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Abstract
Genetic data are now common in many domains. Typically, these genetic studies try to associate genetics with
single phenotypes, behaviors, or diagnostic criteria. However, many of these studies include multiple behavioral
variables and very large genetic data sets. The analysis of these data sets faces two particular challenges: 1) How
to integrate many behavioral and genetic variables when 2) only a small number of variables are interpretable.
To address these issues, we propose the integration of partial least squares and a sparsified approach to multiple
correspondence analysis.

1 Introduction
The singular value decomposition (SVD)—and its weighted least-squares extension, the generalized SVD (GSVD)
—are the core of many multivariate techniques such as principal components analysis (PCA), partial least squares
(PLS), and multiple correspondence analysis (MCA). All of these techniques produce components (a.k.a. latent
variables) which are obtained as linear combinations of the original variables. However, when the sample size is
small and the data large (i.e., n << p) many variables will have non-zero loadings, a pattern that makes it difficult
to interpret the results. A number of regularization and sparsification techniques have been proposed in order to
produce only few non-zero loadings. Some of these methods include SCoTLASS [1], SPCA [2], SPCA-rSVD[3],
and rPCA[4].

However, with large genetics data there are still some problems not easily addressed by sparsification alone. In
fact, using behavioral data in conjunction with large genetics data (such as genome-wide data) may increase power
to detect genetic effects [5]. Therefore, it would be advantageous to use a PLS method designed for behavioral and
genetic data. One such method is PLSCA [6]. But, PLSCA would still produce many non-zero loadings. Because
most genetic data (such as SNPs) are categorical they are naturally structured by blocks (see Table 3). A recent
extension of SPCA-rSVD[3] has been adapted as group-sparse PCA and extended to MCA, called sparse MCA
(SMCA) [7].

In this paper we present a solution to the analysis of genetic data that integrates PLSCA with SMCA. This
approach can associate SNPs—typically large and noisy data—to various behavioral markers—typically well-
defined instruments—while producing as few non-zero loadings as possible.
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Table 3: Example of nominal (left)
and disjunctive (right) coding of
illustrative SNPs (SNP 1 and 2)

SNP 1 SNP 2

Subj.1 AG CA
... ... ...
Subj.I GG AA

(a) Nominal

SNP 1 SNP 2

AG AA GG CA AA CC

Subj.1 1 0 0 1 0 0
... ... ... ... ... ... ...
Subj.I 0 0 1 0 1 0

(b) Disjunctive

2 Asymmetric sparsification of genetic data
Call Y a disjunctive data matrix that represents behavioral data (e.g., a survey). Call X a disjunctive data matrix
that represents genetic data (e.g., SNPs; see, e.g., Table 3). SNPs can be viewed as multiblock data, where each
SNP represents a block of (usually) 3 columns. We would approach the analysis of these data sets with PLSCA [6]
as such: R=YTX where R is a contingency table (behavioral data × genetic data). Correspondence analysis (CA)
is a natural choice for analyzing very large contingency tables. Therefore, in PLSCA, we would preprocess R as
we normally would with CA, where the row and column weights are proportional to the row and column sums and
stored in diagonal matrices (WY and WX, respectively). We then decompose R with the GSVD where R = PΔΔΔQT,

such that PMP = QWQ = I, where the latent variables are: LX = XWXP× r
1
2
++ and LY = YWYQ× r

1
2
++ where

r++ is the sum of the table R. The latent variables have maximal covariance (due to the properties of the GSVD)
as: LX

TLY =ΔΔΔ
However, there are typically many SNPs in data such as these, thus implying that X has the following

two properties: 1) a natural block structure and 2) is much larger than Y and thus could produce components
with many non-zero values. If X has a natural block structure such that X = [X1, ...,Xb, ...,XB] where R =
YT [X1, ...,Xb, ...,XB] and given the block structure of R, we have: R = PΔΔΔQT = PΔΔΔ[Q1, ...,Qb, ...,QB]

T. The
blocks of Q represent the group coding of SNPs, and hence, we would want to (group) sparsify the SNPs (genetic)
data. Sparsification can be achieved with a extension of group sparse PCA to MCA: sparse multiple correspondence
analysis [7].

We will present the details of the method illustrated with a small and a realistic example.
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