
HAL Id: hal-01126382
https://hal.science/hal-01126382v1

Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Fault-Tolerant Wireless Sensor Network
Using Fault Injection Mechanisms: A Parking Lot

Monitoring Case
Golnaz Karbaschi, Francoise Sailhan, Stephane Rovedakis

To cite this version:
Golnaz Karbaschi, Francoise Sailhan, Stephane Rovedakis. Towards a Fault-Tolerant Wireless Sen-
sor Network Using Fault Injection Mechanisms: A Parking Lot Monitoring Case. WSN4ITS work-
shop, IEEE International Conference on Green Computing and Communications, Nov 2012, Besancon,
France. pp.783-787, �10.1109/GreenCom.2012.129�. �hal-01126382�

https://hal.science/hal-01126382v1
https://hal.archives-ouvertes.fr

Towards a Fault-Tolerant Wireless Sensor Network Using Fault Injection
Mechanisms: a Parking Monitoring Case

Golnaz Karbaschi
SmartGrains SAS, Paris-FR

golnaz.karbaschi@smartgrains.com

Francoise Sailhan
Cedric Laboratory

CNAM, paris-FR
Francoise.sailhan@cnam.fr

Stephane Rovedakis
Cedric Laboratory

CNAM, paris-FR
stephane.rovedakis@cnam.fr

Abstract—A Wireless Sensor Network (WSN) requires a high
level of robust and fault tolerant sensing and actuating capa-
bilities, specially when the application aims to gather delicate
and urgent data with reasonable latency. Hence, verifying the
behavior properties under the presence of faults remains an
important step in developing an application over a WSN. A
comprehensive study on characterization and understanding
of all the possible faults is required in order to generate and
inject ’any’ known error to the system. In order to ensure
appearance of all the faults and possible bugs in the system,
conception and developing a fault injector which generates and
injects any requested fault to the system is promising. This
becomes more important and critical when the fault happens
very rarely, while due to Murphy’s law it happens certainly
along the network life. Considering that occurrence of faults
depends heavily on the specifications of the use case, in this
paper we concentrate on a sensor network which aims to detect
the presence of vehicles on parking lots. We try to categorize
and characterize the faults driven by this system as the first
step of developing a fault injector1.

Keywords-Robustness; Wireless Sensor network; Fault injec-
tion; Monitoring a Parking;

I. INTRODUCTION

Wireless sensor networks have been founded in order
to sense and monitor physical phenomena in a distributed
manner and disseminate the useful information via a wireless
multi hop network. The explosion in the instrumentation of
our environment is driving the need for developing sensor
network that not only observes and measures the sensed data
but also shows a high fault-tolerance behavior to harsh and
hazardous environment around the network [2], [6].

Meeting the challenging task of developing dependable
wireless sensor network (WSN) necessitates deploying a
wide range of strategies including self-configuring, self-
healing, defensive designing and development. Beside such
tactical approach for developing a dependable WSN is
putting in a concrete form through rigorous testing, evalua-
tion and validation. Toward this goal, we present the foun-
dation of a fault injection based evaluator, as a pragmatic
approach of test, that adequately accelerates the occurrence

1This research has been supported by Murphy ANR Project
(http://cedric.cnam.fr/ sailhanf/murphy/).

 System Specifications

Library

Fault Injector

WSN

Monitoring

Component

Evaluating

Component

Fault Library

Workload Library

Figure 1. Fault injection and monitoring the system behavior

of faults so as to easily judge the quality of error handling
and hence, more generally, evaluate and analyze the depend-
ability of the sensor network. As shown in Figure 1, this
solution is to be grounded upon three main building blocks
which are imposed on the system under test as follows [1]:

• A fault injection mechanism which inserts fault into
one or several nodes.

• A monitoring component that looks for and reports
misbehavior or dysfunction.

• An evaluation component which assesses whether cor-
rect behavior is being observed.

Therefore, a strict testing mechanism involves a two-steps-
process. First, one should identify the failures that threaten
a WSN. Second, grounded upon this understanding, one can
deduct requirements and suggest an approach for evaluating
dependability. As a first step upon this goal, we herein
attempt to identify and characterise the faults that have
been encountered through a WSN under the test. Identifying
the possible faults starts by translating any deviation from
system specifications into possible causing errors and finally
providing an independent complete fault library. Alas, we
should note that in general complete proving of sufficiency
of the fault library is very difficult, if not impossible. In
the following, we use the terms fault and failure defined as
following. A failure in a system occurs when the service it
delivers to the user deviates with the system specification
for a period of time, while a fault is the cause of a failure.

Knowing the fact that the faults occurrence and its severity

on the network performance depends on the application case
which is ran over the WSN, in this paper we have focused
on a particular case study. The system under the test, named
ParkSense2, is a parking monitoring system which aims at
detecting the presence of vehicles on parking lots by placing
a sensor on each parking lot.

The reminder of this paper is organized as follows:
We first describe briefly the concerned use case of WSN
and the developed software and platform run over it. An
investigation on characterization of faults that are imposed
from interior and exterior of sensors comes hereafter. Finally
we conclude the paper in the last section.

II. LARGE SCALE WIRELESS PARKING MONITORING

We have studied a particular use case of a wireless
monitoring system which detects the presence of vehicles
in a parking. The network contains several magnetic sensor
nodes stuck on each parking lot which are able to gather
sensory information, communicate with other connected
nodes and propagates the data information via other nodes
towards a server data base. An important aspect to take into
consideration is the fact that one goal is to design a system
which is able to work on an large scale parking lot. This
implies the spread of a high number of sensors to monitor the
vehicles’ presence. Therefore, as in many sensor networks,
it is of crucial importance to develop a high dependable
system, in particular with no or few maintenance to carry
out on sensors because of the impossibility to repair each
out of order sensor. We give now a brief description of this
use case.

A. ParkSense Topology and Infrastructure

The employed magnetic sensor detects the presence of
metallic objects due to their impacts on changing earth’s
magnetic fields. Once the vehicle presence is confirmed,
this sensory information is routed through a multi-hop path
towards a plugged sink node, from which a real-time map of
parking occupancy is established. For this purpose, sensors
are organised into a tree structure where the root corresponds
to the sink.

In the case of extended network to a large one, in order
to avoid the presence of isolated subnetworks, the whole
system is partitioned into sub-networks each is governed by
its own sink. All the subnetworks are connected via a tree-
shape backbone with one principal root.

B. ParkSense Software /Hardware

ParkSense sensor nodes encompasses a magnetometer
sensor, a micro-controller, a memory, a wireless commu-
nication interface and a ZigBee Radio antenna. Figure 2
shows a simplified description of internal structure of a

2ParkSense is one of the solutions provided by SmartGrains [3] and is
capable of providing a real-time overview of parking space occupancy in
a given zone, indoors or outdoors, in car parks and on the street.

ADC

AMR

(Magnetic sensor)

Source of Power

Radio Transceiver

(TI CC2520, 2.4Ghz)

Microcontroller

(TI MSP430)

External Memory

Figure 2. ParkSense Sensor Mote Structure

ParkSense mote. As shown in this figure, each sensor can
have two external inputs: One, the sensed information via the
magnetic sensor. Second, the received radio frequency (RF)
message from the radio antenna. A battery source powers all
the component of the mote. The network protocol stack is
managed by a micro-controller (using the external memory)
where a simple operating system (FreeRTOS) schedules the
different tasks. The MAC and physical layer operates on
ZigBee principals at the frequency of 2.4 Ghz [5].

ParkSense benefits from energy investment via synchro-
nizing all the nodes in the system. Thanks to a precise
unique timing among the nodes, each sensor that operates
on battery can optimize its power consumption. Indeed it
spends most of the time snoozing while it knows the exact
moment of wake up and operating. As Synchronization must
be maintained through the network, some frames called
synchronization beacons must be sent periodically from a
Master to its Slaves in order to ensure that the clock drift
between them will not overtake a given value. Therefore,
sensors operate in cyclic mode: sleep then receive mode.
Duty cycle is programmable and defines access time to each
sensor.

III. FAULTS DESCRIPTION

We classify the faults that are encountered or expected to
happen, due to their respective origins, into two categories:
external and internal origin, which are described below. To
describe more precisely the faults which can be arisen in the
case study, it is crucial to also characterize the impact of
any fault on the system. To this end, we can describe a fault
following three characteristics: its periodicity, its gravity and
its extent. First, for the periodicity, related to the frequency
at which a fault arises in the system, we can distinguish
different degrees: transient (if the fault is unpredictable and
occurs rarely), sporadic (if it occurs frequently following a
period of time) and permanent (if a node is no more available
in the network because of the fault). Second, the gravity of
a fault informs on its consequences during runtime, which
could be defined as: benign (if consequences are minor),
severe (if consequences are problematic for the running of
the system) and critical (if the system does no more provide

the expected service). Finally, the extent of a fault which is
the ability of the fault to infect other nodes, following its
severity: no contamination (if neighbouring nodes are not
affected), local (if only neighbouring nodes can be affected)
and overall (if the overall network can be affected by the
fault). However, in the study of contagion of each fault,
it should be considered that since the network has a tree-
based structure and all the nodes rely on each other for
connecting to the main backbone, a node’s break down can
disturb all the neighboring nodes and so the whole network.
Loosing a node becomes more risky in the case of a sparse
topology where there are not many alternative nodes instead
of the ones already dead. Hence, a local fault can be easily
contaminated to others.

It should be added that characteristics like periodicity,
gravity and extension of faults can be used as important
parameters to give priority to implying the faults and con-
ceiving an intelligent fault injector. Indeed at the conception
of a fault injector, a permanent critical fault that can affect
the whole network should not have the same place as a rare
benign fault with no contamination3.

We present now the faults related to the studied use case
due to their origins.

A. External Origin

We call any fault with the origin from exterior of sensors
as an external fault. In general these faults are mostly
imposed by nature phenomena or they are human related
faults.

Nature related faults: One of the phenomena that can
potentially impact the system performance is ambient tem-
perature variations. Indeed the oscillation frequency of the
quartz crystal that is embedded on each sensor leads to a
quartz-crystal-based clock drift over the time. This quartz
frequency, like all the other electrical components, has a
typical working temperature interval in which it works lin-
early and has a predictable functionality. The clock drifts is
highly temperature dependent and should be tuned regularly
by environment variations. This problem is more sever in
outdoor parkings where some nodes are potentially exposed
to direct sun light while the rest are shaded. This leads
to different on-board clocks for the sensors. In precisely
synchronous networks such as ParkSense case, the drifts in
quartz clock becomes more vital and draws more attention.
This is because these networks (for the energy economy
reasons) work based on having synchronized sensors that
tune and lock their internal clock regularly by the network
master clock. Any slide in clocks may lead to consume a lot
of energy for the sensors in order to looking for the actual
network global clock. Once they are relocked they follow
again the sleep/receive mode cycle. Therefore desynchro-
nization may strongly reduces the network life time. Drift in

3Note that determining the priority of faults to be included in fault
injector is done by the owner of the system under test.

quartz is a fault arisen with a transient periodicity and it can
have severe consequences on the system runtime affecting
potentially other nodes of the network.

Moreover, high temperature also affects the antenna gain,
as it is seen in one of the parking equipped by ParkSense
sensors and confirmed by antenna’s data sheet [4]. Adapting
the antenna setting will reduce the variation in output power
over temperature. This fault has the same characteristics as
drift in quartz cock fault, that is a transient periodicity, severe
consequences on the system runtime, but no contamination
risks for other nodes of the network.

Another disturbing external fault is the nearby electrical
and electromagnetic fields around the system under the test.
Electromagnetic sensors are mostly subject to the advert ef-
fect of this parameter. Indeed electrical and electromagnetic
radiations set up electromagnetic noises and so interferences
that are characterised by a natural (such as atmospheric
or cosmic radiation) or artificial origin (such as human
technologies implanted for communication or power trans-
mission). As observed in a parking, most of the time artificial
interferences superpose to natural noises, possibly leading to
excessive interference/noise together sensed by the magnetic
sensors and potentially interpreted (depending on the pulse
shape in the time and spatial domain) as a change in the
occupancy of the parking space. Depending on the degree of
severity of the interference/noise, the accuracy of the gath-
ered information is hence potentially compromised. More
specifically, transient electromagnetic interferences which
lead to a flip-flop effect (i.e. free-occupied message) are
critical because any change of occupancy lead to an emission
of a notification and hence to an increase in traffic/energy-
consuming and reduce in bandwidth availability and sensor
life time.

Noises and interferences that occur across the radio fre-
quency spectrum affect the speed, accuracy and range of
communication. The difficulty comes at a wireless sensor
that is unable to distinguish a desired signal due to the con-
comitant reception of a (strong) spurious signal which comes
from a device operating within the shared band/channel
or closely spaced frequency band/channel. Electrical or
electromagnetic interferences noises and interferences may
have several reasons including presence of reflecting ob-
stacles, a (possibly malicious) device that operates within
or around the frequency/channel of the system under the
test. In practice, they lead to message corruption, lost, and
deletion. Electromagnetic noise and interferences can occur
in a transient or sporadic manner. They could have a severe
impact on the system (as described above, flip-flop effect,
message lost, high traffic/energy consumption, etc.) and this
could affect locally or overall the network. Some other
disturbing factors like the mutipath effect, variable quality
of wireless links and fading issues can also imposed to the
network by nature.

Human related faults: Some external faults are imposed

to the system by active DoS attacks which attempt to make
the system to a down level without available resources
to operate normally. Knowing that for providing a fully
robustness and resilient operation for the system, one should
also take these kinds of faults into account. Therefore,
external attack-like faults have to be included in the fault
library in order to inject them to the system and immunize
it, as much as possible. Attack-like faults have a transient
or sporadic periodicity whose impact on the system can
be severe or critical depending of the amount of system
resource harvesting. Moreover, it may lead also to a local
or overall system contamination.

B. Internal Origin

The faults coming from the sensor’s interior can be due
to hardware or software deficiency.

Hardware faults: The use of off-the-shelf components
aggravates the vulnerabilities of sensors. The faulty man-
ufacturing and assembling of electronic components leads
to instabilities and so to erroneous data stored in mem-
ory (memory corruptions) or erroneous computations (e.g.,
faulty sensing values). Furthermore, some other hardware
faults such as not-correctly assembling a component, faulty
electronic design, shorts or opens in electrical circuits, Bus
error, etc are included in the library of hardware faults.
These kinds of faults are permanent internal faults which
involve severe or critical gravity. However, the presence of
these faults could not infect other nodes of the system by
its nature.

Battery failure resulting from natural depletion causes a
hardware supply failure on the sensor. Indeed battery life
time is not linear (energy level starts with high and constant
level and falls drastically at the near end of life of the
battery). Thus, based on the energy level, one cannot foresee
the battery failure. Once detected, the brutal fall of energy
level cannot be notified because of insufficient remaining
energy to send a message. Battery failure at a node could
drive it to a breakdown state. This permanent fault may
remain non-contagious but it could have severe or critical
consequences on the service provided by the system, since
some parts of the network could not respond any more.

Software faults: Memory faults are the common software
faults that are encountered in embedded systems. Faults
such as memory leaks, illegal memory (de)allocation, buffer
overflow, Null pointer references, reading a non-initialized
memory and memory (code) corruption are among the most
important software bugs. Besides, any bug in the code of
the protocol stack software or operating system (OS), wrong
interrupt from other units or Watch Dog Timer may cause a
deviation from system specifications. Memory faults while
may be hidden from the neighboring nodes, may appear in
a transient manner and can have a severe or critical impact
on the system.

Another possible software faults occurrence lies on con-
figuration and network setting parameters. Among these
parameters we can point to refreshing rate of tables which
keep the status of neighboring area. All the nodes in a multi-
hop sensor network have to store some information on their
immediate neighbors in order to keep connected to the whole
network and to monitor their local area. This information is
stored in a table, generally called a neighboring table. A
wireless network may have potential environmental and/or
topology variations. In order to follow the changes, having
an efficient routing decisions, preventing the loops, not
forwarding a message to an isolated node, choosing the best
clock master, etc. the neighboring abstract should be reactive
and updated enough 4. Having always the fresh tables and
updating the stale values requires a minimum refreshing rate
to be able to follow the vital variations around. Hence, the
periodic time to update the neighboring table is an important
parameter of the network that should be chosen carefully.
Generally system configuration faults can have a permanent
non-contagious impact and can greatly reduce the network
performance.

IV. CONCLUSION

Sensor networks are used in a growing number of appli-
cations. Usually these networks are deployed in uncertain
environments and are subject to several faults, in part due to
environmental conditions or due to resource constraints of
embedded systems. These faults generate the errors in the
system which leads to mismatching to system specifications
and failures. Although with the sensor networks the key
constraint is resource saving, but additional requirements
relating to robustness and fault resilient have been arisen by
new smart applications. In this paper, a particular use case of
a large-scale parking lot wireless monitoring is considered.
A brief description from topology and infrastructure as well
as some particularities in hardware and software allows to
any similar embedded system to benefit from the achieved
fault library to include them to its own fault injector.

Besides of periodicity, gravity and duration of faults
which are the important distinctions allowing to develop an
intelligent fault injector, the faults can be divided regarding
to their origins in relation with the system: faults with
external origins or internal origins. This characterization is
not exhaustive but it describes the crucial observed faults-
failures during the system development.

External faults have a vast range and are generally im-
posed by the natural phenomena or active attacks. Faults
such as high environmental temperature and its impact on
embedded quartz and RF antenna, interferences on magnetic
fields and radio transmissions are included in this category.
Failures caused by these faults contains erroneous sensed

4Depending on the design, routing information may be stored in a
separate table called routing table that similarly needs to be refreshed
frequently.

values, loosing clock synchronization, message collisions,
link failures, etc. These symptoms may lead to deviation
from system specifications, high resource consumption and
short network life. Internal fault may happen on software or
hardware of the sensors. Any faults in electrical circuits and
components and battery supply, etc can refer to hardware
faults. Software faults commonly lie on access or manip-
ulation to the memory, algorithm faults, wrong network
configuration settings, etc.

V. FUTURE WORK

Studying on the influential faults that cause the system
failures, is the first step towards designing an injector of
fault which can accelerate their occurrence. This allows to
improve the dependability of the system and to immunize
it by using mechanisms which allow to be more resistant
to these faults. Despite careful design and concerns about
the possible faults before deployment, our experiment shows
that there still may be some unexpected faults that show up
after a long run time and can be added to the fault library at
that time. It is also confirmed in [7]. Therefore, there may
be a closed loop between the fault library and the evaluating
component in which evaluating the system always enriches
the fault library.

We believe that the next remaining issue is to know
which fault to be injected and where, when and how to
inject them. As mentioned before, not all the faults have the
same importance to be considered as the first crucial faults.
Besides, some related work on designing a fault injector
([9], [10] and [8]) show that for having a full coverage of
considering most of the faults, injection should be applied
on both hardware and software components[6].

Testing the system aims at making a robust network which
works well at almost all the local conditions such as heavy
rain or intense cold and in sever tests such as a heavy traffic
load. Therefore, a fault injector have to do a stress testing
on the system by injecting some intense external faults to
show the limits of the system and to remove the possible
failures as much as possible.

Most of the hardware related faults are intended to be
checked before a real deployment. The first step for testing
the system functionality is deploying a home network us-
ing simple single-hop routing protocol with a quite large
number of nodes. This deployment allows to avoid the
added complexity of multi hopping and to test the hard-
ware and the major software functions such as creating
neighbor tables, sending the sensory information, etc. The
corresponding faults to check the sensors’ basic functionality
can be injected at this stage. In addition, the stress testing
(environmental or human related), verifying the memory and
injecting any internal software faults can be executed. To this
aim a hard-coded fault injector module can be envisaged on
the chips. Triggering this module can be done by different
approaches (ex. a wireless command, a time-out event, etc.).

The next step is deployment in a real site. This allows
to test the system in actual situations which most of the
time lead to face unexpected problems. Magnetic sensors
particularly sense different fields in indoor/ourdoor parkings.
Once confident in hardware and software, the networking
and multi-hopping issues can be verified.

ACKNOWLEDGMENTS

This work is supported by the French National Agency
(ANR) under contract ANRBLAN-SIMI10-LS-100618-6-
01.

REFERENCES

[1] F. Sailhan, T. Delot, A. Pathak, A. Puech and M. Roy, On
Providing Fault Injection for Assessing the Dependability of
Wireless Sensor-Actuators Network, Submited to INFORSID
GEDSIP Workshop, 2010.

[2] M. C. Hsueh, T. K. Tsai, and R. K. Iyer, Fault Injection
Techniques and Tools, IEEE Computer, vol. 30, no. 4, April
1997, pp. 75-82.

[3] SmartGrains Company, www.smartgrains.com.

[4] Texas Instrument CC2520 Datasheet, 2.4 GhZ IEEE 802.15.4/
ZigBee RF Tranceiver.

[5] ZigBee Alliance, http://www.caba.org/standard/zigbee.html.

[6] A. Benso, P. Prinetto, Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation, Frontiers in Elec-
tronic Testing, No. 23, 245p., Kluwer Academic Publishers,
London, UK, 2003.

[7] G. Barrenetxea, F. Ingelrest, G. Schaefer and M. Vetterli,
The hitchhiker’s guide to successful wireless sensor network
deployments, in Proceedings of the 6th ACM conference on
Embedded network sensor systems, pp. 43-56, 2008.

[8] J. Carreira, H. Madeira and J.G. Silva, Xception: Software
Fault injection and Minitoring in Processor Functional Units,
in Proc. IEEE Int’l Working Conference Dependable Cmputing
for Critical Applications, PP.135-149. 1995.

[9] J. Aidemark, J. Vinter, P. Folkesson, J. Karlsson, GOOFI:
Generic Object-Oriented Fault Injection Tool, IEEE Int. Conf.
on Dependable Systems and Networks, Gteborg, Sweden 2001,
pp. 71-76

[10] R.M. Lefever,M. Cukier and W.H Sanders, Loki: a state-
driven fault injector for distributed systems, In Proc. Inter-
national Conference on Dependable Systems and Networks,
2000, PP.37-242.

