Obm Mes1 ...Mesn . with eq a keyword, Conf the configuration
name, Obi and Mesi the objects and messages of the state system.

We represent a Maude object oriented model as a tuple <C,M,Σ,E ,R> with:
13 http://maude.cs.uiuc.edu/



– C is the set of class names with, for each class, its set of pairs (attribute,
type);

– M denotes the set of message names;
– Σ corresponds to the typing environment. Each element (constant or vari-

able) is associated to its type;
– E corresponds to the set of equations representing the state of the system

(its configuration) with E = EO ∪ EM such that:
• EO : the set of configurations-objects pairs;
• EM : the set of configurations-messages pairs.
• R contains the rewriting rules.

3.2 Transformation approach

In this section, we propose a mapping between the ontological elements and
the object-oriented Maude elements for an automatic translation. Ontological
elements to translate are those contributing to the representation of the sys-
tem state evolution. They correspond to User-Requirement instances and the
elements necessary for their definition: concepts Component and Type, proper-
ties (attributes and relations), individuals and their property values. Figure 3
illustrates this mapping. The set of relations PR is represented in Maude by a
set of messages M between two objects as they represent evolving relations.
The set of attributes PA is translated as object attributes. Finally, instances
of User-requirement are translated as rewriting rules with an antecedent and
a consequent built on objects, messages, attributes, literals (i.e. values of basic
types) and variables.

The dynamic evolution of a rewriting rule depends on messages and dynamic
attributes (cf. section 2.1). When a rule applies, messages of the antecedent
are not rewritten and some new messages may appear in the consequent, also
dynamic attributes values may change and new attributes may appear in the
consequent as in Figure 4, which illustrates a rewriting rule created from the
user requirement R-1 (cf. Figure 2) and extracted from the sentence number
1 "When I enter a room the door opens automatically." the dynamic attribute
Turn-on of the object Actuator is created in the consequent part.

OWL Ontology object oriented model Maude
Individual of the concept Component (∈ IC) Object (∈ E)
Individual of the concept Type (∈ IT ) Attribute value (∈ E)
Sub-concept of the concept Component (∈ CC) Class (∈ C)
Sub-concept of the concept Type (∈ CT ) Sort Oid (∈ Σ)
Relation (∈ PR) Message (∈ M)
Attribute (static & dynamic) (∈ PA) Attribute (∈ Σ)
Instance of User-Requirement (∈ IRU ) Rewriting rule (∈ R)

Fig. 3. Correspondence between our ontology model and Maude model



rl [R-1] : < door : Physical-process-Type | Controlled-in : room >
< I1-445-8 : Location | Loc-type : room >
< I1-326-6 : Phenomenon | Has-type : movement-in, Occurred-in : I1-445-8 >
< I1-280-7 : Sensor | Perceived-type : movement-in, Zone-of-sensing : I1-445-8 >
< room : Location-Type | >
< smoke : Event | Detected-in : room >
< I1-8-2 : Actuator | Managed-type : movement-in, Managed-zone : I1-445-8 >
−→
< door : Physical-process-Type | Controlled-in : room >
< I1-445-8 : Location | Loc-type : room >
< I1-326-6 : Phenomenon | Has-type : movement-in, Occurred-in : I1-445-8 >
< I1-280-7 : Sensor | Perceived-type : movement-in, Zone-of-sensing : I1-445-8 >
< room : Location-Type | >
< smoke : Event | Detected-in : room >
< I1-8-2 : Actuator | Managed-type : movement-in, Managed-zone : I1-445-8, Turn-on : door > .

Fig. 4. A Maude rewriting rule translated from the behavioural rule R-1

3.3 Automatic translation of the ontology into Maude specifications

Following the mapping of Figure 3, we implemented the translation function
TradO which exploits getter-functions (prefixed by get-) issued from the Java
APIs OWL and Jess or implemented by us to query the ontological elements.
TradO takes the ontology model (C,P,A, I, IC, IP) as input and calls four trans-
lation functions (cf. Algorithm TradO): TradC , TradM , TradE and TradR. Each
of these functions takes as input a subset of the ontology model and translates
it into a sub-set of the Maude model. In order to generate Maude specifications
from the resulting Maude model, we implemented pretty-printing functions (pre-
fixed by pp-) that generate portions of Maude code. Their application results in
the creation of a Maude specification file. The main function pp-generation-of-
code-Maude takes as input the output result of TradO (<C,M,Σ,E ,R>) and
produces a Maude specification file. It calls eight pretty-printing functions (cf.
Algorithm pp-generation-of-code-Maude) that writes each a sub-set of Maude
specifications. The operator � denotes the automatic Maude code generation
into the specification document Spec-Maude.
Input:C, P,A, I,IC,IP;
Output:< C,M,Σ,E,R >;
CC ← get-ConceptSubClasses(A,Composant);
CT ← get-ConceptSubClasses(A,Type);
CRU ← get-SubConcepts(A,User-requirement);
IRU ← get-ConceptIndividuals(CRU , IC);
PR ← get-OntologyRelations(A);
C ← TradC(CC ,CT,A);
M ← TradM (PR) ;
<E,Σ0> ← TradE(CC , PR,A, I,IC,IP) ;
<R,Σ> ← TradR(IRU ,IP, PR, A, Σ0) ;

Algorithm TradO

Input:< C,M,Σ,E,R >,Spec-Maude;
Output:Spec-Maude;
Spec-Maude � pp-declareClass(C);
Spec-Maude � pp-declareMessage(M);
Spec-Maude � pp-declareObject(Σ);
Spec-Maude � pp-declareVariables(Σ);
Spec-Maude � pp-declareObjectConfiguration(Σ);
Spec-Maude � pp-createObjectConfiguration(E);
Spec-Maude � pp-createMsgConfiguration(E);
Spec-Maude � pp-createRules(R);

Algorithm pp-generation-of-code-Maude

The algorithm 1 details the function TradR (cf. Algorithm TradO) that trans-
lates the user requirements (IRU ) modelled in the ontology into rewriting rules
describing the system behaviour within Maude. These rules are formed by binary
predicates representing ontology properties. Each predicate may have as argu-
ment individuals, literals or variables. Existing objects have been declared in Σ0

and created in E within the function TradE (cf. Algorithm TradO). Variables and



literals still need to be declared. For each predicate of the properties Antecedent
and Consequent, getter-functions are called to get its name (the property to
which it refers) and its domain and range values. These values are inputs of the
function updateObjects that creates objects or updates their values if they al-
ready exist. For example, during the creation of the rewriting rule R-1 (cf. Figure
4) the object Actuator has been created from the predicate Managed-type, then
updated by the predicate Managed-zone and finally updated in the consequent
of the rule by the predicate Turn-on that represents a dynamic attribute.

3.4 User requirements verification in Maude

Maude incorporates a variety of validation and verification tools [2] including
a model checker [4]. A model-checker enables the model exploration. From an
initial configuration, it explores the possible states of the represented system
based on rewriting rules application. The model-checking allows us to check un-
desirable state reachability as states resulting from the simultaneous application
of rules in contradiction i.e. that can be triggered at the same time and con-
tains in their consequents predicates in opposition (as Turn-on and Turn-off )
on the same object. Then we say that the rules are inconsistent. Hence, the rule
created from the sentence 88 "When a sensor detects a hot temperature in any

Input: IRU ,IP, PR, A, Σ0

Output: R,Σ
R ← ∅; Σ ← Σ0; Objs-Antecedent ← ∅; Objs-Consequent ← ∅;
Msg-Antecedent ← ∅; Msg-Consequent ← ∅; Class-Attributes-Values ← ∅;
for each iRU in IRU do
A-predicates ← get-RangeValue(iRU ,Antecedent,IP) ;
C-predicates ← get-RangeValue(iRU , Consequent,IP) ;
for each a-predicate in A-predicates do //predicates of the antecedent
p← get-PredicateName(a-predicate) ;
vD ← get-PredicateDomainValue(a-predicate) ;
vR ← get-PredicateRangeValue(a-predicate) ;
tD ← get-Domain(p,A); tR ← get-Range(p,A) ;
if isV ariableOrLitteral(vD) then
Σ ← Σ ∪ {(vD,tD)};

if isV ariableOrLitteral(vR) then
Σ ← Σ ∪ {(vR,tR)};

if p ∈ PR then //p is a relation
Msg-Antecedent ← Msg-Antecedent ∪ {(p, vD, vR)};
Objs-Antecedent ← updateObjects(Objs-Antecedent,{(vD,tD,∅,∅)});
Objs-Antecedent ← updateObjects(Objs-Antecedent,{(vR,tR,∅,∅)});
else //p is an attribute
Objs-Antecedent ← updateObjects(Objs-Antecedent,{(vD,tD,p,vR)});
Objs-Consequent ← Objs-Antecedent;
for each c-predicate in C-predicates do //predicates of the consequent
p← get-PredicateName(c-predicate) ;
vD ← get-PredicateDomainValue(c-predicate) ;
vR ← get-PredicateRangeValue(c-predicate) ;
tD ← get-Domain(p,A); tR ← get-Range(p,A) ;
if isDynamic(p,A) then //p is an dynamic attribute
Objs-Consequent ← updateObjects(Objs-Consequent,{(vD,tD,p,vR)}) else
if p ∈ PR then //p is a relation
Msg-Consequent ← Msg-Consequent ∪ {(p, vD, vR)};
R ← R ∪ {(Objs-Antecedent,Objs- Consequent,Msg-Antecedent,Msg- Consequent)};

Algorithm 1: Type declaration and rewriting rules creation



room combined with smoke in this room, close all the doors and windows." was
identified as inconsistent with the rule number 1. Model checking also allows us
to check the completeness of the specified system by checking the reachability of
desirable states. For example, in the framework of a smart space, it is necessary
to check if all physical processes can reach the states on and off at least once.
Thus, a message can be returned to the user. As it was the case for the lack of
a rule that turns off the physical process light-bathroom.

4 Conclusion

We proposed an approach for behavioural rules representation and formalization
from user requirements written in natural language. The core of this approach is
an OWL-DL ontology that encompasses the general behaviour of a system. The
ontology is used as a pivot representation as it defines a framework for guiding
the identification of behavioural rules and allows us to implement an automated
transformation of them into a formal specification in Maude. We described an
application of our approach on the domain of smart spaces and showed how
representing the behaviour of smart space by a Maude specification enabled us
to check its consistency and completeness.

References

1. Bajwa, I.S., Bordbar, B., Lee, M., Anastasakis, K.: Nl2alloy: A tool to generate
alloy from nl constraints. JDIM 10(6) (2012)

2. Clavel, M., Duràn, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.: The
maude formal tool environment. In: CALCO, vol. 4624, pp. 173–178 (2007)

3. Durán, F., Gogolla, M., Roldán, M.: Tracing properties of uml and ocl models with
maude. AMMSE (2011)

4. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude {LTL} model checker.
ENTCS 71, 162 – 187 (2004)

5. Guissé, A., Lévy, F., Nazarenko, A.: From regulatory texts to brms: how to guide
the acquisition of business rules? In: RuleML. pp. 77–91 (2012)

6. Karpovic, J., Nemuraite, L., Stankeviciene, M.: Requirements for semantic business
vocabularies and rules for transforming them into consistent owl2 ontologies. In:
Information and Software Technologies, vol. 319, pp. 420–435 (2012)

7. Njonko, P., El Abed, W.: From natural language business requirements to exe-
cutable models via sbvr. In: ICSAI (2012)

8. Sadoun, D., Dubois, C., Ghamri-Doudane, Y., Grau, B.: From natural language
requirements to formal specification using an ontology. In: ICTAI (2013)

9. Selway, M., Grossmann, G., Mayer, W., Stumptner, M.: Formalising natural lan-
guage specifications using a cognitive linguistics/configuration based approach. In:
EDOC. pp. 59–68 (2013)

10. Sukys, A., Nemuraite, L., Paradauskas, B., Sinkevicius, E.: Transformation
framework for sbvr based semantic queries in business information systems. In:
BUSTECH. pp. 19–24 (2012)


