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Non parametric on-line control of batch processes
based on STATIS and clustering

Titre: Contrôle non paramétrique de procédés par lots basé sur STATIS et la classification

Ndèye Niang 1 , Flavio S. Fogliatto 2 and Gilbert Saporta 1

Abstract: Batch processes are widely used in several industrial sectors, e.g. food and pharmaceutical manufacturing.
Process performance is described by variables which are monitored as the batch progresses. Data arising from such
processes are usually monitored using control charts based on multiway principal components analysis. In this paper
we propose a non parametric quality control strategy for monitoring batch processes with fixed as well as variable
duration. In our proposition, data sets associated to batches are reduced using the STATIS method. Monitoring of
batch performance is accomplished directly on principal plane graphs, from which non-parametric control regions are
derived through convex hull peeling. This general approach allows off-line monitoring of batch processes as well as
on-line monitoring after a constrained clustering step based on multivariate extension of W.D. Fisher’s algorithm is
carried out. A real example of batch process with fixed duration illustrates the proposed method.

Résumé : Les procédés par lots sont largement utilisés dans le secteur industriel notamment dans l’industrie agroa-
limentaire, chimique ou pharmaceutique. Le suivi de tels procédés est effectué à travers un ensemble de variables
caractéristiques du procédé prélevées par un échantillonnage en ligne au fur et à mesure de son déroulement. Le
procédé est contrôlé à travers des cartes multivariées basées sur une analyse en composantes principales particulière
(multiway principal component analysis). Nous proposons une approche du contrôle de qualité des procédés par lots
basée sur la méthode STATIS et des régions de contrôles non paramétriques obtenues à partir d’enveloppes convexes.
Cette approche générale peut être utilisée pour le contrôle en fin de fabrication des procédés par lots ainsi que pour le
contrôle en cours de fabrication après une étape de classification sous contrainte basée sur une extension multivariée de
l’algorithme de W.D. Fisher. La méthode proposée est illustrée sur des données réelles issues d’un procédé par lots à
temps fixe.

Keywords: Batch process, Clustering, Multivariate quality control, STATIS method,
Mots-clés : Procédés par lots, Classification, Contrôle de qualité multivarié, Méthode STATIS,
AMS 2000 subject classifications: 35L05, 35L70

1. Introduction

Batch processes are widely used in several industrial sectors, e.g. food and pharmaceutical
manufacturing. In a typical batch, raw materials are loaded into the processing unit and submitted
to a series of transformations, yielding the final product. Process performance is described by
variables which are monitored as the batch progresses.

Shewhart’s univariate Control Charts (CCs) are usually applied in the monitoring of industrial
processes (Montgomery, 2001). Such quality control strategy, added of a few assumptions, may
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Non parametric on-line control of batch processes based on STATIS 125

be extended to the multivariate case. Multivariate CCs are indicated for monitoring multiple
quality characteristics in a process (or product) simultaneously. Results obtained from univariate
and multivariate CCs are particularly different when quality characteristics are correlated; in
those cases the use of multivariate CCs is strongly recommended. The most commonly used
multivariate CC is the Hotelling (or T 2 ) chart (Jackson, 1991). Other multivariate CCs are
presented by Jackson (1991) and reviewed by Harris T.J. (1999); Lowry and Montgomery (1995);
Wierda (1994).

Traditional multivariate CCs are based on independence and multinormality assumptions which
are not always true in practice: samples collected from the process should be independent, which
is rarely the case when data collection is automated and measurements are taken from the process
on-line. CCs based on bootstrap methods (Liu and Tang, 1996) and non parametric control charts
(Liu, 1995; Lombardo et al., 2008) should be considered to overcome the limitations in case of
dependant measurements or non normal data. In addition, traditional multivariate CCs are not
efficient when the variables’ nominal behaviors are described by profiles as for data arising from
batch processes, which are likely to display a strong correlation-autocorrelation structure. In those
cases, process monitoring is usually accomplished using multivariate control charts based on
multiway principal components analysis (MPCA). These charts are denoted here by MPCA-CCs.
The application of MPCA-CCs to monitor batch processes of fixed length was initially proposed
by Jackson and Mudholkar (1979), being further investigated by Kourti and MacGregor (1996);
MacGregor (1997). Applications of MPCA-CCs in the monitoring of batch processes may be
found in Flores-Cerrillo and MacGregor (2002); Kourti (2003), among others.

In this paper we focus on batches of constant duration. We propose a quality control strategy
which enables off-line as well as on-line monitoring of batch processes. In our proposition, the
data set is reduced using the STATIS method (Lavit et al., 1994). Two summarized representations
of the batches become available. Monitoring of batch performance with respect to these two
summarized representations is accomplished directly on principal plane graphs, from which
non-parametric control regions based on convex hull peeling are derived. For off-line control, the
proposed strategy is applied on the complete data set, whereas for on-line control it is applied
on data sets obtained through a constrained clustering step based on a multivariate extension of
Fisher’s algorithm (Fisher, 1958). Such clustering step is one of the original contributions of this
paper.

Our work extends the approach in Scepi (2002), where the use of the STATIS method in
multivariate quality control was initially proposed. However, at least two contributions separates
our proposition from the one presented in the aforementioned work. The first is related to the
strategy proposed to define the non-parametric control region. The second concerns on-line
monitoring of batch processes; methods proposed in Scepi (2002) cannot be directly applied for
that purpose.

The rest of the paper is organized as follows. In section 2 historical parametric MPCA-CCs
are briefly presented. Section 3 presents the STATIS method in the context of our quality control
strategy. Section 4 details the constrained clustering step, and in section 5 the determination of the
non parametric control region is presented. Section 6 applies the method to a real data set from a
batch polymerization reactor, available in the batch process literature (Nomikos and MacGregor,
1995; Eriksson et al., 2001). Section 7 gives the conclusion.

Journal de la Société Française de Statistique, Vol. 154 No. 3 124-142
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



126 Niang, Fogliatto and Saporta

FIGURE 1. Data matrices of batches in the reference sample

2. Multiway principal components analysis control charts

To apply an MPCA-CC a reference sample comprised exclusively of data from batches that yielded
products within specifications must be available. From these batches, a reference distribution will
be determined and used to monitor future batches.

The following notations will be used in the rest of the paper: let N denote the total number
of batches in the reference sample, t (t=1,..., T ) is the time index, p (p=1,..., P) is the process
variable index and i (i=1,..., N) is the batch index. Data from batch i are organized in a data
matrix Xi where T outcomes of variables X p are available. The N batches are organized in a three
dimensional matrix X. Figure 1 illustrates the three-way data array (comprised of bidimensional
matrices) in the context of the application proposed here, namely batch processes with constant
duration.

In short, to implement an MPCA-CC scheme, a principal component analysis is performed on
matrix X unfolded into a bi-dimensional matrix X with rows corresponding to batches (see Figure
2). Batch process monitoring using MPCA-CCs is carried out verifying the outputs of classical
multivariate CCs. A T 2 Hotelling chart for the scores is obtained projecting future batches on the
first Q principal components (PCs) retained in the reference distribution. Future batches yielding
a Hotelling statistic value T 2

Q, f greater than the upper control limit UCL will be considered to be
out-of-control, with

T 2
Q, f =

Q

∑
q=1

c2
q, f√
λq

, (1)

where c2
q, f is the coordinate of batch f in the q-th factorial axis, λq is the eigenvalue associated to

the q-th eigenvector, the upper control limit is given by:
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Non parametric on-line control of batch processes based on STATIS 127

FIGURE 2. Unfolded data matrix

UCL =
PT (N +1)(N−1)

N(N−PT )
F1−α, PT, N−PT , (2)

where F1−α,PT,N−PT is the critical value (1-α quantile) of a Snedecor-Fisher distribution with
PT, N−PT degrees of freedom.

Additionnally, control charts based on remaining principal components (i.e. the residuals of
the reference model) may be used to detect any atypical events that disturb the process variables’
correlation-autocorrelation structure; on the other hand the first T 2 chart monitors the behavior of
known process variability sources.

Such parametric control charts require process variables to be normally distributed. When
this assumption is not verified, the use of non parametric control charts should be considered.
Furthermore, in the MPCA-CC monitoring scheme above, batches are assumed to be synchronized
and to have the same duration, i.e. all data vectors in the reference distribution as well as those
arising from future batches have the same dimension. Thus, the monitoring scheme above cannot
be applied directly on-line as the new batch progresses in time. In this case data are available
only up to time t = t∗ < T , where t∗ denotes the most recent time instant in which variables were
sampled from the process. Thus the current batch length differs from the length of the reference
batches. Notice that the MPCA-CCs can neither be used for off line monitoring of batch processes
with variable duration.

For on-line monitoring, approaches can be found in Nomikos and MacGregor (1995) to
complete missing data in the batches. Futhermore, several approaches to handle variable batch
duration have been proposed (Doan and Srinivasan, 2008; Kaistha et al., 2004; Kassidas et al.,
1998). However, propositions found in the literature for that matter are not always satisfactory.
They generally consist of transforming process variables such that they present the same length
and then applying the MPCA-CCs on process data. In the proposed approaches batches are
aligned using dynamic time warping algorithms, which present some practical and theoretical
intrinsic limitations; however, the greatest drawback in those approaches seems to be related to
the representation of batch variation along the time axis, which is altered when stages in the batch
process are synchronized.

Castagliola and Ferreira (2006); Rosa (2005) approached the varying time batch problem using
a different analytical framework, where no dimensionality reduction techniques or procedures
to align unequal batches were used. The authors propose the use of the Hausdorff distance as
a measure of dissimilarity between a given batch and an average nominal batch. Such distance
corresponds to the median of the minimum squared Euclidian distances between points in a given
trajectory and all points in a reference trajectory. Despite its simplicity and the promising results
obtained applying the method in simulated scenarios, there is no evidence that the Hausdorff
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128 Niang, Fogliatto and Saporta

distance captures the correlation-autocorrelation structure present in the original variables.

Traditional control charts are one-dimensional graphical visualizations of repeated multivariate
mean tests for independent batches. The non-parametric CCs proposed here are bi-dimensionnal
graphs displaying a control contour rather than an upper control limit. Our method is based on
STATIS factorial planes on which a convex hull peeling is applied. Since the resulting hull may not
be smooth, in particular if the number of reference batches is small, a B-spline curve is adjusted to
the hull to yield a smoother contour. For a brief introduction on B-splines, see Hastie et al. (2001).
The B-spline we use is basically a cubic curve obtained by interpolation which is able to smooth a
series of n points given in any order (Zani et al., 1998). In our applications, points are given by
the factorial coordinates of the batches corresponding to the convex hull to smooth; each point
corresponds to a knot of the B-spline.

3. STATIS for dimensionality reduction

In this section we briefly present the STATIS method, contextualized to the application proposed
in this paper. In our proposition, each batch data set is considered as a matrix where the rows
are time instants. This matrix is denoted by Xi (i = 1, ...,N) where T outcomes of P variables
are available (see Figure 1). Prior to the analysis, each variable is usually centered (i.e. the mean
of each variable is made equal to zero) and normalized to remove scale effects (i.e. the variance
of each variable is made equal to one). We recall that N batches are used to form the reference
sample, from which a reference distribution will be determined and used to monitor future batches.
The reference sample should be comprised exclusively of data from batches that yielded products
within specifications.

STATIS (Escoufier, 1987; Lavit et al., 1994) is a multivariate data analysis method aimed at
exploring the structure of several data tables obtained under different circumstances. The multiple
data tables are sets of variables measured on the same observations. The method consists of
reducing the dimensionality of the data using a similarity measure based on Euclidean distances
between configurations of points.

The method was originally proposed by des Plantes (1976); up to our knowledge, its use
in quality control was first proposed by Scepi (2002). A recent review on the method and its
extensions is available in Abdi et al. (2012). We summarize the method next.

Dimensionality reduction in STATIS is achieved through two main steps: the first step, named
interstructure, is a global analysis of the between data table structure based on diagonalization such
as in Principal Components Analysis (PCA), providing a visualization of their global proximity.

Next, from the interstructure analysis an optimal set of weights are derived and used to compute
a linear combination of data tables that best represents the common information in the different
data tables. The resulting matrix is denoted compromise. The second step, named intrastructure, is
an analysis of the within data table structure based on diagonalization of the compromise matrix.

In the following subsections, operational steps of the interstructure and intrastructure analyses
are presented.
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Non parametric on-line control of batch processes based on STATIS 129

3.1. Interstructure analysis

The interstructure analysis is based on the definition of a similarity measure between pairs of data
matrices Xi, with operational steps illustrated in Figure 3. STATIS starts by transforming each
Xi into a (T ×T ) matrix of scalar products Wi through the following expression: Wi= Xi (Xi)′ ,
where (Xi)′ denotes the transpose of Xi.This step is necessary to obtain square matrices of same
dimension T . Then, in order to compare two tables Xi and Xi′ , STATIS uses a similarity measure
derived from the Hilbert-Schmidt’s scalar product defined as Sii′ = trace(DWi DWi′) , where D is
a matrix of importance weights for the time instants. Usually D = I

T , where I denotes a (T ×T )
identity matrix; i.e. uniform weights are assigned to all time instants.

In general, normalized matrices Wi are used in the Sii′ equation; such matrices are obtained
through the operation Wi√

trace[(DWi)2]
. When that is the case, Sii′ gives the RV coefficient (for vector

correlation) between Wi and Wi′ as the result:

RVii′ =
trace(DWiDWi′)√

trace[(DWi)2]trace[(DWi′)2]
(3)

In the developments to follow, we assume the use of normalized matrices Wi.
RV is non negative and scaled between 0 and 1; the closer to 1, the more similar the matrices

Wi and Wi′ .
Once coefficients between every pair of matrices are available, they are organized into a (N×N)

square matrix S, which may be multiplied by a matrix ∆ 1 containing importance weights for the
batches. The resulting matrix is then diagonalized such as in PCA; the corresponding eigenvectors
are denoted uk and their associated eigenvalues by λ k.

Similarities between the N batches are visualized by projecting matrices Wi onto the factorial
axes retained in the interstructure representation (denoted IS graph). Typically a good graphical
representation of batches is obtained by projecting their respective matrices Wi onto the first
factorial plan (associated with the two PCs with largest eigenvalues).

3.2. Intrastructure analysis

The so-called intrastructure analysis uses a compromise matrix, denoted by WCO, given by the
weighted sum of normalized matrices Wi. Matrix WCO is obtained as follows:

WCO =
N

∑
i=1

α
1
i Wi (4)

where weights α1
i are obtained from the first eigenvector u1, associated with eigenvalue λ 1, after

standardization into α1 = u1
√

λ 1 . As all elements of S are non negative, the first eigenvector u1 is a

1 Matrix ∆, with dimension (N×N), can be determined analyzing products emerging from each batch in terms of
conformity to specifications; batches yielding products closest to specification targets are given the largest importance
weights. In case product conformity information is not available, we recommend assigning the same importance
weight to all batches, i.e. ∆ = I

N .
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130 Niang, Fogliatto and Saporta

FIGURE 3. Interstructure analysis-operational steps

size factor and its elements will have the same sign. They reflect the overall similarity of a given
batch with all other batches.

The optimal weights α1
i represent the agreement between data tables and the compromise

(Abdi et al., 2012). If a batch highly differs from the others, it will have a weight close to 0 and
less importance in the derivation of the compromise. Equation (4) leads to a compromise matrix
that is robust to outliers, which is desirable in quality control applications, see Lavit et al. (1994).

Diagonalization of WCOD allows a visualization of artificial points Bt (t = 1, ...,T ) named
compromise points. A summary of operational steps to perform this analysis is presented in Figure
4.

In opposition to matrix S, WCO preserves the information on the time index. Thus, it is possible
to obtain graphical representations of the behavior of batches at each time instant. For that matter,
each data matrix Wi is projected onto the factorial plans associated with the PCs retained in the
PCA performed on WCOD. Then selecting points corresponding to a given time instant t, we
obtain a detailed representation of the variables joint behavior in each data matrix for observation
t. Such plot, denoted CO graph, enables an easy interpretation of changes in the N matrices at
each time instant.

4. Clustering for on line batch process control

The IS and CO graphs proposed in the former sections, are suitable for off-line monitoring of
future batches. They are implemented after batch N +1 is finished, using the data matrix XN+1.
On-line process control takes place as the new batch progresses in time. Thus, only a fraction of
the new batch data matrix XN+1 will be available, and it is not possible to project the new batch
on the graphs.

In this paper we introduce a new approach for on-line batch control based on the following
assumption: the process reference behavior up to time instant t can be characterized by the first t
rows in the reference data sets. Associated with each time instant t there will be a set of N partial
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Non parametric on-line control of batch processes based on STATIS 131

FIGURE 4. Intrastucture analysis-operational steps

reference tables of dimension (t×P), from which non-parametric control regions for the IS and
CO charts may be derived.

However, such strategy could lead to a large number of control regions, some of which may
be not informative. To overcome that we propose to determine interesting control time periods
through clustering. A survey of clustering techniques may be found in Jain (2010).

In the context of a batch process as we have introduced it, the time instants are considered
as items to cluster. As they are naturally ordered the desired clusters should be intervals of
time instants. That is, batch duration should be split into intervals of time instants or periods.
It is an optimal segmentation problem of multivariate series of ordered items. Thus temporally
constrained clustering should be used.

Applying such clustering on a batch data set will provide a partition of the time instants into
clusters, such that batch behavior will differ from one cluster to another. The cluster upper bounds
provide the interesting time points to control. Our proposition is detailed next.

4.1. Temporally constrained clustering

In the univariate case, W.D. Fisher’s method (Fisher, 1958) enables to optimally partition a set
of T ordered objects Ot , (t = 1, ..,T ), described by a variable X = (x1, ...xt , ...xT ) into K clusters.
The original method is based on the within class variance criterion. The problem is to find a
partition P which minimizes the following expression:

W (P) =
T

∑
t=1

K

∑
k=1

ptδ
t
k(xt − xk)

2 (5)
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132 Niang, Fogliatto and Saporta

where xk is the mean of x calculated in the k-th cluster, pt is a weight assigned to object Ot , and
δ t

k = 1 if Ot belongs to cluster k, otherwise δ t
k = 0. W (P) can be rewritten as

W (P) =
K

∑
k=1

w(Ik) (6)

where Ik (k = 1, ..,K) are clusters of P with Ik = {O1, ...,Ot} and w(Ik) is the within class variance
of X .

The W.D. Fisher’s method is based on the fundamental following property, related to the
additive nature of the within class variance criterion: if P = ({O1, ...,Ot} , I2, ..., IK) optimally
partitions the entire set of objects into K clusters, then (I2, ..., IK) will optimally partition the
set {Ot+1, ...,OT} into K-1 clusters. A detailed demonstration of this property may be found in
Lechevallier (1990).

Using this relationship between optimal partitions into K clusters and optimal partitions into
K- 1 clusters, Fisher’s algorithm proceeds by successively computing optimal partitions into
2,3, ...,K clusters. This is done using dynamic programming (Bellman, 1961) and enables to get
an optimal partition of any set of ordered objects by exact optimization. The main steps of the
algorithm are detailed in the appendix at the end of the paper.

From a geometric point of view, items can be considered as points on a straight line which have
to be grouped in K clusters such that the sum of squared distances of the points to their centers of
gravity is minimized. This allows a quite direct generalisation to the multivariate case.

We propose to use a multivariate extension presented in Lechevallier (1990) and used in Hébrail
et al. (2010). In the extented approach, the ordered objects are described by a data matrix X
comprised of P variables X p (p = 1, ...,P). The criterion in equation (6) is naturally extended to
become a within class inertia criterion such that:

w(Ik) = ∑
Ot∈Ik

P

∑
p=1

(xp
t − xp

k )
2 (7)

where xp
k is the p-th coordinate of the k-th cluster center of gravity gk. The criterion is additive

and then the fundamental W.D. Fisher’s property can be used to get an optimal partition of ordered
objects described by several variables into K clusters.

The issue of choosing the number of clusters is, as for other direct clustering methods, a non
trivial one. Some idea of the best number of clusters may be obtained by plotting the values of the
criterion against K and looking for noticeable decrease.

4.2. Data tables for on-line batch process control

Applied to each batch data set Xi, the multivariate extension of W.D. Fisher’s method will provide
a partition Pi of the time instants into K clusters of nki (k = 1, ...,K) time points. Cluster sizes may
vary slightly from one batch partition to another due to the variability that may exist between
reference batches. Each partition provides a sequence of K instants tki = ∑

k
l=1 nli corresponding to

the number of rows in the cumulative partial reference data sets.
Combining results from the N partitions gives, for each k, a set of N values tki, i = 1...N, many

of them being equal due to the slight variation in cluster sizes. These values determine critical
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Non parametric on-line control of batch processes based on STATIS 133

TABLE 1. Values of α and l used in the definition of the CC control region

Probability α l
0.01 1.68
0.05 1.13
0.10 0.86
0.25 0.43

periods (from mini tki to supi tki ) during which the process has to be particulary monitored. The
last instant tK will be the one in the complete reference sample.

We propose to implement the on-line control regions at time instants tk = supi tki to increase
the probability to detect an out of control signal. Controling the process at the end of the critical
period, i.e. at the latest instant will allow better detection of process shifts that occur before instant
tk, using the classical quality control assumption that a shift in process behavior will remain for
the rest of the batch duration, unless corrective actions have been taken.

Alternatively other strategies may be considered, such as building a control chart for each
different value of tki.

Finally this clustering step will provide K−1 samples of N subtables from the reference data
tables. Each of these sets of subtables will be used for the on-line monitoring.

5. Non-parametric batch process monitoring

We now introduce the method to build the control regions from the factorial planes provided by
the application of STATIS to the reference sample complete data sets for off-line monitoring, and
to the K-1 samples of N subtables from the reference data tables obtained after the clustering step
for on-line monitoring.

To obtain the control regions, we adapt a proposition in Zani et al. (1998) based on convex hull
peeling, which was originally conceived for graphical detection of outliers in two-dimensional
data sets. It consists of the following three steps:

step 1: a convex hull peeling procedure is performed on the factorial plane to get the convex
hull such that a proportion π 2 of the points in the graph fall within its boundaries. A so-called
inner region is obtained by adjusting a B-spline to the outermost points of the 50% convex hull.
The B-spline provides a smooth contour to the hull; an alternative (and simpler) approach is to
connect the outermost points in the hull with straight lines, but the resulting contour tends to be
irregular in shape, in particular when the number of points is small.

step 2: a robust centroid is determined as the mean of observations inside the inner region. The
smaller the proportion π , the more robust the centroid.

step 3 : Consider the distance δ between the robust centroid and a boundary point; a multiple l
of this distance will be added to δ to establish the control region. The value of l is determined
according to the desired false alarm probability α using Table 1 (Zani et al., 1998) (p. 267). When
α = 0.01, for example, l =1.68.

Alternatively, the CC control region may be determined defining a convex hull containing (1-α)
of the data, identifying the boundary points, and adjusting a B-spline to these points. However,

2 π is equal to 50% of the points in Zani et al. (1998), but a larger proportion may also be used.
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134 Niang, Fogliatto and Saporta

the procedure proposed here where the control region is expanded from the 50% hull tends to
yield smooth contours, less sensitive to extreme points or outliers in the data set.

The procedure will be illustrated in section 6.
For off-line control, the application of STATIS will yield the IS (Interstructure) and CO

(Compromise) factorial planes of reference batches. From these reference data clouds, both IS
and CO control regions are obtained following the procedure described above.

The IS control region used for off-line monitoring of future batches is implemented after
batch N+1 is finished, projecting the data matrix XN+1 onto the graph. When the new batch has
its coordinates falling inside the IS control region it is considered as in control. Otherwise, the
projection yields an out-of-control signal and the CO charts are analyzed to identify the point in
time in which the process departed from the reference behavior.

For on-line control, the same scheme is successively used at each of the K-1 determined instants
tk, with STATIS applied to the K-1 samples of N subtables from the reference data tables obtained
after the clustering step. There will be K-1 control regions available for on-line monitoring of the
process: a future batch N+1 progresses up to a instant tk, and the corresponding data matrix will
be projected onto the associated IS control region. The batch will be deemed out-of-control in
case its coordinates fall outside the control region.

6. Application

In what follows, we exemplify our propositions on a real data set used in the batch process
literature (Nomikos and MacGregor, 1995; Eriksson et al., 2001). Data come from a batch
polymerization reactor: 18 reference batches are selected to represent the process normal behavior.
Additionally, a set of 11 batches is available to test the performance of the methods. This set
contains 4 good batches and 7 bad batches. Since our method was conceived to capture abnormal
behaviors of batches along the time axis, we expect bad batches to appear as out-of-control points
in the proposed control charts.

For each batch, 10 variables are recorded at 100 time instants. Variables X1,X2,X3,X6 and X7
are temperature measurements, variables X4,X8 and X9 are pressure measurements, and variables
X5 and X10 represent flow rates of materials added to the reactor.

6.1. Off-line control of batch process

Analyzing the 18 reference data sets using the STATIS method, we obtained graphical representa-
tions of its interstructure and compromise behavior, which allow us to build IS and CO control
charts with a 99% control region. Methods were implemented using the SAS software.

For the interstructure analysis, the two first eigen-pairs were retained representing 99.6% of
the total variabilitity in the data. Figure 5 shows the 18 batches in the reference sample projected
in the retained first factorial plan on which the convex hull peeling is applied.The second convex
hull containning 7 points (little less than 50% of the points) determines the inner region. Figure 6
shows the result of adjusting a B-spline to the five outermost points of the inner region yielding
the contour displayed in the graph. Figure 7 illustrates the IS control chart building: according
to the second step of the procedure described in section 5, the centroid (point C in the graph) of
the inner region is given by the average of the observations within it, and we define a false alarm
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FIGURE 5. Convex hull peeling on the first interstructure factorial plane of 18 reference batches: the second most
extreme hull with dot symbols determines the inner region contour

TABLE 2. Compromise coefficients α1
i for each table

Table 1 2 3 4 5 6 7 8 9
α 0.0557 0.0557 0.0556 0.0556 0.0557 0.0557 0.0557 0.0556 0.0557

Table 10 11 12 13 14 15 16 17 18
α 0.0557 0.0557 0.0557 0.0557 0.0557 0.0555 0.0556 0.0556 0.0556

probability α = 0.01 with corresponding value l =1.68. Then, applying the third step, we get the
second more external contour shown in Figure 7. This region determines the off-line IS control
chart.

The 18 batches in the reference sample (points R, in the graph) were projected in the first
factorial plan and two of them are positioned slightly outside the control region (see Figure 8).
These false alarms may be due to the fact that we use only five out of eighteen points to build the
control region.

Figure 9 shows the off-line control results for the supplementary batches. All 7 bad batches
(points B, in the graph) were detected as out-of-control, with stronger signal in 6 of them. The
out-of-control batch close to the boundaries was diagnosed as bad by experts and as having
different behavior from other bad batches; it is generally not detected to be out of control in other
monitoring approaches (Eriksson et al., 2001). The good batches (points G, in the graph) also
fall within the control region, as expected, but with a false alarm for one of them. These results
are similar to those obtained in Eriksson et al. (2001), but the authors combined several charts
(based on Hotelling’s T 2 distribution and tolerance regions on PCA score plots) while our method
is based on a single non parametric control chart.

The first eigenvector from the IS analysis gives the compromise coefficients α1
i for table i= 1

to 18; see Table 2.
All tables have very similar weights in the compromise linear combination. That means the

compromise reflects well the information in each of reference data sets i.e. their common structure.
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FIGURE 6. Convex hull peeling, inner region and its corresponding B-spline curve

FIGURE 7. Control region

FIGURE 8. Off line control chart- Plot of reference batches, labelled R
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FIGURE 9. Off line control chart- Plot of supplementary batches labelled G for good batches and B for bad batches

FIGURE 10. Compromise plot of the 100 time instants

FIGURE 11. CO control chart for time instant 20 - Plot of bad batches labelled B
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TABLE 3. Values of upper bound for clusters: each reference table is partitioned into seven clusters

Cluster P1 P2 P3 P4 P5 P6 P7 P8 P9
1 15 16 16 17 17 15 15 16 16
2 29 30 30 30 31 29 29 29 30
3 46 46 47 46 47 45 45 45 46
4 63 63 64 63 64 62 62 62 63
5 76 76 77 75 76 74 75 74 75
6 86 86 87 86 88 85 85 85 85
7 100 100 100 100 100 100 100 100 100

Cluster P10 P11 P12 P13 P14 P15 P16 P17 P18
1 16 16 16 17 17 18 17 17 17
2 29 30 30 31 31 31 31 31 31
3 45 46 46 47 46 46 45 46 46
4 63 63 63 64 63 61 61 62 61
5 75 75 75 76 75 74 73 73 73
6 85 86 85 87 86 86 86 86 87
7 100 100 100 100 100 100 100 100 100

It is due to the fact that the reference sample is comprised exclusively of data from batches that
yielded products within specifications.

The compromise matrix obtained using equation (4) is then diagonalized and the two first eigen
pairs were retained representing 86.8% of the total variability among compromise points. Figure
10 displays the compromise position of time instants onto the first factorial plan.

Data matrices Wi were then projected on this plan allowing the graphical visualization of
all time instants for all tables. Selecting points corresponding to a given time instant provides
the CO graph presented in section 3.2 from which the CO control charts are derived. Figure 11
corresponds to time instant 20 and shows detection of departures from the reference model in the
6 batches identified as strongly out-of-control on the off-line control chart.

6.2. On-line control of batch process

We apply the method proposed for on-line control to the 18 batches of the reference sample. The
multivariate extension of the W.D.Fisher’s constrained clustering method was applied to each
batch with K, the number of clusters in the partitions, varying from 3 to 20. We grouped the 100
time instants into 7 clusters which were the most similar regarding the interval bounds, giving the
shortest critical period as explained in section 4. Table 3 shows the values of the clusters’ upper
bounds. For example, for cluster 1 the upper bounds vary from 15 to 18, and then the latest first
instant was choosen equal to 18.

The final instants of the critical periods were 18, 31, 47, 64, 77, 88 and correspond to the time
instants for on-line control. For the first on-line control chart at time instant t=18 , the first 18
rows of the complete reference tables were used to form the reference sample on which STATIS
is applied. The two first eigen-pairs were retained representing 98.5% of the total variablitity in
the partial data. The associated control chart is shown in Figure 12. Only five out of seven bad
batches are detected to be out-of-control. The good batches fall inside the control region.

For the next on-line control chart, at time instant t=31, the first 31 rows of the complete
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FIGURE 12. On line control chart for time instant 18 - Plot of supplementary batches labelled G for good batches and
B for bad batches

FIGURE 13. On line control chart for time instant 31 - Plot of supplementary batches labelled G for good batches and
B for bad batches

reference tables were used to form the reference sample on which STATIS is applied. The two
first eigen-pairs were retained representing 98.6% of the total variablitity in the partial data. The
associated control chart is shown in Figure 13.The good batches are found to be in control. One
more bad batch is signalized out-of-control.

The control chart for time instant 64 signalizes the boundary bad batch. That explains the weak
departure from the reference distribution identified for that batch in section 6.1: the batch only
starts presenting abnormal behavior in latter time instants in its trajectory. It is also noteworthy
that the off-line CO charts signalize the other 6 bad batches at time instant 20, i.e. earlier than the
on-line charts. That may be explained by the fact that in the off-line control scheme information
from all time instants are already available, and the charts become more sensitive to abnormal
situations in the batches.
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7. Conclusion

In this paper we have presented a method for quality control of batch processes with same duration.
In the proposed method data matrices are directly analyzed using the STATIS method for off-line
control. Process monitoring is implemented using two non-parametric control charts. In the IS CC
the global behavior of batches may be verified combining all time instants and process variables,
with respect to a reference sample containing batches that yielded products within specifications;
such control chart is indicated for off-line control of batches. In the CO charts the trajectory
of process variables at each time instant is analyzed, and significant detours from the reference
trajectories may be detected. After applying a constrained clustering step on the reference dataset,
the method quite directly allows the on-line control of batches.

The proposed method is applied on a real dataset where ten process variables are monitored in
100 time instants. The obtained results illustrate the good performance of the proposed control
charts, both for off-line and on-line monitoring of the process.

Dimension reduction of process data using DUAL-STATIS would allow monitoring of batches
with variable duration (Niang et al., 2009). That is left for future research.

Other natural extensions of the work presented here could include (i) a more formal evaluation
of the method’s performance; (ii) a comparative study of results obtained using the proposed
method and other methods available in literature, with special emphasis on the approach based on
dynamic time warping proposed by Kassidas et al. (1998); and (iii) the development of diagnosis
methods for the out-of-control points signalized in the proposed control charts.

APPENDIX: Fisher algorithm main steps 3

Consider T ordered objects labelled (1,2, ...,T )

Clusters are constrained to be intervals of objects (I, I +1, ...,J).

step 1: compute w(I,J) for the cluster (I, I +1, ...,J) for all I, J such that 1 ≤ I < J ≤ T

step 2: optimal solution for K=2
For I, 2 ≤ I ≤ T , compute W (I,K) = min[w(1,J−1)+w(J, I)] over the range 2 ≤ I < J ≤ I

step 3: optimal solutions for k= 3 to K
For L, 3≤ I ≤ k, compute W (I,L), L≤ I ≤ T by
W (I,L) = min[W (J−1,L−1)+w(J, I)] over the range L≤ J ≤ I

step 4: final step: P(T,K) optimal partition of T objects into K clusters is obtained from the
values w(I,J) and W (I,L) which have to be stored, by

a) first finding J so that : W (T,K) = W (J−1,K−1)+w(J,T ). The last cluster is then (J, J+1,
... , T )

b) next finding J′ so that W (J− 1,K) = W (J− 1,K− 1)+w(J′,J− 1). The second-to-last
cluster is then (J′, J′+1, ... , J−1)
3 R software was used to write the corresponding program
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c) an so on...
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