
HAL Id: hal-01126372
https://hal.science/hal-01126372

Submitted on 27 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Natural Language Requirements to Formal
Specification Using an Ontology

Driss Sadoun, Catherine Dubois, Yacine Ghamri-Doudane, Brigitte Grau

To cite this version:
Driss Sadoun, Catherine Dubois, Yacine Ghamri-Doudane, Brigitte Grau. From Natural Language
Requirements to Formal Specification Using an Ontology. IEEE 25th International Conference on
Tools with Artificial Intelligence (ICTAI 2013), Nov 2013, Herndon, VA, United States. pp.755-760,
�10.1109/ICTAI.2013.116�. �hal-01126372�

https://hal.science/hal-01126372
https://hal.archives-ouvertes.fr


From Natural Language Requirements to Formal Specification using an Ontology

Driss Sadoun∗†, Catherine Dubois‡§, Yacine Ghamri-Doudane‡¶, Brigitte Grau∗‡
∗LIMSI/CNRS B.P. 133 91403 Orsay Cedex, France
†Université Paris-Sud, 91400 Orsay, France

‡ENSIIE, 1 square de la résistance, 91000 Evry, France
§CNAM-CEDRIC 292 Rue St Martin FR-75141 Paris Cedex 03, France

¶(LIGM) Université Paris-Est-Marne-la-Vallée, 75420 Champs sur Marne, France

Abstract—In order to check requirement specifications writ-
ten in natural language, we have chosen to model domain
knowledge through an ontology and to formally represent user
requirements by its population. Our approach of ontology
population focuses on instance property identification from
texts. We do so using extraction rules automatically acquired
from a training corpus and a bootstrapping terminology. These
rules aim at identifying instance property mentions represented
by triples of terms, using lexical, syntactic and semantic levels
of analysis. They are generated from recurrent syntactic paths
between terms denoting instances of concepts and properties.
We show how centring on instance property identification
allows us to precisely identify concept instances explicitly or
implicitly mentioned in texts.

Keywords-Knowledge representation, Ontology population,
Ontology reasoning, Requirement specification.

I. INTRODUCTION

Any software system development process is based on
a primary phase involving requirement specifications. Usu-
ally, formal methods only apply to formal specifications in
order to verify their correctness and consistency. However,
experience shows that requirement specifications are mostly
written in natural language (NL) and thus are informal.
Their verification then requires them to be transformed into
formal specifications. Hence, it is quite natural to question
the possibility of automatizing the transformation of NL
requirement specifications into formal requirement specifi-
cations. This now long-standing issue has been addressed
in different ways [Gordon and Harel, 2009], [Kof, 2010],
[Njonko and El Abed, 2012]. These studies underline the
common difficulty in obtaining a direct transformation and
the need of an intermediate model to bridge the gap between
NL specifications and formal specifications. The generally
proposed intermediate representations do not check the con-
sistency of what they model, such as for message sequence
charts (MSCs) [Kof, 2010], live sequence charts (LSCs)
[Gordon and Harel, 2009] or Semantics of Business Vocab-
ulary and Business Rules (SBVR) [Bajwa et al., 2012].

We have chosen an OWL ontology to model formally
the domain knowledge and to represent the requirement
specifications by its population so that its formal context and
its reasoning capability allows us to make verifications at an
early stage. An ontology models concepts and properties,

defining the conceptual vocabulary of a domain and gives
a formal framework which associates semantics to terms in
NL. The joining of concepts and properties with their formu-
lations in texts is done by using a lexical ontology in Simple
Knowledge Organization System (SKOS) that contains the
terminology associated to the conceptual vocabulary.

Populating an ontology consists in adding new instances,
associated to concepts and properties recognized in texts,
without changing its conceptual structure. Their identifi-
cation may focus on the recognition of concept instances
[Thongkrau and Lalitrojwong, 2012], or on the recognition
of relation instances [Nakamura-Delloye, 2011]. In both
cases the recognition is limited to the surface of the text,
whereas the recognition of identical instances and implicit
knowledge requires to infer its meaning at a semantic level.

In this article, we propose a new method which guides the
ontology population process by the identification of triples
in texts. These triples correspond to mentions of property
instances. We distinguish two types of triples: complete and
partial. Complete triples contain the mentions of a property
and the two concepts it links while partial triples aim at
recognizing properties in which one of the linked instances
is not explicitly mentioned. Triples of terms corresponding
to property instances are extracted using extraction rules
formed from recurrent syntactico-semantic forms appearing
in a training corpus using a bootstrapping terminology. By
guiding the ontology population through the identification
of property instances we can resolve ambiguities of terms
and infer implicit informations in the ontology. In this way,
the identification of instances of concepts not only relies on
the recognition of their mentions in texts but also takes into
account the conceptual properties where they are involved,
providing a semantic context of interpretation.

We show how our approach allows us to reliably identify
property instances, and then to infer the associated instances
of concepts. Furthermore, the consistency of identified in-
stances is checked using the OWL reasoner before the
creation of consistent operation rules in order to represent
the user requirements. Throughout the paper examples are
taken from our application domain: smart spaces.



II. RELATED WORK

It is commonly adopted that a direct transition
between NL specifications and formal specifications
is not conceivable. Intermediate representations aim
at restricting [Gordon and Harel, 2009] or structuring
[Ilieva and Boley, 2008] the NL specifications, as
well as overcoming their inherent lack of context
[Bajwa et al., 2012]. However most of the proposed
representations remain semi-formal. In our approach,
we use an OWL ontology to formally represent the
background knowledge to tackle ambiguities resulting from
the mismatch between lexical and conceptual meaning.

The usual assumption for the recognition of con-
cept and property mentions in texts is that pairs of
entities appearing in the same context can be consid-
ered as instances of the same relationship. Some meth-
ods restrain the definition of the context on the pres-
ence of a verb and the recognition of its neighbour-
hood [Lin and Pantel, 2001], [Makki et al., 2008]. Other
methods rely on the classification of pairs of en-
tities known to be linked by a semantic relation-
ship [Hasegawa et al., 2004], [Nakamura-Delloye, 2011],
[Thongkrau and Lalitrojwong, 2012]. The majority of these
approaches exploit lexical and syntactic knowledge. How-
ever the context is more likely to be captured by exploiting
semantic as a third level of knowledge. Thus, we propose
to acquire automatically rules based on three levels.

Extracting from text pieces of information necessary to
represent requirements such as operation rules may consist
in matching lexical formulation with their semantic mean-
ing [Njonko and El Abed, 2012], [Bajwa et al., 2012]. We
propose to represent these pieces by means of ontology
population. Reasoning on the ontology allows us to infer the
semantic classes to which instances of concepts belong. We
propose to go beyond instance classification, by identifying
instances representing identical individuals, through the use
of unique constraints formed on instance properties. This
way, the consistency of matched elements is checked.

III. EXTRACTION RULES ACQUISITION

We use the following notations throughout the article.
Concept and property names appear in italic and begin with
a capital letter. Instances of concept names appear in italic
and are written in lower case. A concept is noted Ci and
an instance of a concept is noted iCi

. Properties are defined
on a domain and a range1. Properties linking concepts are
noted Pk(Ci, Cj) and an instance of a property is noted
Pk(iCi , iCj ). In texts, instances of concepts and properties
are denoted by terms. Thus, mentions of an instance of
a property between two instances of concepts is a triplet
noted (tPk

, tCi
, tCj

) with tPk
, tCi

and tCj
terms denoting

1The domain is a concept or a set of concepts and the range is a concept,
a set of concepts or a data type.

respectively instances of the property Pk and the concepts
Ci and Cj .

A. Two kinds of rules

Identification of concept instances is guided by the iden-
tification of instance properties. Hence, each extraction rule
aims at identifying a mention of a property defined in the
ontology. We distinguish two sorts of triples. On the one
hand complete triples where both mentions of domain and
range of the property are explicit in the text, (tPk

, tCi , tCj ).
On the other hand partial triples where one of these mentions
is not explicit in the text. It is then marked as unknown in the
triple, with either (tPk

, ?i, tCj
) or (tPk

, tCi
, ?i). For exam-

ple, in the sentence: when a person moves into the kitchen,
switch on the light., we can identify the triple (Occurred-in,
move, kitchen) which denotes an instance of the property
Occurred-in linking an instance of a concept Phenomenon
to an instance of a concept Location. However, the agent
which has to turn on the light is not explicit. In this case the
triple to be identified is (Turn-on2,?A,light) which denotes
an instance of the property Turn-on linking an instance of
a concept Actuator to an instance of a concept Physical-
process.

B. Acquisition method of extraction rules

The acquisition of extraction rules is performed automati-
cally by bootstrapping using a training corpus and a starting
terminology. Rules are acquired from the most frequent
syntactic paths between pairs of terms. These terms are
issued from the semantic classes defined in the ontology. The
extraction of the two sorts of triples implies the acquisition
of two sorts of extraction rules. Partial triples are acquired
from the most frequent paths between terms denoting in-
stances of a property and an instance of its domain or range.
Complete triples are formed using two partial paths between
pairs of terms denoting an instance of a property and its
domain and the same property and its range.

Algorithm 1 describes the rule acquisition process. Each
sentence is analysed and its syntactic dependency tree gen-
erated. Then, three functions are called for path extraction
between pairs of terms. These functions identifies paths link-
ing three sorts of pairs: pairs of terms denoting instances of
domain and range of a same property, pairs of terms denoting
instances of a property and its range and pairs of terms
denoting instances of a property and its domain. Extracted
paths are compared according to their syntactic dependencies
and the lemmatized form of their terms. Identical paths are
grouped and the n most frequent paths of each sort of pairs
are returned. Finally, extraction rules are generated from the
features of the returned paths.

2Turn-on is the preferred formulation of switch on.



Input: corpus, ontology, skos
for each sentence S in corpus do
Tree← getDependencyTree(S);
lemT ← lemmatizeTree(Tree);
C ← getConcepts(ontology);
for each c in C do
TDomain ← getTerms(c, skos);
P ← getPropertiesOf(c, ontology);
for each p in P do
TProperty ← getTerms(p, skos);
Rg ← getRangesOf(p, ontology);
for each rg in Rg do
TRange ← getTerms(rg, skos);
// - instances of complete triples -
extractPaths(lemT , TDomain, TRange);
//- instances of partial triples -
extractPaths(lemT , TProp, TRange);
extractPaths(lemT , TProp, TDomain);

Paths← getMostFrequentPaths();
for each ch in Paths do
createCorrespondingRule(ch);

Algorithm 1: Extraction rule acquisition

Figure 1. Syntactic dependency tree

C. Syntactic path

A syntactic path is a sequence of syntactic dependencies
in a dependency tree, linking two terms that can be related
by the mention of the studied property. Each node in
the tree is labelled by a term and its morpho-syntactic
category. Figure 1 represents the syntactic dependency tree
of the sentence When a person moves into the kitchen,
switch on the light. The dependency path between the
terms moves denoting an instance of a concept Phenomenon
and kitchen denoting an instance of a concept Location is
prep(moves, into)−pobj(into, kitchen) (bold in figure 1).

D. Generation of extraction rules

Extraction rules aim at identifying property instances.
Hence, they model the semantic context in which terms
denoting instances of concepts appear. The generation of ex-
traction rules is automatically done and exploit the features
of the selected paths. These features are of three forms:

1) syntactic dependencies, transformed into predicates;
2) morpho-syntactic categories.

3) termino-ontological categories (semantic features);
Example: One of the recurrent paths between the two sets

of terms of the concept Phenomenon and Location which
are the domain and range of the property Occurred-in is
prep(tP , tO)∧pobj(tO, tL), as in figure 1, thereby generat-
ing the extraction rule associated to the property Occurred-
in(Phenomenon,Location) with TLoc, TOcc−in, TPhen three
sets of terms from the lexical ontology.

prep(tP , tO) ∧ pobj(tO, tL) (1)
∧isV erb(tP ) ∧ isPrep(tO) ∧ isNoun(tL) (2)
∧TPhen(tP ) ∧ TOcc−in(tO) ∧ TLoc(tL) (3)
→ Occurred− in(tP , tL)

IV. TERMINOLOGY EXPANSION

The terminology is represented in SKOS. This formalism
enables to define for each term a preferred formulation as
well as a list of synonyms. In order to enlarge the starting
terminology, we apply the acquired rules on the training
corpus for extracting new terms. Each rule is applied three
times. Each application aims at extracting terms denoting a
semantic set involved in the rule. For example, let R an
extraction rule and TDomain, TRange, TProp three sets of
terms. From rules that extract complete triples, we generate:
R(TDomain + TProp)→ TRange

R(TRange + TProp)→ TDomain

R(TDomain + TRange)→ TProp

When all possible rules have been applied, we compute
the pertinence of a term t extracted by the rules Ri through
the formula: Pertinence(t) = (

∑n
i=1 freq(t, Ri)) ∗ n

with freq the frequency of t relative to a rule, n the number
of rules of the same type from which it was extracted. Thus,
a term extracted twice by three rules has a greater score than
a term extracted six times by the same rule. This formula
aims to promote the terms extracted by several rules.

V. ONTOLOGY POPULATION

The aim of NL specification analysis is to recognize
user requirements of a system in order to formalize them.
These requirements describe the behaviour of the system
as needed by the user and are created according to the
property instances extracted by the extraction rules. These
requirements correspond to operation rules of the form
antecedent → consequent. Such a rule means that if the
antecedent hold then the consequent must also hold. Each of
the antecedent and consequent is a conjunction of predicates
that match concepts and properties modelled in the ontology.
Our final aim is to check the consistency of these rules
according to their interactions. However, these verifications
cannot be done by an OWL reasoner, which cannot reason on
different sequencing of rules or represent state changes due
to OWL open world assumption. Thus we have choose to
represent the operation rules in the ontology so that they can
be translated into a formal specification language in order
to perform model checking.



A. Requirement pattern

Analogically to LSCs [Gordon and Harel, 2009], MSCs
[Kof, 2010] representations used to guide requirement iden-
tification, but bearing in mind the need for consistency, we
propose to model requirement patterns formed on ontology
predicates whose consistency has been previously verified.
Therefore, we defined a concept named Requirement-pattern
with two data properties, Antecedent and Consequent, the
values of which being a predicate that is either a unary
predicate corresponding to a concept or a binary predicate
corresponding to a property. Predicate arguments are either
variables (Variable names start by ”?”) or constants (indi-
viduals or data type values). An instance of the concept
Requirement-pattern will have as many values for the prop-
erty Antecedent than it has predicates. However, value of
the property Consequent is only a binary predicate which
corresponds to the property to deduce between concept
instances of the antecedent. Predicates of the Consequent
part and constants are text dependent elements that we call
the dynamic part of the pattern in the rest of the paper.

Each instance of Requirement-pattern corresponds to a
type of operation rule. These instances will guide the
identification of user requirements. It consists in replacing
elements of the dynamic part by the corresponding elements
extracted from specifications. For example, the instance of
Requirement-pattern illustrated in Figure 2, defines a type
of operation rules which states that a phenomenon ?e that
occurs in the zone of sensing l of a sensor ?s and shares
the same type t, will entail the corresponding actuator ?a
(same location and same managed type) to perform an action
Actuate-on on the physical-process p. Dynamic predicates
that have to be retrieved from text are those of the property
Antecedent containing the constants l or t, and for the
property Consequent a predicate representing a sub-property
of Actuate-on i.e. Turn-on, Turn-off, Increase or Decrease.

: Occured-in(?e,kitchen)

: Fixed-in(?a,kitchen)
: Has-type(?e,movement)

: Zone-of-sensing(?s,kitchen): Zone-of-sensing(?s,l)

: Actuate-on(?a,?p)

: Perceived-type(?s,movement)
: Managed-type(?a,movement)

: Actuator(?a)
: Sensor(?s)
: Physical-process(?p)
: Phenomenon(?e)

: Turn-on(?a,?p)

Requirement-pattern

: Occured-in(?e,l)

: Fixed-in(?a,l)
: Has-type(?e,t)

: Actuate-on(?a,?p)

: Perceived-type(?s,t)
: Managed-type(?a,t)

Antecedent

Consequent

: Actuator(?a)
: Sensor(?s)
: Physical-process(?p)
: Phenomenon(?e)

: Actuate-on(?a,?p)

User Requirement

Figure 2. An instance of Requirement-pattern

B. User requirement recognition

A user requirement is created if one of the requirement-
pattern can apply i.e. if all elements of the dynamic part

are identified. The algorithm 2 describes the ontology pop-
ulation process. We apply all acquired extraction rules on
each sentence of the NL specifications. Extracted property
instances are then checked according to the dynamic parts
of the requirement patterns. Each predicate of the dynamic
parts is searched in the set of property instances. When a
dynamic predicate is found, we replace its dynamic elements
by the values in the corresponding property instance, then
we add it to the list of found predicates. After all dynamic
predicates are checked, if no predicate is missing for some
types of requirement, property instances are created in the
ontology. Finally, if no inconsistency occurs when reasoning
on them, the user requirement is created. A user requirement
is represented by an instance which has the same description
as the Requirement-pattern where dynamic elements are
replaced by arguments of a corresponding property instance.

Input: corpus, ontology, skos
for each sentence S in corpus do
PI ← ApplyExtractionRules(S);
patterns← getReqPatterns(ontology);
for each pattern in patterns do
PFix ← getF ixPart(pattern);
PDyn ← getDynamicPart(pattern);
for each pDyn in PDyn do

if not PI.contain(pDyn) then
Pmissing.add(pDyn);

else
for each pi in PI do

if pi.name = p.name then
pfound ← replaceElements(p, pi);
Pfound.add(pfound);
PIassociated ← pi;

if Pmissing.isEmpty() then
createInstances(PIassociated);
if Reasoning(ontology) then
createRequirement(PFix, Pfound);

else
print(PIassociated+ ”generate inconsistences.” );

else
print(Pmissing+” are missing !”);

Algorithm 2: Ontology population

VI. REASONING PROCESS

After property instances are identified, concept instances
have to be classified in the ontology. OWL formal semantics
allows us to do inferences on individuals according to
properties in which they are involved. The reasoning process
is done on the whole set of individuals of the ontology
in order to infer implicit knowledge and also to detect
errors. Hence, ambiguous terms are solved according to their
semantic context. Classifying instances in the ontology is
not enough to represent the knowledge derived from texts



in a consistent way. It is also necessary to determine which
instances refer to the same individuals.

A. Instance classification

1) Domain and range of a property: Each instance par-
ticipating to a property is associated to the semantic class
denoted by the domain or the range of the property.

2) Necessary and sufficient conditions (NSC): Equiva-
lences between a concept and some of its properties can
be defined, forming NSC that make possible to infer the
concept to which an instance belongs from its properties.

B. Instance identification

In OWL, identical instances are identified using the prop-
erty SameAs. Inference of SameAs exploits the property
which, like the primary key defined in databases, enables
us to identify individuals in a unique way. Properties repre-
senting a unique constraint can be defined using two ways.

1) Functional properties: associate to each individual
of the domain, a unique individual as a range. Let Pn a
functional property, ii, ij and ik three individuals.

Pn(ii, ij) ∧ Pn(ii, ik)→ SameAs(ij , ik)
An inverse functional property associates to each individual
of the range, a unique individual as a domain. Let Pn an
inverse functional property, ii, ij and ik three individuals.

Pn(ij , ii) ∧ Pn(ik, ii)→ SameAs(ij , ik)
2) SWRL constraints: More than one property may be

needed to represent a unique constraint, in which case the
constraint has to define properties that two individuals must
share to be inferred as one. These constraints are defined
using SWRL rules. For example, the rule below states that
two individuals ix and iy are a same individual if they share
the same values through properties P1 and P2, P1(ix, iC1

)∧
P1(iy, iC1

) ∧ P2(ix, iC2
) ∧ P2(iy, iC2

) → SameAs(ix, iy)

VII. EXPERIMENTATION

In this section, we present the application domain, the
used resources, and the evaluations of term acquisition and
property instance extraction.

A smart space is composed of a set of communicating
objects (sensors, actuators and control processes), with a
general behaviour. A sensor detects the occurrence of a
phenomenon or measures a quantifiable phenomenon in a
confined zone. A phenomenon to be detected or measured
by a sensor must be located in the zone of sensing of this
sensor and shares the same type (temperature, movement,
...) with this sensor. An actuator is connected to a physical
process within the environment and can actuate it. When
a phenomenon (or a set of phenomena) is measured or
detected, the collected information is controlled. This control
can lead to the activation of one or more actuators that
will trigger one or more actions on the devices or physical
processes it or they control. The possible actions are the
following ones: turn on, turn off, decrease or increase. An

actuator can be activated by a sensor (or a set of sensors), if
it is located in the its control zone. Furthermore the actuator
has the same type than this sensor (or set of sensors).

In order to model this domain we defined an ontology
containing 12 concepts, 15 properties between concepts and
9 between concepts and data types, where all individuals are
identifiable from their properties of location and type.

In the absence of a sufficiently large corpus of specifica-
tions of requirements in the field of smart spaces, we have
constituted a training corpus with e-books from the Ana-
cleto Digital Library (http://www.gutenberg.us/) covering
different domains and literary styles. This diversity permits
the acquisition of rules from different writing styles and
thus is well-founded for the recognition of extraction rules,
properties being transdomains. However its generality limits
the extraction of the terminology for the specific concepts
of the domain. In order to have an evaluation corpus, we
developed a platform for collecting specifications. We col-
lected approximately 80 sentences (1558 words) describing
requirement specifications, that was annotated to form a gold
standard.

We have acquired 126 extraction rules, including 31
for the identification of complete triples and 95 for the
identification of partial triples. Obviously, the application
of complete rules has priority over partial rules. Each rule
has been generated from the n most frequent syntactic paths,
with n fixed experimentally to 4. However, depending on the
domain, mentions of certain properties are less frequent in
texts. So this number may be too high and thus non pertinent
paths may generate rules. In order to avoid this potential
noise, we set a second limit corresponding to the number
of syntactic dependencies involved in the path. Indeed, the
longer a path is and thus terms are distant, the less likely that
the path represents a semantic property. In our experiments,
we fix the maximal number of dependencies in a path at 4.

The starting terminology contains 109 terms, 18 preferred
terms and 91 synonyms. Table I illustrates the acquisition of
terms on three semantic categories: phenomena, the physical
processes and the possible actions. Extraction rules have
been applied on the training corpus as described in Section
IV. The first column indicates starting terms of the terminol-
ogy, the second column, the number of different extracted
terms and the third column pertinent terms which were
selected by hand by examining the n first terms returned
from the formula given in Section IV, with n fixed at 25%.

Starting Extracted Pertinent
Phenomenon 18 965 49
Physical-process 33 625 23
Actuate-on 19 413 27

Table I
PERTINENT EXTRACTED TERMS



Results of the extraction of triple candidates are described
in Table II. The first column indicates the number of in-
stances to recognize. The next column indicates the number
of correctly identified triples, next the triples not correctly
identified. The last three columns describe precision, recall
and F-measure respectively. Extraction is performed consid-
ering only pertinent terms from the terminology. The first
line represents the results for the three properties Located-
in, Fixed-in and Occurred-in, which associate a location
to each of the concepts of Location, Physical-process and
Phenomenon respectively. The property Has-type associates
a Type to a Phenomenon. The last two lines represent
instances of concepts Phenomenon and Actuator which are
classified and identified during the reasoning process.

We clearly observe a high accuracy (0.95), which shows
the pertinence of the acquired rules. Moreover, the obtained
recall (0.63) is relatively high considering that rule and
terminology acquisition were done on a non specific corpus.
From the instances of property created in the ontology, we
correctly classified 22 instances of the concept Phenomenon
as belonging to 10 different individuals and 17 instances of
the concept Actuator as belonging to 7 different individuals,
with no incorrectly classified instances. 15 user require-
ments out of 42 were created automatically from identified
instances. Other requirements came out with insufficient
information or as inconsistent, in which case the user is
asked to revise the requirements set aside.

The ontology population and the reasoning process are
implemented under a Java application using Jena, a Java
framework for building Semantic Web applications.

VIII. CONCLUSION

We described an approach for ontology population which
aims at representing in a formal manner user requirements
specified in texts. Our approach centres on the identification
of property instance mentions in texts, using extraction rules,
acquired from recurrent syntactic paths linking terms which
denote concept and property instances. Rules exploit lexical,
syntactic and semantic knowledge. They identify property
instances even if their domain or range is implicit. Moreover,
these rules permit to avoid any ambiguity of extracted terms
by capturing the semantic context in which terms appear.
By guiding the identification of concept instances through

Pertinent Correct Incorrect P R F-M

Loc 115 75 9 0.89 0.65 0.75
Has-type 62 35 0 1 0.56 0.72
Actuate-on 90 51 0 1 0.56 0.71
Total 267 164 9 0.95 0.61 0.70
Phenomenon 62 22 0 1 0.35 0.51
Actuator 42 17 0 1 0.40 0.57

Table II
EXTRACTION OF TRIPLE CANDIDATES

property instance identification, we can then recognize them
in context. Thus, we do not only rely on a lexical recognition
but also take into account their semantic roles. Furthermore,
we demonstrate how using the inference power of OWL,
allows us to classify concept instances and identify them in
a unique way. The proposed approach has been designed to
be independent of the domain and easily adapted to other
languages. From a modelled ontology, it requires only a
training corpus and a set of starting terms. In future work,
we plan to apply our approach to other domains.

REFERENCES

[Bajwa et al., 2012] Bajwa, I. S., Lee, M., and Bordbar, B. (2012).
Resolving syntactic ambiguities in natural language specifica-
tion of constraints. In Proceedings of the 13th international
conference on Computational Linguistics and Intelligent Text
Processing - Volume Part I.

[Gordon and Harel, 2009] Gordon, M. and Harel, D. (2009). Gen-
erating executable scenarios from natural language. In Pro-
ceedings of the 10th International Conference on Computational
Linguistics and Intelligent Text Processing, CICLing ’09, pages
456–467, Berlin, Heidelberg. Springer-Verlag.

[Hasegawa et al., 2004] Hasegawa, T., Sekine, S., and Grishman,
R. (2004). Discovering relations among named entities from
large corpora. In Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics.

[Ilieva and Boley, 2008] Ilieva, M. and Boley, H. (2008). Repre-
senting textual requirements as graphical natural language for
uml diagram generation. In SEKE’08, pages 478–483.

[Kof, 2010] Kof, L. (2010). Requirements analysis: concept ex-
traction and translation of textual specifications to executable
models. In Proceedings of the 14th international conference
on Applications of Natural Language to Information Systems,
NLDB’09, pages 79–90, Berlin, Heidelberg. Springer-Verlag.

[Lin and Pantel, 2001] Lin, D. and Pantel, P. (2001). Discovery
of inference rules for question answering. Natural Language
Engineering.

[Makki et al., 2008] Makki, J., Alquier, A.-M., and Prince, V.
(2008). Ontology Population via NLP Techniques in Risk
Management. In ICSWE: Fifth International Conference on
Semantic Web Engineering.

[Nakamura-Delloye, 2011] Nakamura-Delloye, Y. (2011). Named
entity extraction for ontology enrichment. In IPSJ SIG Technical
Report, page 1, Japon.

[Njonko and El Abed, 2012] Njonko, P. and El Abed, W. (2012).
From natural language business requirements to executable
models via sbvr. In Systems and Informatics (ICSAI), 2012
International Conference on.

[Thongkrau and Lalitrojwong, 2012] Thongkrau, T. and Lalitroj-
wong, P. (2012). Ontopop: An ontology population system for
the semantic web. IEICE Transactions, 95-D(4):921–931.


