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Abstract—The Internet of things has reached a stage that
allows ubiquitous data access. Still, practical limitations remain
in networks with scarce bandwidth. Here, we examine the
Bloom filter data structure and its use in distributed protocols.
We discuss how to minimize the bandwidth and energy usage
consumed when distributed protocols exchange Bloom filters,
through dynamic Bloom filter resizing. We propose a general
and novel formalization of Bloom filter resizing, through foldings
and unfoldings. The key challenge in the folding approach is
determining suitable parameters and how to perform a folding.
Specifically, we address the number of times that a Bloom filter
should be folded and optionally unfolded, and how to determine
an ideal reduction factor for this process. We formulate our
approach as off-line planning of the integer factorization problem
(where the integers correspond to the size of a Bloom filter), and
propose further directions for optimizing the dynamic folding
and unfolding of a Bloom filter.

I. INTRODUCTION

The last decade is characterised by the convergence of per-
vasive technologies including wireless communication, smart
devices and the Internet. The resulting Internet of things
enables not only users but also things to access resources
anywhere, anytime. In practice, data flows ubiquitously us-
ing global wireless connectivity (e.g., 3G) or ad-hoc local
area networking, as enabled by, for example, IEEE 802.15.4
protocols. Two key limitations of these networks remain the
limits on bandwidth and energy. In this context, early-stage
data and resource discovery should be provided so as to allow
efficient data dissemination [14]. A Bloom filter [2] can play a
crucial role by allowing to represent a set of data in a compact
manner and by supporting efficient membership queries. More
precisely, a Bloom filter is a vector of bits. It is distinguished
by the fact that the time associated with a membership query
is independent of the number of elements stored in the Bloom
filter as well the size of the Bloom filter. In a nutshell, the
Bloom filter works as follows: an element to be added to the
Bloom filter is first hashed. Typically, k > 1 hash functions
are used. Then, the k outputs are used to flip to 1 the bits at the
related positions in the Bloom filter. In order to check whether
an element is stored in the Bloom filter, the queried element
is hashed (relying on the same hashing functions). If the k
bits at the related position are set to 1 in the Bloom filter, this
element is stored. It is worth mentioning that false negatives
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do not occur. Nevertheless, the approximate nature of Bloom
filter implies that false positives might appear. The probability
of a false positives depends on (i) the Bloom filter size, (ii)
the number of hash functions and (iii) the number of elements
stored. Keeping the false positive rate to a minimum requires
dynamic adaptation of the number of hash functions and/or of
the Bloom filter size. Further attempts to increase the size of
the Bloom filter have appeared in the literature. The basic idea
is to create a set of Bloom filters [6], [16], [1]. As a side effect,
a membership query is a function on the size of this set. While
these methods deal with the increase of the Bloom filter size,
the related decrease is neglected. An alternative [7] consists in
partitioning the Bloom filter into k disjoint sub-ranges wherein
an element is added by hashing the sub-range with the related
hash function hk. Depending on the expected probability of a
false positives, k is either dynamically increased or decreased,
hence leading to a reduced or increased Bloom filter size.
Nevertheless, changing the number of hash functions offers
lower granularity than resizing the Bloom filter.

We herein consider the problem of dynamically resizing
the Bloom filter by folding and unfolding it. This can be
expressed as follows: given a number of items stored in the
Bloom filter, let reduce/increase the size of the Bloom filter by
folding/unfolding it so that the false positive rate ρ stays in the
following interval [ρ − ε, ρ + ε] and the increase of memory
size is kept to a minimum. We acknowledge that halving a
Bloom filter was originally suggested in [3] and successfully
applied [5] so as to reduce the bandwidth consumption induced
by the exchange of Bloom filters in the context of correlated
anomaly detection in large-scale grid computing [15]. We
herein extend and generalize this approach by introducing the
concept of folded and unfolded Bloom filters, which permits
highly flexible resizing.

We also introduce a novel formulation of the problem,
which allows to keep the false positive rate in check by
injecting entropy into the folding process. The key challenge
consists in determining how a folding should be performed,
namely the number of times the Bloom filter should be
folded/unfolded and the reduction factor associated with each
folding/unfolding. We show that this can be formulated as (i)
an off-line planning problem of the factorization of an integer
(namely the Bloom filter size) and (ii) an on-line optimization
problem of the Bloom filter folding/unfolding. Our main



contribution is twofold: we propose an algorithm for planning
the folding and unfolding of the Bloom filter depending on
the expected false positive rate and the related resource waste.
We formulate this problem and provide both a theoretical and
experimental analysis of such planning. In addition, based on
these planned foldings/unfoldings, we propose an approach to
dynamically optimizing the folding and unfolding of a Bloom
filter.

The remaining sections are organized as follows. We first
introduce Bloom filters and survey the related literature (§II).
Then, we present the Bloom filter folding/unfolding (§III)
and the planning of the folding/unfolding (§IV). Finally, we
conclude this report with further optimization and research
directions (§V).

II. BACKGROUND ON BLOOM FILTERS

Bloom filters [2] are commonly used to represent a set
so as to support efficient membership queries, that is, to
efficiently test whether an element is a member of a set. For
this purpose, a Bloom filter B is represented as a vector of
bits, denoted b(1), · · · , b(m). This vector is initially set to
0, i.e., ∀i ∈ [0,m], b(i) = 0. The vector is then updated by
adding additional elements.

a) Bloom filter update: In order to add an element e to
the Bloom filter, k hash functions h1, · · · , hk are used. Each
hash function is applied to the element: h1(e), · · · , hk(e).
Then, the k bits at positions h1(e) mod(m), · · · , hk(e)
mod(m) are set to 1.

m: Bloom filter size
b(1), · · · , b(m): Bloom filter
k: number of hash functions
h1(), · · · , hk(): set of hash functions
n: set of items stored in the Bloom filter

TABLE I
NOTATION

b) Checking the membership of an element: The
process of checking whether an element q belongs to the
Bloom filter is very similar to adding an element. First, q is
hashed: h1(q) mod(m), · · · , hk(q) mod(m). If any bit at the
related positions is set to 0, then the element is not stored
in the Bloom filter. Otherwise (i.e., if none of those bits
is set to 0), the element is said to be stored in the Bloom filter.

c) Suppressing an element: Items cannot be removed
from a Bloom filter; deleting an element in the Bloom filter
cannot be handled by flipping a bit back to 0. In order to
deal with this issue, a few proposals have emerged. The so-
called counting Bloom filter [4] is the most popular. A counting
vector c1, · · · , cm replaces the bit vector of the Bloom filter.
It instead records the number of items stored in the Bloom
filter. The removal of an element e is handled by decrementing
the k counters situated at h1(e), · · · , hk(e). The size of the
counting vector is greater than the Bloom filter size by a factor

that depends on the space allocated to count. These counters
must be selected to be large enough to avoid overflows.

A. Properties of Bloom Filters

A [counting] Bloom filter is characterized by the following
properties:

1) The time associated with a membership query is
independent of the number of elements stored in
the [counting] Bloom filter as well as its size. More
precisely, the time required to insert or find an element
depends on the number of hash functions and is hence
o(k).

2) Both basic and counting Bloom filters engender false
positives. Given n the number of elements that are stored
in the [counting] Bloom filter (see Table I) and assuming
that the hash functions are perfect, the probability of a
false positive, denoted ρ, satisfies:

ρ = (1− (1− 1

m
)kn)k ≈ (1− e kn

m ) (1)

Unlike a basic Bloom filter, a counting Bloom
filter may produce a false negative, which occurs if the
counting vector is undersized and generates an overflow.

3) The union of two sets S1 and S2 can be obtained as
follows:
• applying a bit-wise OR on the two corresponding

basic Bloom filters, and
• adding the vectors of the two counting Bloom

filters. Note that the resulting value cannot exceed
a maximum value defined by the counters’ sizes.

4) The intersection of two sets S1 and S2 cannot be
obtained in a deterministic manner on the [counting]
Bloom filter.

5) With a counting Bloom filter, the subtraction of two
sets S1 − S2 can be obtained by subtracting the
corresponding counting Bloom filters, CB1 − CB2.
Basic Bloom filters do not support such subtraction.

Despite the above promising properties, [counting] Bloom
filters suffer from a fundamental shortcoming: once set, the
size of the Bloom filter cannot be easily changed. An over-
or under-estimate of this size leads to a waste of mem-
ory/bandwidth and/or an increased false positive rate. A few
approaches have been proposed to deal with this issue.

B. Related Work

In order to control the false positive rate of a Bloom filter,
one may change the size of the Bloom filter or the number
of hash functions. The approaches proposed for increasing
the Bloom filter size are slightly different [6], [16], [1]. All
consist in using a set of Bloom filters, that is, a matrix of
Bloom filters. Briefly sketched, if the false positive rate (or



if the number of items stored) exceeds a given threshold,
then another Bloom filter is added to this matrix. Proposed
approaches differ in the size of the Bloom filter. In [6], the
Bloom filters are of equal size: a matrix m × s is handled,
with s = d nn0

e where n is the actual number of items added
to the matrix and n0 denotes the number of items that can
be added to a single Bloom filter. The time associated with
inserting an element (in one of the s Bloom filters) remains the
same as with a basic Bloom filter (namely o(k)). Nevertheless,
the time associated with seeking an element increases.Similar
approaches are proposed in [16], [1], except that the size of the
added Bloom filters grows exponentially in the former (i.e., if
n > 2i−1n0 then m = i ×m0), and Bloom filters are added
so that the probability of false positives grows geometrically
po, p0.r, por

2. Together, these approaches lead to an increase
of the lookup time that is characterised by a factor s. In
addition, these approaches focus on increasing the Bloom
filter size, but the decrease is not addressed. Such a decrease
could be accomplished through compression [9]. It is worth
mentioning that counting Bloom filters could not be easily
applied here. An alternative to increasing the [counting] Bloom
filter size lies in changing the number of hash functions [7].
This approach, also called the partitioned [counting] Bloom
filter, lies in allocating the k hash functions to disjoint m

k
ranges in the Bloom filter. This makes it possible to easily
increase or decrease the [counting] Bloom filter size, as
needed. In addition, adding an item can be parallelised and the
asymptotic performance of a partitioned Bloom filter remains
the same as that of a Bloom filter. However, performance of
a partitioned Bloom filter is worse due to the use of disjoint
ranges.

In order to tackle this issue, we propose adapting the Bloom
filter size by dynamically folding and unfolding it. As pointed
out in [3], and promoted and successfully applied in [5], a
nice feature of Bloom filters is that they can be halved in
size, assuming that the size of the filter is a power of 2. In
order to halve a filter, an OR (resp. addition) on the first and
second halves of the Bloom filter (resp. counting Bloom filter)
is performed. This approach has been successfully exploited
to reduce the bandwidth needed to transmit a Bloom filter [5].

Going one step further, we generalize this approach by:
• introducing the notion of folding and unfolding of a

[counting] Bloom filter, which allows increasing or de-
creasing the Bloom filter size in a flexible manner;

• providing a formulation of the problem of planning the
foldings and unfoldings, while proposing an analytical
and experimental evaluation; and

• formally describing the process of folding/unfolding and
proposing further approaches for optimizing these oper-
ations.

III. DYNAMIC BLOOM FILTERS

In order to adapt the Bloom filter size dynamically, we
propose folding or unfolding the Bloom filter when the number
of elements stored in the Bloom filter decreases or increases,
respectively. We shall introduce this folding and unfolding

Fig. 1. Folding

formally, but first let describe the intuitive idea behind these
operations. A folding (Figure 1) can be metaphorically illus-
trated by a folded piece of paper; the piece of paper represents
the Bloom filter. A paper of 50 cm can be folded to 10 cm
(divided by 5). Then, it can be folded to 5 cm (divided by 2).
This can be folded again into a paper of size 1 cm (divided by
5). Such folding corresponds to a piece of paper is folded back
into the plane so that the paper touches itself. This folding is
characterized by several properties:

• We are concerned with foldings in one dimension,
• The reduced size of the Bloom filter remains an integer.

This is necessary so that a reduced Bloom filter remains
a Bloom filter (viz., an array of bits, whose size is an
integer) after the reduction,

• The foldings are of equal size. This is necessary to
enforce an equi-probable repartition of the bits in the
resulting [folded, counting] Bloom filter.

• A folding pattern is made of a collection of foldings. The
order of the foldings materialised by the overlap order and
the top-bottom orientation have no impact on the resulting
folded Bloom filter.

• A folding is characterized by:

– a reduction factor that reflects the ratio of reduction
of the Bloom filter that is folded. For instance, the
reduction factor 5 is obtained at Stage 1 (Figure 1);
that is, a Bloom filter of 50 elements is folded into
a Bloom filter of 10 elements; and

– a folding rank that defines the number of times such
a folding is performed. In the example provided in
Figure 1, a reduction factor is applied two times. The
rank of the reduction factor 5 is hence 2.

The reduction factor corresponds to a multiplicative factor
of the Bloom filter size. For instance (Figure 1), the
Bloom filter is folded/divided by the following factors:
5 (Stage 1), 2 (Stage 3), 5 (Stage 5). These factors
multiplied together form m, the original size of the
Bloom filter: 50 = 52 · 2. Note also that 5 and 2 are
primes.

The same folding applies to a counting Bloom filter. Unless
especially pointed out, the term Bloom filter will hereafter
encompass the notions of basic and counting Bloom filters
together.

A. Folding Planning

Let formally define the folding and unfolding of a Bloom
filter. Initially (i.e., at Stage 1), the Bloom filter is oversized;
its size is set to its maximal capacity, denoted m1. Once
set, the Bloom filter size can be dynamically adjusted within
[1,m1]. Recall that any positive integer (including m1) can
be represented as a unique product of powers of primes. The
canonical factorization of m1 is henceforth of the following



form:

m1 =

a∏
j=1

(pj)
αj with a� 1. (2)

In order to ensure that the Bloom filter is highly foldable, the
number m1 should be selected so that (i) it corresponds to a
composite number (rather than a prime) and (ii) there exist
many possible foldings, i.e., a � 1 (see §IV-A for a detailed
explanation on the selection of m1). Then, once the size is
set, the Bloom filter can be folded. There are three ways of
folding a Bloom filter:
• An elementary folding is a single folding characterised by

a small factor of reduction corresponding to a prime. For
instance (Figure 1), at Stage 1, the elementary folding of
the Bloom filter follows a factor reduction of 5.

• A composite folding is a single folding characterised by
a factor of reduction corresponding to a composite (non-
prime) number. For instance, a Bloom filter size can be
reduced by a factor of 4.

• A sequential folding is a succession of elementary
and/or composite foldings. In Figure 1, a sequence of
elementary foldings is furnished.

Elementary Folding - We consider the elementary folding
of a Bloom filter Bt, which results in a folded Bloom filter
denoted Bt+1. Let pl be the reduction factor of this initial
folding and φpl represent the folding function. This reduction
factor can be expressed as the quotient pl = mt

mt+1
with mt

(resp. mt+1) corresponding to the size of Bt (resp. Bt+1)
and l ∈ [0, a]. Naturally, the folding differs depending on the
Bloom filter that is considered, namely,
• a basic Bloom filter is folded using the logical OR

operator. More precisely, this consists in applying a bit-
wise OR on the Bloom filter portions that are folded, and

• a counting Bloom filter is folded by adding vectors cor-
responding to the different parts of the counting Bloom
filter that is folded.

In order to describe uniquely the folding operation that takes
place on a basic or counting Bloom filter, we hereafter utilize
the notation ⊕ for both OR and sum. In addition, we utilise
the notation B to represent a basic or counting Bloom filter.
Overall, the folding of a Bloom filter is performed as follows:

∀i ∈ [1,mt+1], bt+1(i) = ⊕pl−1l=0 bt(i+ l ·mt+1) (3)

Thus, the resulting Bloom filter can be expressed as:

Bt+1 =


⊕pl−1l=0 bt(1 + l ·mt+1)

· · ·
⊕pl−1l=0 bt(i+ l ·mt+1)

· · ·
⊕pl−1l=0 bt(mt+1 + l ·mt+1)



with Bt =


bt(1)
· · ·
bt(i)
· · ·

bt(mt)



The computing cost associated with this elementary folding is
O(mt), that is, it depends of the size of Bt. The probability of
false positives ρ on the folded Bloom filter Bt+1 containing
n elements, using k hashing functions satisfies:

ρ = ρ(mt+1, n, k) = (1− (1− 1

mt+1
)k.n)k ≈ (1−e k.n

m ) (4)

In other words, the probability of false positives of a folded
Bloom filter is the same as that of a Bloom filter with
the same size. Overall, such an elementary folding can be
composed and/or sequentially performed so as to further
reduce the Bloom filter size.

Composite and Sequential Folding - Composite and
sequential folds behave differently. Whereas the composite
folding is performed once with a high reduction factor, a
sequential folding is done by successively applying either
elementary and/or composite foldings. Despite this difference,
the Bloom filters resulting from a composite folding (φpr.pl )
and sequential folding (one time folding φpr .φpl ) are identical.

Lemma - The sequential composition, denoted o, of 2
elementary foldings φpl and φpr satisfies:

φplo φpr = φpr.pl (5)

Proof: Given a Bloom filter Bt, let prove that:

φpl o φpr (Bt) = φpl.pr (Bt)

The successive folding of Bt leading to Bt+1, and then the
folding of Bt+1 resulting in Bt+2 can be expressed as:

∀i ∈ [1,mt+2], bt+2 =φpl o φpr

(
bt(i)

)
= φpl

(
bt+1(i)

)
with ∀i ∈ [1,mt+1], bt+1(i) = ⊕pr−1r=0 bt(i+ r ·mt+1)

Thus, ∀i ∈ [1,mt+2], bt+2(i) can be expressed as:

bt+2(i) =⊕pl−1l=0 ⊕
pr−1
r=0 bt(i+ l ·mt+2 + r ·mt+1)

=⊕pl−1l=0 ⊕
pr−1
r=0 bt(i+ l · mt

pl.pr
+ r · mt

pr
)

A one-time-composite folding of Bt which leads to Bt+2 is
performed as follows:

∀i ∈ [1,mt+2], bt+2(i) = φpr.pl(bt(i))

= ⊕pr.pl−1j=0 bt(i+ j ·mt+2)

= ⊕pr.pl−1j=0 bt(i+ j · mt

pr.pl
)

It follows that φpl o φpr (bt) = φpr.pl(bt) given l ∈ [0, pl],
r ∈ [0, pr], and, j = l + rpl �.
Although a sequential folding φpr oφpl and a one time folding
φpr.pl provide the same result, the cost in terms of time of
a sequential folding is greater than the cost of a composite
folding. Specifically, a sequential folding is O

(
mt · (1+ 1

pl
)
)

,
and a composite folding φpr.pl is O(mt).



Theorem - The sequential folding, denoted o, of two
elementary foldings φpl and φpr is:
• commutative, i.e., φpl o φpr = φpr o φpl
• associative, i.e., φplo (φpr o φpu) = (φpr o φpl) o φpu

Proof:
φpr o φpl(Bt) = φpl.pr (Bt) = φpr.pl(Bt) = φpl o φpr (Bt).
Thus, φpl o φpr = φpr o φpl �
In addition, φplo (φpr o φpu) = φpr.pl.pu = (φpr o φpl) o φpu
Thus, φplo (φpr o φpu) = φplo (φpr o φpu)�

The commutative property of the sequential folding implies
that the order of the folding does not matter. More generally,
given a folded Bloom filter Bt, it is impossible to guess
whether the Bloom filter went through an elementary,
sequential or composite fold; the folding pathway cannot be
inspected given the resulting Bloom filter.

Until now, we have focused our study on the folding. Now
we analyze the reverse operation.

Unfold. With Bloom filters, the unfolding cannot be expressed
as a simple operation, e.g., an AND or a subtraction. Let Bt
represent a Bloom filter (at Stage t) that is folded resulting in
Bt+1. Assume that Bt results from f foldings (with f < t),
i.e., Bt = φgj1 o · · · o φgjf (B1) with g corresponding to
either a prime or composite number (see Section IV-A). The
unfolding of Bt+1 into Bt is obtained by regenerating Bt
based on the original Bloom filter B1:

Given Bt+1 = φgjf+1

(
Bt

)
, Bt = φ−1gjf+1

(
Bt+1

)
= φgj1 ...gjf

(
B1

)
It follows that the cost associated with this process corresponds
to the cost associated with a composite folding.

Membership Query - Querying whether an item q belongs
to a Bloom filter is straightforward. Assume f foldings,
denoted j1, · · · , jf . The membership query proceeds as
follows: First, q is hashed with the k hash functions. Then,
if one of the k investigated bits is set to 0, the element q is
not stored. Note that, given that the Bloom filter has been
folded, the position of the investigated bit will be divided
by the same factor. In practice, such a division consists in
taking the modulo, denoted mod, of the hashed item hk(q).
Thus, the bits that are inspected are those that are located
at position mod

(
· · ·mod

(
mod

(
hk(q), pj1

)
, pj2

)
, · · · , pjf

)
.

More formally, q is not stored iff:

∃k so that B
[
mod

(
hk(q),

f∏
i=0

(pji
)]

= 0 (6)

The cost associated with a membership query is O(k). Also,
the addition of an item or the removal of an item (in the case
of a counting Bloom filter) is performed similarly and leads
to an O(k) operation.

Synthesis - A folded Bloom filter results from a sequential
composition of elementary and/or composite foldings.
Although sequential folding φpr o φpl and composite folding
φpr.pl provide the same result, the cost in terms of time
resulting from a sequential folding is greater than the cost
of a one-time folding. As summarized in Table II, folding
or unfolding a Bloom filter accrues an additional cost that
depends on the Bloom filter size. The cost associated with
querying membership of, adding, or removing an element
in a folded Bloom filter remains the same as with a basic
Bloom filter. Central to the notion of folding remains the the
foldability of a Bloom filter, which is tightly linked to the
degree of freedom when planning of the folding.

Single Single Sequential Sequential Membership
query unfolding folding unfolding folding

φp1 ...φpf φp1 ...φpf
O(m) O(m) O(f ·m) O(f ·m) O(k)

TABLE II
COST RELATED TO FOLDING AND UNFOLDING

IV. FOLDING PLANNING

Planning the folding (and unfolding) of a Bloom filter lies in
determining the capacity of the Bloom filter so that this filter
offers a large number of possible folds. In order to plan the
folding, several factors may be taken into account, including
the factor of the folding (also called the division factor) and the
number of possible successive identical foldings (also called
the folding power). In addition, the rate of addition of items
can also exploited. Before moving on with the planning of the
Bloom filter capacity, let first introduce the basic vocabulary
and background on the number theory that will subsequently
help.

A. Preliminaries

Any number m ∈ N∗ can be uniquely expressed as a
product of primes pj :

m =

∞∏
j=1

(pj)
γj =

a∏
j=1

(pj)
γj (7)

with pj ∈ P, and ∀i < j, pi < pj with (i, j) ∈ N2 , a =
max{i ∈ N/γi > 0}.
The number of divisors of m, denoted d(m), is expressed as:

d(m) =

a∏
1

(1 + γj) (8)

Any number can be categorized as one of two disjoint types:
a prime or composite number. Both satisfy Definition 7. A
prime is a number > 1 that holds no positive divisors other
than 1 and itself. A composite number has divisor(s) apart
from itself and one. We are interested in composite numbers
and more precisely, in the compositeness of numbers because
the higher the compositeness, the more flexible the folding.
In other words, we are concerned with numbers that have a



∗2 3 4 ∗6 8 10 ∗12 18 20 24 30 36 48 ∗60
72 84 90 96 108 ∗120 168 180 240 336 ∗360 420 480 504 540
600 630 660 672 720 840 1080 1260 1440 1680 7560 9240 10080 12600
13860 15120 18480 20160 25200 27720 30240 32760 36960 37800 40320 41580 42840 43680
45360 50400 ∗55440 65520 75600 83160 98280 110880 131040 138600 151200 163800 166320 196560

TABLE III
LARGELY COMPOSITE NUMBERS (EXTRACTED FROM THE ANNOTATIONS PROVIDED AS PART AS [13] FROM THE TABLE HANDWRITTEN BY S.

RAMANUJAN). SUPERIOR HIGHLY COMPOSITE NUMBERS ARE IDENTIFIED BY *

high number of divisors, which naturally excludes the primes,
characterized by their minimum number of divisors. The so-
called highly composite numbers are herein of special interest.
A highly composite number [13] is a number that has a larger
number of divisors than any number less than itself. More
formally, m is highly composite iff

∀m′ < m, d(m′) < d(m). (9)

Unfortunately, these highly composite numbers are very
sparse. As illustrated in Table III 7, eleven highly composite
numbers are < 831600 ; these numbers are identified by * in
the Table. More formally [10], the number of highly composite
numbers ≤ x, denoted Ψ(x), is subject to Ψ(x) << ln(x)c

with c a constant. Thus, highly composite numbers cannot be
considered the only candidates. By relaxing constraints, one
may consider a number that is largely composite [13], that is,
a number that has a greater or equal number of divisors than
any number less than itself:

∀m′ ≤ m, d(m′) ≤ d(m). (10)

Given Ψ(x) the counting function of largely composite num-
bers, it has been proven that ∃c and d so that exp(logc(x)) ≤
Ψ(x) ≤ exp(logd(x)) for any large x. Is is noteworthy that
largely composite numbers are more numerous than highly
composite numbers (see Table III). Moving back to the prime
decomposition of a number (Eq.7), one may guess that a
convenient number is characterized by whether it is composed
of little primes - the lower the prime, the greater the number
of possible folds - and by the powers of the primes. Together,
they represent both the repetitions of folding as well as the
ability to smoothly reduce the size of Bloom filter. We consider
the former case and introduce the smooth number, which
is known as a number with only small prime factors [8].
In particular, a positive integer is said to be y-smooth if it
holds no prime factor exceeding y (i.e., any constituting prime
factors 6 y). Smooth numbers are useful for defining the
capacity of a Bloom filter. Indeed, if we choose a number
m holding a (very) large1 prime factor p (i.e., a number close
to m), then it remains unlikely that there exist (many) other
primes of m. Such a number m should therefore be avoided
to assure a high flexibility in the folding of the Bloom filter.
Intuitively, low primes are compensated for by their high
powers and/or by a high diversity of primes. In addition,

1A rough number is a k-rough (or k-jagged) number which is a positive
integer all of whose prime factors are greater than or equal to k.

while being fairly numerous, these numbers have a simple
multiplicative structure.

We believe that y-smooth numbers are the best candidates
for an easy factorization and henceforth for flexible folding.
In addition, smooth numbers are dense. Let Ψ(x, y) denote
the number of y-smooth integers lower than x. Given y = x

1
u

(∀u ≥ 1), this number tends to a non-zero limit as x → ∞ .
The cardinality of S(x, y), denoted Ψ(x, y) , satisfies:

Ψ(x, y) v x · ρ(u) as x→∞ with x = yu (11)

ρ(u) is entitled the Dickman de Bruijn function and is defined
by:

∀u > 1, ρ(u) =
1

u

∫ u

u=−1
ρ(t)dt (12)

The following estimation of ρ is further obtained by differen-
tiating ρ : ρ(u) = ( e+o(1)ulogu )u as u→∞.

Synthesis. Highly composite and then largely composite
numbers followed by smooth numbers constitute the best
candidates for setting the capacity of a [counting] Bloom filter.
The sparsity of both highly composite and largely composite
numbers suggests the use of smooth numbers, which constitute
a fair compromise given that the resulting low prime factors
are compensated for by high powers and/or a high number of
primes.

B. Generation of Smooth Numbers

The numbers that are y-smooth and that are ≤ x can be
found using the sieve of Eratosthenes. As pointed out in
[12], rather than crossing out the primes that are ≤ x (as it
is done traditionally), one crosses out the numbers that are
powers of a prime ≤ y. Then, one counts the number of
crossed-out powers for each number. If that count exceeds
a given threshold (defined hereunder), then the number is a
smooth number. We adopt a formulation of the problem of
generating y-smooth numbers which is slightly different. We
are interested in finding the y-smooth numbers that pertain
to the interval [x, x+ z] rather than to the interval [0, x+ z].
These numbers correspond to the potential candidates that
may be selected for setting the capacity of the initial (i.e.,
unfolded) [counting] Bloom filter given a range of false
positives that is defined by the user. We propose a simple
algorithm and its related analytical evaluation.

Finding y-smooth Numbers within [x, x+z] - Let
consider the determination of the smooth numbers that
pertain to the interval [x, x + z] ∩ N (see Algorithm IV-B).



The first key step (line 4) consists in generating the set of
primes that are ≤ y. Let Py be that set and π(y) the number
of primes in this set, which, given the prime number theorem,
is roughly approximated as y

ln(y) . The generation of such
primes is not resource-intensive given that y is by construction
kept low. The number of tests can be reduced (as with the
sieve of Eratosthenes) by walking through all the other
numbers that are multiples of that prime. Considering those
primes (line 5) and walking through the interval [x, x + z]
(line 6), the objective is to find a prime that is a factor of
a number (i.e., a prime that divides this number as in line
9). Once identified, this number is crossed out (line 12). In
order to privilege addition over multiplication, a logarithm
formulation is privileged whenever possible (lines 8, 12, 22).
Briefly sketched, this consists of computing the logarithm.
Finally, a smooth number is identified by taking advantage

of the following property: A composite number m =

a∏
j=1

p
γj
j

subject to x ≥ m ≥ x+ z satisfies:

log(x) ≤
a∑
j=1

γj log(pj) ≤ log(x+ z) (13)

As proposed by Pommerance [11] in the context of establish-
ing smoothness tests, an early-abort strategy can be applied
if the number of prime factors is insufficient at early stage.
The performance associated with generating such a y-smooth

Require: x ∈ N∗, y ∈ N∗, z ∈ N∗, z > x
1: for i = 0 to z do
2: w[i] = 0 {initialize the array w used to record the sum

of the primes powers}
3: end for
4: Py = getPrime(0, y) {get the primes > 0 and ≤ y}
5: for p ∈ Py do
6: for i = 0 to z do
7: j ← 1
8: while pj ≤ x+ z {j · log(p) ≤ log(x+ z)} do
9: if pj divides x+ i then

10: l← 0
11: while i + l · pj ≤ z {consider the successive

numbers of [x, x+z] that are divisible} do
12: w[i+ l · pj ]← log(p) {cross the number}
13: l← l + 1
14: end while
15: end if
16: j ← j + 1
17: end while
18: end for
19: i← i+ 1
20: end for
21: if A[i] ≥ log(x) then
22: SmoothNumbers = SmoothNumbers∩x+ i {x+ i

is a y-smooth number}
23: end if

number clearly depends on the number of primes ≤ y (i.e.,
π(y)) and of the length of the considered interval.

C. On Adaptive Folding and Unfolding
A [counting] Bloom filter is dynamically resized by folding

or unfolding it. More precisely, at Stage t, this resizing is
governed by three key factors:
• the number of elements that is stored in the Bloom filter

at t, simply denoted n;
• the number of hash functions, denoted k; and
• the expected probability of a false positives.

Assume a range of false positives, denoted [ρ − ε, ρ + ε] is
defined as admissible by the user. Recall that the false positives
rate can be expressed as ρ = (1− (1− 1

m )kn)k ≈ (1− e kn
m ).

Then the size of the Bloom filter m, at Stage t, can be further
expressed as:

1

1− kn
√

1− k
√
ρ+ ε

≤ m ≤ 1

1− kn
√

1− k
√
ρ− ε

(14)

Figure 2 illustrates the high flexibility in the folding that can be
exploited by applications and is witnessed by the large number
of suitable smooth numbers and hence reduction factors to
choose from for a given fixed interval (vertical axis) selected
by the user. The problem of determining the next folding can

Fig. 2. Bloom Filter Sizing (with k=2)

be formulated as finding St+1 with mt+1 =
∏

j∈St+1

(pj)
γj

subject to mt+1 ∈ [ 1

1− kn
√

1− k
√
ρ+ε

, 1

1− kn
√

1− k
√
ρ−ε

]. Toward

this goal, several policies can be used. The simplest policy
consists of taking a folding/unfolding decision regardless of
the previous steps. Assuming that the capacity of the Bloom
filter was initially set to m1 =

∏
j∈S

p
γj
j , the folding that

should be performed, if necessary2, is characterized by a
reduction factor corresponding to

∏
j∈S′

(pj)
γj , with S′ ⊂ S.

The cost of determining S′ is bound by the number of

possible combinations of divisions of m1 (i.e.,
a∏
j=1

(γj+1)−1)

while the cost related to the folding is O(mt+1). Note that
a cost-efficient optimisation lies in taking advantage of the
previous foldings, potentially following, for example, a greedy
algorithm so as to minimize the cost of exploring possible
folding options. Another optimization lies in using entropy
in the choice of the folding as the metric rather than the
computation cost. More precisely, changing the folding with
each transmission (and considering foldings that have not been
yet performed) increases the entropy and by consequence
the amount of information carried, which in turn leads to a
reduction in the probability of false positives if we aggregate
multiple transmissions.

2If m does not satisfy Eq. 14



V. CONCLUSION

The Internet of things has reached a stage that enables
easy access to information and services anywhere, anytime.
However, such vision still comes with practical limitations
mainly relating to bandwidth and energy constraints that
are especially difficult to overcome on mobile devices. It
is therefore crucial to devise novel solutions for supporting
lightweight networking, data flow and service access. This
paper explores a new direction by resizing the Bloom filter,
which hence minimizes the bandwith and energy usage asso-
ciated with exchanging a Bloom filter. The basic idea consists
of selecting suitable Bloom filter parameters and folding or
unfolding a Bloom filter so that the false positive rate satisfies
the application needs. We acknowledge that halving a Bloom
filter was originally suggested in [3] and applied [5] to large-
scale grid computing [15]. We herein generalize this approach
by introducing the concept of folding/unfolding along with a
novel formulation of the problem: The key challenge consists
in determining the right parameters for the initial Bloomfilter
and how a folding should be performed, in particular the num-
ber of times the Bloom filter should be folded/unfolded and
the reduction factor associated with each folding/unfolding.
We have formulated that as an off-line planning problem of
the factorization of an integer (corresponding to the Bloom
filter reduction factor) and further proposed directions for
optimizing the dynamic folding/unfolding of a Bloom filter.
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