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Abstract. We propose a system capable in real time of adding control-
lable and plausible oscillating physical like reaction effects in response
to external forces (perturbations). These oscillating effects may be used
to modify a motion or to customize it in a cartoon like way. The core of
our system is based on several connected 3D pendulums with a propa-
gating reaction. These pendulums always return to a preferred direction
that can be fixed in advance or can be modified during the motion by
external predefined data (such as keyframe). Our pendulums are fully
controllable, concerning reaction time and damping, and the results are
completely deterministic. They are easy to implement, even without any
prior knowledge of physical simulations. Our system is applicable on
articulated body with predefined motion data (manually set or captured)
or procedural animation.

1 Introduction

Fig. 1: Some example uses of our system. Red arrows represent external
perturbations. Green arrows represent the system’s response

There is a lot of research into developing convenient methods for adapting
existing articulated body animations to suit other environments and characters.
The joints in a given articulated body can typically have many degrees of
freedom, many constraints of length or angles, and additionally are generally
required not to allow the body to self-penetrate. Thus, the physics that govern
its movement is computationally expensive, numerically imprecise, and often



difficult to predict and to control. A recent survey by Welbergen et al. [15]
gives a good overview of the different methods and paradigms used and most
importantly the trade offs between animation control and motion naturalness. In
this context, there is a crucial demand for real-time methods providing physically
plausible, but controllable effects [3].

We propose an original system, to our knowledge, that adds physical like
reaction effects to any skeleton-based object, in real-time with a full user control
using our 3D pendulums. The effects we seek to obtain are based on damped
oscillatory motions that propagate through an articulated chain. The effect may
be visually plausible like a rope moving in the wind, or a body reacting to
external forces. They may also be made more cartoonish which is shown in the
accompanied video by giving a dancing like effect. In our system each bone of
the articulated body is animated by a 3D pendulum. The pendulum is guided
by a spring-damper that pulls it toward a user-definable target direction. Our
approach has two objectives. Firstly, we ensure body length constraint between
any two joints by only working on the angle between the bodies. Secondly, we
make a predictable real-time system in which we can control the reaction time
to reach a user-defined direction and also the regime (critical or underdamped)
of the oscillations around this direction. Our pendulums have three degrees
of control: reaction time, damping and target direction. This concept of 3D
pendulums may be applicable in a multitude of scenarios with some of them
illustrated in Figure 1. We must emphasize that our system is better suited for
acyclic bodies and that we do not address the balancing problem in the case of
the biped example. Our system is really easy to implement, as we will see in
section 3, with no need for a full physics simulation, nor any kind of complex
calculations (like the inertia matrix). The mesh of the 3D model is animated
with the classical linear blend skinning technique [8].

2 Related Work

Our pendulums oscillate visually like real 3D pendulums by computing their
movements with a mass-spring approach. A mass-spring approach is a very
simple way to simulate physics-based animation [13], as it offers an intuitive
and flexible means of modeling a mechanical system. In Pixar’s movie WALL-E
[10], they used a mass-spring system in a derived fashion to animate large crowds
of humans and robots in a believable way.

Editing the motion of an articulated body (producing or modifying an ex-
isting animation) is an important topic in computer animation. For instance,
some methods aim at warping the time of an existing motion [9], or combin-
ing/blending existing motions (often represented in an animation graph) [14].
Others propose the use of signal processing tools to modify animations [4].

Parallel of these approaches, an important aspect is to add physical reactions
to animations, like blending an existing motion with a physical response [2].
Zordan et al. in [18, 17] use a Proportional-Derivative (PD) controller to drive
the dynamic body motion toward a re-entry in motion capture data. Our method



may be related to a PD controller, and also to the MRAC controller that uses
the Adaptive Control proposed by [12] and used in [11]. All of these controllers
are like our pendulum bringing a bone to a preferred direction but we differ
in several essential ways. Firstly, the other methods always try to return to
a preferred direction (or position), even if there is no external perturbations.
This introduces a delay in the produced animation between the target pose
(keyframe or motion capture data) and the response of the PD controller (as
seen in [19]). On the other hand, our system is a superimposed layer over the
motion data and only reacts when there is an external perturbation. Our system
plays exactly the motion data with no delay, and only adds the reaction effects
when needed. Another difference is the controllability; our system is designed to
be temporally controlled (control over the reaction time). Temporal control in the
case of the PD controller is hard to achieve and demands some hand tuning of the
gain constants. In [1] they show the ability to temporally control PD controllers
(using adaptive calculation of the gain constants), but it involves some heavy
calculations of the inertia matrix of each joint on each keyframe, with specific
calculations in the case of an external perturbation (calculating the re-entry
key frame). Finally, all the mentioned controllers are always critically damped.
On the other hand, our pendulums can be critically damped or underdamped
while maintaining the temporal control. An MRAC controller is designed to be
temporally controlled but it calculates and adapts its gain constants on each
frame using forces and torque calculations. Our pendulums do not need any
adaptive pass once the user sets the reaction time and damping. Additionally,
they can be modified in real time.

We differ from other systems of skeleton-driven deformations like [5] in that
we concentrate only on deforming the skeleton of the articulated body, without
any specific treatment to the mesh. Our mesh is animated by the classical
linear blend skinning [8]. With no intention to compete against realistic fabric
simulation seen in [16], we show a rigid tissue represented by a tree of bones
animated by our approach with a large time-step and controllable computation.

3 3D pendulums

In our system, a bone of an articulated body is animated as a pendulum with
a configurable target direction as illustrated in Figure 2(a). A pendulum is an
anchored bar, with a fixed length L, attracted to its target direction by a spring.
This spring pulls the pendulum toward this direction (described in Section 3.1).
This idea allows the system to easily add plausible oscillations to any animation
with a temporal control (explained in Section 3.2). In Section 3.3 and 3.4 we
present our linear algorithm that deals with a tree of pendulums or a skeleton,
by propagating the motion of a single pendulum to its father and sons.

3.1 3D pendulum principle

We design a pendulum
−→
V as a rotating bar attracted to its preferred direction

by two springs: one spring on each 2D plane XY and ZY as illustrated in
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Fig. 2: (a) 3D pendulum (b) A 3D pendulum composed of two 2D pendulums
with Y as their preferred direction

Figure 2(b). We choose this scheme with two springs instead of one spring
to avoid spiral rotation motion around the target direction. The computation
of pendulum

−→
V motion is done using its projections

−−→
VXY ,

−−→
VZY independently.

During the motion, after calculating the two new spring positions in 2D
−−→
VXY

and
−−→
VZY , the 3D position

−→
V is obtained by combining them and ensuring that

‖−→V ‖ = ‖−−→VXY ‖ = ‖−−→VZY ‖ = L. In the current implementation we omit the twist

component around the axe of the 3D pendulum
−→
V which is the third degree of

freedom, we plan to add it in a future work. It is interesting to notice that by
using the target direction

−−→−Y , we can give the impression of gravity that always
pulls the bodies toward the ground.

3.2 Time Based control for spring dampers

Let m be a mass connected to a spring with stiffness constant k. This mass
oscillates around a rest position x0 with a viscous damper that has a damp-
ing coefficient c. Based on Newton’s second law of physics the acceleration is
ẍ = −(k(x − x0) + cẋ)/m where x is the current position of the mass, and
ẋ is its velocity. We integrate this motion using the Verlet scheme [13] which
was numerically stable during our experiment described in Section 4. Giving a
random position x to the mass, it oscillates around the rest value x0, seeking to
minimize the error (x−x0) until reaching zero. This oscillation depends directly
on the constants (k, c,m). In order to achieve temporal control on the spring
damper movement, we use the Settling Time Ts principle. It is the time required
for the mass position x to reach its max amplitude inside a given error interval
(See Figure 3(a)) and remains inside it. This interval is symmetrical around x0.

Ts = − ln(tolerancefraction)

ζ ∗ w0
(1)

Where the tolerance fraction is the needed error interval shown in Figure 3(a),
w0 is the natural frequency and ζ is the damping of the ordinary differential



equation governing a damped harmonic oscillator:

mẍ+ cẋ+ k(x− x0) = 0

or
ẍ+ 2 ∗ ζ ∗ w0 ∗ ẋ+ w2

0 ∗ (x− x0) = 0

with

ζ =
c

2mw0
, w0 =

√
k

m
(2)

By fixing the tolerance fraction to 5% in equation (1) and by using the user
provided settling time and damping (critically damped or underdamped), the
spring damper constants k and c are calculated from equation (2), achieving
total control over the curve of the spring damper while maintaining its dynamic
aspect.
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Fig. 3: (a) Spring oscillation under different damping (b) 3D pendulums Tree in
Black with target direction in Grey

Figure 3(a) illustrates springs oscillating under different damping values.
They oscillates around their x0 until full stop, with their respective settling time.
The third spring damper is a critical spring damper which converges toward x0
faster than the others, and without oscillation.

3.3 Tree of 3D pendulums

The skeleton of an articulated body is a tree of connected joints (articulations).
By connecting several 3D pendulums and by defining the target direction for
each one of them, the final result is a tree of pendulums that map the articulated
structure, as shown in Figure 3(b). Some of the 3D pendulums act as a father
node for several others. When they move, the anchor points of their children
move. In order to have a visually believable reaction, these 3D pendulums need to
interact with each other. We define two strategies used in conjunction to achieve



this goal: Father Pursuit strategy and Son Pursuit strategy. In the accompanying
video we show the similarities between the motion of a chain of pendulums fully-
physically simulated and our chain of 3D pendulums that incorporate these
strategies. For simplicity, these strategies will be described in a 2D plane.

3.3.1 Father Pursuit Strategy. The objective of this strategy is to propa-
gate the motion of the father 3D pendulum toward its children, thus they need
to incorporate this movement in their own motion. Figure 4(a) illustrates two
connected pendulums PA,PB , A,B are the positions of each mass, LA,LB are
the lengths of the bars, and θA,θB are the errors that each pendulum seeks to
minimize. In this example the preferred direction of the pendulums are identical
(the dashed -

−→
Y ).

The update system is a top-down system scheme, starting from the anchor
toward the leaf. First, on time t1 (in black) the error that we try to minimize is
θA1 in PA and θB1 in PB . Now, on time t2 (in red):

1. PA moves, its spring damper tries to minimize the error, and has a new
position A2.

2. PB : the angle εAB between the two vectors
−−−→
B1A1 and

−−−→
B1A2 is added to its

own error, αB = θB1 + εAB .
3. PB : letting the spring damper integrate its equations, we obtain a new angle

value θB2 which contains the new pursuit error.
4. PB : based on LB the new position B2 (in blue) is calculated.
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Fig. 4: (a) Father Pursuit Strategy (b) Son Pursuit strategy

Without this process, the new position of PB would have been B3 (in green),
which is not correct and would have produced a non-logical disconnected motion.
This Father Pursuit process is extended to every pendulum in the chain. A third
pendulum PC follows the motion of its father PB , and so on. By extending this
process in 3D we have a totally plausible physical chain of 3D pendulums (as
seen in the accompanying video). Each one reacting to its father’s movement
while oscillating around its target direction.



3.3.2 Son Pursuit Strategy. The objective of this strategy is to reflect the
perturbation that can occur on the son level, to reflect it on its father. It occurs
when the mass of PB takes a perturbation as seen in Figure 4(b) (in green). The
perturbation is regarded as a change in the position, as if we only take the final
position resulted of an impulse applied to a rigid body.

1. The perturbation induces its full impact as if the mass PB was not attached
(in red).

2. PB ’s mass has two positions: B1 (the old one) and B3 (the new one).
Inverting the previously detailed computation of the father induced error
εAB , we calculate the child error εBA, the angle between

−−−→
A1B3 and

−−−→
A1B1

and adding it to θB1, we obtain αB = θB1 + εBA.
3. The mass of PA should follow, as it is being pulled by its son now. The new

position A3 is calculated easily by choosing on the line A1B3 the point A3
where ‖A1B1‖ = ‖A3B3‖.

4. This process propagates toward the anchor.
5. The new positions are recalculated based on the fixed anchor position.

With this scheme, all the errors that the spring dampers need to minimize
because of a perturbation are calculated in a bottom-up way starting from the
son that took the perturbation toward the anchor.

3.3.3 Final workflow. In a tree of pendulums, calculation cycles may occur
when two nodes are influencing each others in an endless loop (father influencing
its son, then the son influencing its father, and so on.). To avoid these kinds of
loops, we use an update system inspired by Featherstone’s divide and conquer
algorithm [6, 7]. This algorithm eliminate any cyclic calculation problems and
breaks the computation into two main linear passes. The first is a bottom-up
pass through the articulated body tree, and the second is carried out from the
top to the bottom. We adopt this paradigm completely. Only the calculations
differ, as listed below:

1. For each 3D pendulum perturbed in the tree: resolve this perturbation by
applying it on its mass then calculate the errors ε in a bottom-up iteration
toward its ancestors according to the Son Pursuit strategy.

2. For each father 3D pendulum integrate all the children errors (ε1,ε2 etc.) to
its own error θ.

3. Start the standard top-down pass starting from the anchor toward the leaf
according to the Father Pursuit strategy.

In the previous step 2, there are many ways to calculate the integration:

– Summing up all the perturbation errors coming from its children: it is the
method used to produce all of our results. It is the simplest method, and the
one we chose after testing.

– Calculating an average: the father node will be perturbed in the same direc-
tion as the previous method, but with less amplitude. It is useful when the
application decides that the father should be less affected by its children.



– Doing a weighted average based on:
• The Mass: the heavier son has more influence on its father.
• The importance of each branch: assigning predefined priorities on the

children.

We can imagine many other possibilities based on a specific application’s needs.
Our system is quite easy to implement and the actual calculations in each
strategy require only basic knowledge of 3D vector math. No prior knowledge of
physics systems is required; we do not compute the inertia matrix nor we use
the notion of force. At the same time we can use physics principles to enhance
the end result like in the case of the father pendulum integrating its children’s
errors based on the inertia matrix.

3.4 3D model Skeleton Vs. 3D pendulums tree

In the following section we demonstrate our system with skinned 3D models,
using a predefined skeleton to construct the pendulums tree. Starting from the
bind pose (rest pose) of the skeleton, we create a 3D pendulum for each skeletal
connection (bone) with the same length and with its preferred rest direction
calculated from the bone rest pose orientation. By maintaining the hierarchy of
the base skeleton, we have a pendulums tree that maps this skeleton perfectly.
While playing motion data, we modify the target direction of each corresponding
pendulum, mimicking the base animation exactly. If the 3D pendulums start to
react to an external perturbation, each of the 3D pendulums orientation and
position is applied to its corresponding bone.

4 Applications and Results

In this section, we present several ways to use the 3D pendulums tree: adding
physical effects to lifeless models like an octopus, modifying pre-defined mo-
tion data with physics reactions, and anecdotally a cloth simulation (which is
normally a closed-loop problem). In all cases, the pendulum’s reaction time,
damping, and target direction is totally controllable. The results were computed
on an Intel Core 2 Duo 2GHz, 2 GB RAM, with an ATI X1400, 256 MB. Our
experimentation does not manage collisions, but we can easily imagine a system
that creates an impulse (change in the position) on each 3D pendulum to counter
any penetrations that occur.

4.1 Adding physical reaction effects to any skeleton-based bodies

In Figure 5, we use our system on a lifeless octopus model. By adding some simple
procedural animation to its tentacles (pulling only the root node of each tentacle
toward the center at random intervals) the rest of the model reacts in a passive
way, modifying the animation and adding plausible physics effects. The octopus
model consists of 150 joints and the computation time of our superimposed
physical effects is only 0.3 ms.
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Fig. 5: From top left: [1] the model with its 3D pendulums, [2] rest pose, [3] we
pull all the tentacles toward the center, [4] reacting, [5] tentacles overshooting
(underdamped regime), [6] return to rest pose

We can also use our system on animated models. In that case on each frame,
the motion data takes control of the skeleton changing the preferred direction of
each pendulums. With no external perturbations, the 3D pendulums rigorously
follow the animation data. When an external perturbation occurs, our system
reacts to this while continuously trying to return to the desired target pose.
With such a technique, our system adds plausible physical reaction effects to
predefined animation data, as a superimposed animation layer. These reactions
can furthermore be customized by making a section of the body more rigid, more
flexible, changing the reaction time, or tuning the damping. This gives the end
user a powerful tool to modulate the reaction of the body in a very easy and
intuitive way.

Fig. 6: From top Left: [1] Original (on the left) and our simulated articulated
body (on the right), [2] Two perturbations, [3] to [5] Reaction and returning to
the original keyfarme

By playing only the animation data on our test machine, for the previous
model in Figure 6 with 92 joints, the average computation time for each frame
is 0.06 ms. When playing the same animation using our pendulums and two
perturbations, the computation time rises to an average of 0.46 ms, which stays
negligible. This added cost is the result of reading the motion capture data in
order to change the pendulum’s target direction, integrating the perturbation,
and then performing the main integration (as previously described).

4.2 Cloth Simulation

Although cloth is a closed loop problem, we are capable of giving the impression
of an animated cloth by simply creating several vertical 3D pendulums that cover
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Fig. 7: (a) A cloth represented as a tree of pendulums (b) Cloth being pulled in
the middle with a visual representation of the 3D pendulums

the cloth, plus attaching several horizontal 3D pendulums to each vertical one
(one vertical is shown in Figure 7(a)). By doing a weighted average between the
positions of all horizontal pendulums activated by their vertical father, weighted
based on the distance between each horizontal pendulum and its vertical father,
we compute the final cloth position. This results in a fully reactive cloth, without
any tearing problems, that maintains its horizontal and vertical dimensions,
while giving total control over the reaction time. We are not aiming to compete
against more general, visually and physically accurate cloth simulators that are
better suited to simulate actual human cloth, for example. We are just proposing
a less sophisticated, but stable and relatively fast method that can plausibly
simulate the motion of reactive cloth. In Figure 7(b), an external perturbation is
applied to the middle three vertical pendulums. In order to optimize calculation
time, those three vertical pendulums are the only ones actively being simulated
(with the horizontal children of each one of them). The mesh is simulated
using approximately 1500 3D pendulums. The average calculation time of these
pendulums with the post calculations for the final cloth is around 5 ms.

5 Conclusion and Future Work

Our system is linear, straightforward, and based on simple 3D pendulums. It
is capable of adding physical like reaction effects to skeleton-based body very
easily. Additionally it is highly customizable: we can control reaction time, target
direction and damping of the motion. The current system does not enforce
angular constraints. We need to incorporate them into our future work in order
to simulate real-life joint constraints that exists in most skeleton-based bodies. In
addition to this, we are investigating coupling the system with a balance solver.
This work would provide a body with the ability to actively work to maintain
its balance, in opposition to the passive reactions described in this paper. Our
system could also be used to mimic hair, which is an acyclic system and fits
neatly in the domain that the 3D pendulums system can simulate.
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