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(2014). CRC Press/Chapman and Hall, N.Y. 

 

Chapter 3: 

 

Historical Elements of Correspondence Analysis and         

Multiple Correspondence Analysis 

Ludovic Lebart and Gilbert Saporta 

 

 

The use of visual displays as an exploratory tool in the 1960s is probably one of the 

distinctive features of correspondence analysis (CA) compared to other techniques, and the 

explanation of its success. Once the usefulness of a technique has been established, it is 

always easy to find afterwards pioneering works, and it is now well known that the equations 

of CA have been found many years before, based on quite different motivations. Multiple 

correspondence analysis (MCA) can be considered as a mere variant of CA, since its history 

is inseparable from that of CA. Its present name dates back to the beginning of the nineteen 

seventies, but its history also goes back much further in the past.  The dissemination of these 

techniques is contemporary, and an active component, of the upsurge of exploratory 

multivariate data analysis that followed the year 1965, notably under the name “analyse des 

données” in some francophone countries. We focus here on works prior to 1980. The history 

of both CA and MCA together with the simultaneous revival of induction in statistics will be 

a pretext to evoke “the giants on whose shoulders we are standing”. 

The history of CA  and MCA and the simultaneous revival of induction in statistics will be a 

pretext to evoke “the giants on whose shoulders we are standing”. 

 

3.1 Simple correspondence analysis  
The simple form of CA is a particular way of analyzing contingency tables by means of 

visualizing jointly rows and columns in a low-dimensional space. Let us exemplify that aspect 

of CA by considering the cross-classification of eye and hair colours of Scottish children used 

by Fisher (1940) in his pioneering paper about the precision of discriminant functions (Table 

3.1). This example is given as a mere illustration and is by no means a technical reminder. 

Table 3.1: Fisher-Maung (historical) data about hair and eye colours. 

 

Hair Color H_Fair H_Red H_Medium H_Dark H_Black  Total 

Eye Color        

E_Blue 326 38 241 110 3  718 

E_Light 688 116 584 188 4  1580 

E_Medium 343 84 909 412 26  1774 

E_Dark 98 48 403 681 85  1315 
        

Total 1455 286 2137 1391 118  5387 
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Think about the four eye-colour profiles, i.e., vectors of proportions summing to 1, as four 

points in a three-dimensional space (since four points lie in a three-dimensional space) and the 

five hair-colour profiles as five points also in a three-dimensional space (they have four 

coordinates that sum up to 1). CA consists of two simultaneous weighted PCAs of row and 

column profiles, using the chi-squared distances in each space, the weights being the marginal 

frequencies (see the chapter from Cazes in this book). 

Both PCAs give the same eigenvalues. Each principal component of the PCA of row profiles 

is proportional to the vector associated with the same eigenvalue, containing the loadings 

derived from the PCA of the column profiles, and vice versa. Like in usual PCA, components 

have variances, or weighted mean squares, equal to the eigenvalue, while the loadings have a 

weighted mean-square equal to 1.  Figure 3.1 is one of the possible displays of simultaneous 

representation of the rows and columns of Table 3.1 through simple CA, called the symmetric 

map, where both row and column points have inertias equal to the respective eigenvalues. As 

shown by the eigenvalues (Table 3.2), the first (horizontal) axis is markedly dominant. We 

may discard the third eigenvalue, the planar representation will be reliable. 
 

 

 

 

 

 

 

 

Figure 3.1: Sketch of the superimposed graphical displays of the row-point and of the column-

points of Table 3.1. 

 

Table 3.2: The corresponding eigenvalues 

Axis number Eigen percent. cumulat. 

 value  percent. 

    

1 .1992 86.56 86.56 

2 .0301 13.07 99.63 

3 .0009 .37 100.00 

 

The first axis ranks the categories from the darkest to the lightest colours. Each point (row or 

column) is the centroid of individuals possessing the corresponding category. Hair-medium 

and eye-medium are close and children with dark eyes are close to children with dark hair 
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(see Table 3.1). It does not mean that all children with dark hair have dark eyes. The second 

axis, which isolates the two “medium” categories, shows the so-called “arch” or “Guttman 

effect”.  

Note that this use of CA as a tool of descriptive statistics is very far from the concerns of 

Fisher and his contemporary. We may distinguish two tracks or sources in the history of CA, 

both developed in the 1930’s: one is the quantification point of view, the other the reciprocal 

averaging approach. 

Optimal scaling or quantification of categorical variables 

Assigning “optimal” scores to rows and columns categories of a contingency table has been 

studied very early. De Leeuw (1983) traces back to Karl Pearson (1906) the idea of looking at 

such scoring as transformations that linearize regressions. This problem was solved later by 

Hermann Otto Hirschfeld (1935), better known under his subsequently anglicized name of 

H.O. Hartley. He obtained the eigen-equations of CA when solving the following question 

(Hirschfield, 1935, p 520): “Given a discontinuous bivariate distribution, is it always possible 

to introduce new values for the variates x, y such that both regressions are linear?”  Hirschfeld 

showed that for the two-variable case with n and m categories, there are min(n,m)–1 solutions 

(the dimensions of CA).  The new values, or scores, are nothing else than row and column 

coordinates in CA up to some standardization. Hirschfeld proved that the sum of eigenvalues 

was equal to Pearson’s mean-square contingency coefficient, usually denoted by 
2
, which is 

identical to the familiar Pearson’s chi-squared statistic for a two-way contingency table, 

divided by the total of the table. 

Fisher (1940) obtained CA equations when generalizing discriminant analysis to a single 

categorical predictor. His question was how to give scores to columns in order to discriminate 

as best as possible between row categories. He used an iterative technique similar to 

reciprocal averaging in order to find the optimal scores and applied it to the cross-

classification of eye and hair colours of Table 3.1. Note that Fisher was interested only in the 

optimum, i.e. the first dimension of CA. Apart from a sign inversion, his solution is equal to 

the standardized coordinates of the seven categories on the first axis (Figure 3.1). 

Maung (1941) related Fisher’s result to Hotelling’s canonical correlation analysis by proving 

that Fisher’s system of scores maximizes the correlation coefficient between the quantified 

variables. A reconstruction formula, attributed to Fisher, is presented without proof. 

Surprisingly, neither Fisher nor Maung refer to Hirschfeld.  One can find later developments 

in Williams (1952) with chi-squared tests for the significance of eigenvalues. Chapter 33 of 

the famous treatise by Kendall and Stuart (1962) was devoted to “canonical analysis of 

contingency tables”, again CA in different terminology. Note that in this chapter the 

derivation of the distribution of the eigenvalues is flawed, as proved by Lancaster (1963). 

The theory of optimal scaling culminated with several papers published in Psychometrika by 

Young, Takane, and de Leeuw in the 1970’s and de Leeuw’s dissertation (1973, reprinted in 

1984). The contributions of the Dutch school of data analysis were gathered in the book of 

Gifi (1990). 

Reciprocal averaging 

In a short article, Horst (1935) coined the name of “method of reciprocal averaging” for an 

algorithm proposed two years earlier by Richardson and Kuder (1933). Richardson and Kuder 

aimed to achieve a better selection of salesmen for the company Procter and Gamble, and 

empirically discovered the method of “reciprocal averaging”. Basically this algorithm consists 

in assigning arbitrary scores to the columns of a contingency tables (or to the rows, if 
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preferred), then computing the weighted averages, or “barycentres”, for the rows (row scores), 

then computing new column scores as weighted averages etc. After each cycle the scores need 

to be standardized to avoid collapsing towards zero. After convergence and standardization, 

rows and columns scores are identical to rows and columns coordinates along the first 

principal axis of CA, the axis associated with the largest eigenvalue. In his note, Horst, who 

did not use any mathematical formula, indicates an identity with Hotelling’s equations, but 

actually those of principal components, not of canonical analysis. 

The idea that on some scale, rows are represented as weighted barycenters of columns (and 

vice versa, if possible) is familiar to ecologists under the name of “ordination”. Legendre and 

Legendre (1998, p.387) say that ordination “consists in plotting object-points along an axis 

representing an ordered relationship, or forming a scatter diagram with two or more axes”. It 

is worth noticing that ecologists were interested in graphical displays, which was not the 

common case in the optimal scoring framework.  However, the “arch” or “Guttman effect”, 

which occurs when a single numeric latent variable is present or dominant, has been 

considered as a drawback by many ecologists. In this case higher order factors are polynomial 

functions of the first factor, which may not bring useful information. This leads to the 

development of detrended correspondence analysis in the 1980s by Hill et al. (1980).  

Among other works related to CA and ordination let us cite ter Braak’s canonical 

correspondence analysis (1986), where the ordination axes are constrained to be linear 

combinations of external variables (see also ter Braak’s chapter in this book). 

The reciprocal averaging property was extensively used by Nishisato under the name of “dual 

scaling” (1980, 2007). Nishisato proposed this name to avoid choosing between many others 

since CA had been rediscovered many times. The name is related to the duality property, 

characterized by symmetric relations between row and column scores. The principle consists 

in maximizing the correlation ratio between the quantification of the variable  associated to 

row categories with the categorical variable associated to column categories, and vice-versa: 

dual scaling of a contingency table is then equivalent to CA, and dual scaling of a disjunctive 

table is equivalent to MCA. 

The geometric approach 

CA was presented and developed under the French name analyse des correspondances for the 

first time by Escofier-Cordier (1965) and Benzécri (1969). The founders of CA stressed a 

geometric and algebraic point of view that enables a simultaneous visual display of rows and 

columns of a contingency table. Here they are both sets of weighted points in a Euclidean 

space and CA consists in projecting these points on a low-dimensional subspace in the same 

spirit  as the presentation of principal component analysis (PCA) by Pearson (1901), but not 

by Hotelling. The use of the chi-squared metric ensures the coherence between the PCA of 

weighted row-profiles and the PCA of weighted column-profiles. The concept of inertia is 

highlighted and the total inertia is equal to Pearson’s 2
 (see the chapter by Cazes, this book) 

CA was applied in Benzécri’s laboratory to a great number of fields and was adopted by many 

French researchers. However, the dissemination out of the French-speaking community was 

limited until the publication of the books by Greenacre (1984) and Lebart, Morineau and 

Warwick (1984) popularized the method. Nevertheless, it took some time for correspondence 

analysis to be accepted as the standard name for the method, which was facilitated by the 

availability of software in commercial packages such as SAS, SPSS and Stata.  

CA may also be presented as an example of Gabriel’s (1971) biplot for contingency tables 

(Gower and Hand, 1996; Greenacre, 2010), where rows, for example, depict vectors of 
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relative frequencies, called profiles in CA, in a space structured by the chi-squared metric, and 

columns describe biplot axes onto which the row points can be projected. 

 

CA as a discretization of a continuous bivariate distribution 

When a contingency table is obtained by discretization of an underlying bivariate continuous 

distribution f(x,y), the problem arises to study the behaviour of the solution as the partitions of 

the two variables are refined, when the CA scores asymptotically tend to continuous functions 

of x and y.  Hirschfeld (1935, p 524) wrote that the squared canonical correlation between 

transformed discrete variables “could be defined for continuous distributions as well. 

However the complexity of its construction makes its practical use nearly impossible”. 

Lancaster (1958, 1969) solved the general problem of canonical analysis of a bivariate 

distribution establishing a general reconstruction formula for the ratio of the bivariate density 

divided by the product of the marginal densities. This ratio may be expanded as a sum of 

products of canonical variables that are two complete sets of orthonormal functions defined 

on the margins. He also proved the convergence of canonical analysis of contingency tables 

(i.e., CA) towards the theoretical continuous solution, but concluded that “there is no general 

method for determining the canonical variates in the distributions on infinitely many points in 

both variables”. However, for some distributions the solution is known: Hermite polynomials 

in the case of the bivariate normal distribution, Laguerre polynomials for the bivariate gamma 

distribution.  Naouri (1971) studied the Fredholm integral equations giving the canonical 

variates, and gave several examples. Since that, there have been few publications on 

continuous correspondence analysis (for example, Cuadras et al., 1999). 

 

3.2 Multiple correspondence analysis 

Among several possible presentation, multiple correspondence analysis (MCA) can be viewed 

as a simple extension of the area of applicability of correspondence analysis (CA), from the 

case of a contingency table to the case of a “complete disjunctive binary table”, also called an 

“indicator matrix”.  The properties of such a table are interesting, the computational 

procedures and the rules of interpretation of the obtained representations are simple, albeit 

specific. MCA can emerge as both a particular case and a generalization of CA, it is not easy 

to disentangle its history from that of CA. We use the same historical data set to exemplify the 

link existing between CA and MCA, in the particular case of a two-way table. 

In Table 3.3, the first column contains intuitive identifiers of each cell. Columns two and 

three contain the addresses of each cell, whereas the fourth column (“weights”) contains the 

frequencies of the corresponding cell. The remaining of the table is the binary disjunctive 

matrix, made up of two blocks that constitute respectively a coding of both columns two and 

three. 

The CA of the contingency table (Table 3.1), the CA of the weighted binary disjunctive table 

(Table 3.3), and the CA of the Burt matrix (Table 3.4) produce the same eigenvectors with 

norm 1. However, the eigenvalues from these three CAs are distinct: if  is the eigenvalue 

from the original  CA of Table 3.1,  from the second CA (Table 3.3), and  from the third 

CA (Table 3.4), we have the relationships between eigenvalues: 
1

2





   and  .  

The values of  are displayed in Table 3.5. 
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Table 3.3: Another presentation of Table 3.1 data, leading to MCA.  

Hair  X  Eye Hair Eye   Weight   HF HR HM HD HB EB EL EM ED 

          Binary disjunctive table Z 

HF_EB 1 1   326   1 0 0 0 0 1 0 0 0 

HF_EL 1 2   688   1 0 0 0 0 0 1 0 0 

HF_EM 1 3   343   1 0 0 0 0 0 0 1 0 

HF_ED 1 4   98   1 0 0 0 0 0 0 0 1 

HR_EB 2 1   38   0 1 0 0 0 1 0 0 0 

HR_EL 2 2   116   0 1 0 0 0 0 1 0 0 

HR_EM 2 3   84   0 1 0 0 0 0 0 1 0 

HR_ED 2 4   48   0 1 0 0 0 0 0 0 1 

HM_EB 3 1   241   0 0 1 0 0 1 0 0 0 

HM_EL 3 2   584   0 0 1 0 0 0 1 0 0 

HM_EM 3 3   909   0 0 1 0 0 0 0 1 0 

HM_ED 3 4   403   0 0 1 0 0 0 0 0 1 

HD_EB 4 1   110   0 0 0 1 0 1 0 0 0 

HD_EL 4 2   188   0 0 0 1 0 0 1 0 0 

HD_EM 4 3   412   0 0 0 1 0 0 0 1 0 

HD_ED 4 4   681   0 0 0 1 0 0 0 0 1 

HB_EB 5 1   3   0 0 0 0 1 1 0 0 0 

HB_EL 5 2   4   0 0 0 0 1 0 1 0 0 

HB_EM 5 3   26   0 0 0 0 1 0 0 1 0 

HB_ED 5 4   85   0 0 0 0 1 0 0 0 1 

 

 
Table 3.4: Burt matrix B, product of the above binary table Z by its transpose. 

Note that the original contingency table and its transpose are the off-diagonal blocks. 

 

           

1455 0 0 0 0  326 688 343 98  

0 286 0 0 0  38 116 84 48  

0 0 2137 0 0  241 584 909 403  

0 0 0 1391 0  110 188 412 681  

0 0 0 0 118  3 4 26 85  

           

           

326 38 241 110 3  718 0 0 0  

688 116 584 188 4  0 1580 0 0  

343 84 909 412 26  0 0 1774 0  

98 48 403 681 85  0 0 0 1315  

           

 

Unlike the original table 3.1, the tables Z and B can be easily generalised to more than two 

blocks (or questions, variables), leading then to the general framework of MCA. A vast 

domain of applications is then opened (socio-economic surveys, and more generally, all kinds 

of research questions involving numerous categorical variables...). 
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Table 3.5: Eigenvalues from the MCA of the weighted binary disjunctive table Z. 

 

Number Eigen Percent. Cumulat. 

 value  percent. 

    

1 0.723 20.66 20.66 

2 0.587 16.76 37.43 

3 0.514 14.7 52.13 

4 0.500 14.29 66.42 

5 0.485 13.87 80.28 

6 0.413 11.81 92.08 

7 0.277 7.910 100.00 

 
 

First traces of a technology 

According to a famous paper of Healy (1978), statistics is more a technology than a science. 

This terminological choice aptly applies to MCA, a tool characterised more by its usefulness 

than by its theoretical content and context. The history of a particular technology, because of 

its involvement with real life, can be fascinating. From this point of view, we can compare, 

for instance, MCA with the “minimum spanning tree”, a technique as useful in statistics as in 

operations research. A prominent example is provided by the history of the minimum 

spanning tree (almost a thriller! See Graham and Hell, 1985).  

Preliminary bases 

At the foundation of the contemporary presentation of principal axis analyses is a theorem 

based on the singular values decomposition, that was presented by Eckart and Young (1936) 

for rectangular matrices and which generalized the works of Cauchy (1830) and Sylvester 

(1889) (to quote only two noteworthy milestones) concerning square matrices. The problem 

that is at hand is one of pure numerical reduction, i.e. of data compression: how to fit, in the 

least-squares sense, a matrix by another matrix of inferior rank. Among the first articles that 

were published on the algebraic and geometric methods of principal axis methods, we like to 

note Gower (1966, see also his chapter in this book) and Gabriel (1971).  

MCA, like PCA, deals with tables involving individual-level data.  PCA is the oldest and 

most established of the methods of principal axes visualization. Conceived for the first time in 

a limited (albeit quite modern) setting by Pearson in 1901, and integrated into mathematical 

statistics by Hotelling in 1933, PCA has not really been used before the arrival and diffusion 

of computational aids. For the traditional statistician, it is about searching for the principal 

axes of a multivariate normal distribution from a sample. This is the initial presentation of 

Hotelling (l933), and later that of classic manuals of multivariate analysis, such as the 

fundamental treatise by Anderson (1958). It is also a special case of factor analysis (case of 

null or equal specificities; cf. Horst, 1965). A presentation that is closer to current thinking 

can be found in the pioneering and synthetic article by Rao (1964).  

Multiple correspondence analysis: formulas and methodology 

 The basic formulas underlying MCA can be traced back to Guttman (1941), who devised it as 

a method of scaling, but also to Burt (1950), in a wider scope. The paper by Guttman 

contains, with modern matrix notations, all the formulas that concern and characterize MCA 

as we know it. It includes a careful description of “binary disjunctive data sets” and mentions 

the “chi-squared metric”. 
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In his (legitimate) claim (published in the British Journal of Mathematical and Statistical 

Psychology, directed by Burt himself) for an acknowledgement of priority addressed to Burt, 

Guttman (1953) insists on the limited scope that should be assigned to the method: to derive a 

unique scale. After a courteous introduction (page 1) (“It is gratifying to see how Professor 

Burt has independently arrived at much the same formulation. This convergence of thinking 

lends credence to the suitability of the approach.”), Guttman wrote (page 2):”... while the 

principal components here are formally similar to those for quantitative variables, 

nevertheless, their interpretation may be quite different”, and, further on (same page): “If a 

correct, but non-linear prediction technique is used, the whole variation can sometimes be 

accounted for by but the single component. In such a case, the existence of more than one 

component arises merely from the fact that a linear system is being used to approximate a non 

linear one.” Guttman then explains (same page) that the other dimensions will be polynomial 

functions of the first one, being similar to the solutions “of a second order differential 

equation classical in physics”. 

Note that Benzécri (1973, chapter entitled “Sur l’analyse de la correspondance définie par un 

graphe”) has defined a “generalized Guttman effect”, linked to the eigenvectors of the 

Laplace operator, where components of higher order are polynomial functions of the first two 

components. In fact, Guttman has discovered all the formulas underlying MCA, but was 

uniquely and perhaps obstinately interested by the prediction of a perfect scale.  In his paper 

of 1953 entitled “Scale analysis and factor analysis (Comments of Dr Guttmann’s paper)” , 

Burt, while recognising the anteriority of Guttman as regard all the details of the formulas, 

promotes a more exploratory role for the method, in the vein of the recommendations of 

Thurstone (1947) in the context of factor analysis.  “It is encouraging to find that Dr. Guttman 

has discerned points of resemblance between the methods we have independently reached for 

analysing qualitative data; And I willingly agree that this convergence in our lines of 

approach lends additional plausibility to the results [....] my aim was to factorize such data, 

his to construct a scale” (Burt, 1953, page 5).  The most amazing in these interesting 

discussions, which involved painstaking calculations by hand on very small numerical 

examples, is precisely the absence of computers and of real sized experiments.  

Note that the response of Burt is cleverly articulated – he was obviously perfectly mastering 

his own mind at that time. The fact that his reputation has been stained 20 years later about 

some alleged fraud (see: Hearnshaw, 1979; Gould, 1982; Joynson, 1989; Fletcher, 1991) can 

be summarized by the sentence, from the Encyclopaedia Britannica:  “From the late 1970s it 

was generally accepted that he had fabricated some of the data, though some of his earlier 

work remained unaffected by this revelation”.  

The first real applications of MCA as an exploratory tool probably date back to Hayashi 

(1956).  The availability of computing facilities entailed a wealth of new developments and 

applications in the sixties and seventies, notably around Benzécri (1964, 1973). The term 

“multiple correspondence analysis” was coined at that time. 

MCA has been developed in another theoretical framework (closer to the first approach of 

Guttman) under the name of “homogeneity analysis” by the research team around Jan de 

Leeuw since 1973 (cf. Gifi, 1981/1990) and under the name of “dual scaling” by Nishisato 

(1980), the latter more inspired by Hayashi.      

The first implementations… 

A first internal note by Benzécri proved the equivalence between the analysis proposed by 

Burt (1950) of the “Burt contingency table” (now called the Burt matrix in MCA, see Table 

3.4) relating to two variables and the same CA of the single two-way contingency table.  
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Another note by Benzécri (1972) provided a review of the properties that hold in the case of 

more than two variables.  Lebart and Tabard (1973) presented all these properties, and a 

complete source code of a Fortran software of MCA, including the diagonalization of a (J – 

Q)  (J – Q) matrix, instead of a J  J matrix, where J = total number of categories, Q = 

number of categorical variables. These papers and reports are referred to in Lebart (1974), in 

which the MCA solution is obtained through a direct diagonalization algorithm involving 

uniquely the response pattern matrix, i.e. the NQ matrix where N is the number of 

respondents. This paper is perhaps the first paper in English that contains the name “MCA”. 

In Lebart (1975), MCA is presented as a technology to drive the methodology of survey data 

processing: in a first phase, a visualization through MCA of all the basic socio-economic 

characteristics of the respondents provides a “socio-economic grid” (aka: the “basic frame of 

the survey”). In a second phase, all the variable constituting the content of the survey are 

projected (as supplementary variables) onto this grid.  In so doing, the researcher obtains at a 

glance an overview of the main correlations that are usually obtained through a painstaking 

inspection of numerous cross-tabulations.  The book by Lebart et al. (1977) (translated in 

English seven years later with the kind support of Ken Warwick: Lebart et al., 1984) dealt 

with all these results and computer programs. MCA was one of the most salient components 

of the software SPAD that was devised at that time.  

Note that like the Bourgeois Gentleman of Molière, who has been speaking prose all his life, 

and didn't even know it, some statisticians, such as Nakache (1973), have applied CA to 

complete disjunctive tables, and didn’t even know that they were using MCA… 

The dissemination of MCA 

Descriptive statistical analysis allows us to represent statistical information in a graphical 

form by simplifying and schematizing it. Multidimensional descriptive statistical analysis 

generalizes this idea in a natural way when the information concerns several variables or 

dimensions.  

Sample surveys are popular tools in the social sciences, and their questionnaires generally 

contain a wealth of categorical data. Replacing or complementing the dull arrays of cross-

tabulations with suggestive graphical displays has been an undeniable improvement in survey 

data processing. It is then not a surprise that MCA has been welcome, immediately used, and 

probably overused during the first years of its dissemination. Emblematic and large-scale 

applications of CA and MCA in social science are to be found in the works of the sociologist 

Pierre Bourdieu: “La Distinction” (Bourdieu, 1979) and “Homo Academicus” (Bourdieu, 

1984) (see also Blasius and Schmitz, this volume). 

One of the innovations in statistics after 1960 was the appearance of techniques in the form of 

"products": software developed with financial and commercial constraints on their 

conception, production, and distribution. Like any finalized product, the advantage of the 

software was its ability to diffuse and its inconvenience that it entailed certain rigidity. Like 

any product intended to be used by specialists it induced new divisions of labour that were not 

very desirable in a knowledge process. Software that is accessible and easy to use allow 

methods to be widely spread but lead to a careless use in areas where much caution would be 

called for.  

MCA and multi-way analyses 

In the pioneering papers of Hirschfeld, Fisher and Maung mentioned previously, simple CA 

was, implicitly or explicitly, considered as a particular case of canonical correlations analysis 

between two sets of dummy variables (categorical variables coded under binary disjunctive 
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form).  It was then natural to devise the extensions of simple correspondence analysis to more 

than two dimensions through generalized canonical analysis as proposed by various authors, 

among them: Horst (1961), Carroll (1968), and Kettenring (1971).  In this wealth of methods 

that cannot be described in this chapter, the generalization proposed by Carroll is the closest 

to MCA as we know it.  For p groups of variables (or p blocks X) this generalization consists 

in obtaining an auxiliary variable z which maximizes  2

1

( , )
p

j

j

R


 z X  . When blocks are made 

of indicator variables of categorical variables Xj,  the multiple correlation is equal to the 

correlation ratio : 2 2( , ) ( , )j jR Xy X y . 

There is no unique generalization of the theorem of Eckart and Young to the case of three-

way tables. This can be expressed in the following way: the hierarchical decomposition of an 

element of the tensor product of two Euclidean spaces into a sum of tensor products of pairs 

of vectors belonging to each space is unique. But such decomposition is not unique in the case 

of an element of the tensor product of more than two Euclidean spaces (cf. Benzécri, 1973; 

Tome 2B, n°6). Therefore, in this case, there cannot be an exploratory approach that is as well 

established as in the case of two-way tables.  

We find a synthesis and a classification of the main approaches to multi-way analysis in the 

work of Kroonenberg (1983). The first works on this theme were those of Tucker (1964, 

1966) followed by those of Harshman (1970) in the context of classic factor analysis. Let us 

also mention the works of Pagès et al. (1976) based on the operators defined by Robert and 

Escoufier (1976).  Kroonenberg (in this book) gives a complete account of the history of 

three-way methods. 

Stability, validation, resampling 

An important issue in MCA is certainly the stability of the results, together with the 

confidence attached to the location of points in the principal subspaces. From a purely 

numerical point of view, Escofier and Le Roux (1976), and Escofier (1979) have treated the 

stability of the axes in principal axes analysis (PCA and CA). These authors study the 

maximal variations of the eigenvectors and the eigenvalues when well defined modifications 

alter the data: removal or addition of elements to the data tables, the influence of regrouping 

several elements or small modifications of the values in the table, the influence of the chosen 

distances and weightings. The study of the validity of the results of dimension-reducing 

techniques has lead to much research, but which has since the 1980s taken a different 

direction with “computer intensive methods” such as bootstrapping.  

The bootstrap, a particular simulation technique introduced by Efron (1979), consists in 

simulating samples of the same size as the initial sample. With the exception of the works of 

Gifi (1981/1990) that specifically concern correspondence analysis (in fact the bootstrap 

principle differs significantly according to the various principal axes techniques), one of the 

first works where bootstrap is applied to validate results of PCA is probably that of Diaconis 

and Efron (1983).  Meulman (1982) introduced bootstrapping in the Homogeneity Analysis 

framework, which is another presentation of MCA. She performed a new CA for each 

bootstrap sample. Independently, Greenacre (1984) used what we later called the “partial 

bootstrap”, this is when the initial configuration is fixed and the bootstrap samples are added 

as supplementary points.  

Some related methods 

During the main period under consideration (before 1980), several improvements have been 
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brought to the practice of MCA.  Saporta (1977) proposed a technique of discrimination from 

a set of qualitative variables (DISQUAL) based on the principal axes extracted from a 

preliminary MCA.  Cazes (1977, 1980) has studied the properties of the CA of sub-tables of a 

Burt contingency table.  The technique of supplementary elements, proposed earlier by Gower 

in another framework (1968), has been thoroughly investigated with all its possible variants 

by Cazes (1977). A note by Benzécri (1979) gave a procedure to remedy the poorly 

significant percentages of variances provided by MCA. Escofier (1979a, 1979b) proposed 

variants of MCA allowing for processing (or representing as supplementary elements) both 

categorical and numerical variables. 

As a conclusion… 

It is certainly presumptuous to attempt to write the history of a technology without a certain 

perspective. We have tried as much as possible to restrict ourselves to works prior to 1980, 

but both the context and the complexity of discoveries are such that we had to mention some 

more recent contributions that may either reveal some past results or summarize scattered  

methods.  We have encountered a series of ideas, formulas, and techniques, translated later 

into methodologies, textbooks and software.  The process of discovery is by no means 

sequential, and to specify, for example, a date of birth is always difficult, sometimes almost 

meaningless.  The endeavour to briefly clarify the genesis of CA and MCA will remain, as 

expected, a personal point of view.  However, the fascination towards our methodological 

ancestors deserved to be communicated. For other historical references about the history of 

CA, see: Benzécri (1982), de Leeuw (1983),  Tenenhaus and Young (1985), Nishisato (2007, 

chapter 3), Armatte (2008) , Beh and Lombardo (2012). 
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