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Introduction

Objective : Prediction of binary outcome

!

A large number of supervised classification models have been proposed in the Literature

Which One To Choose?

A Bias induced by the use of one single statistical approach

!

Solution “stacking” meta-model.

20th International Conference on COMPUTATIONAL STATISTIE&



LOREAL
Research & Innovation
Advanced Research

specific Methodology

o “Stacking” meta-model
Combining models - Logistic PLS-DAinstead of OLS

-

Strong correlation between predictions
| ]

I_u_i

* Choice of different models
Boosting, Naive Bayes, SV, Sparse PLS-DA, and Expert Scoring

| ]

I_uﬁl

 Small number of observations

Repeated sub-sampling for variables selection
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Visualization of the methodology
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Process of validation rules

l Learning set (70%) <_§ Step | : Data splitinto Learning/ Validation set i_’

. s SR
i Step 2 : learningset splitinto 0 subsets
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/ Ist subsets : Sk \
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i Step 4 : Stacking model on

. Step 3 : Parameterization of each models, _ ) _ | .
' and selection of the common variables in all subsets | with variables selected in step _> Global Stacking
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Parametrization process for 2ach model

Subsequently, a single subsample is retained as the

1/ SUUSEISE Creation of k-fold cross-validation : o :
gth learning (80%) A(). A2). ... A(K) each of the k-fold respect valnlia.tlnn data for testing the model, and thE
gth Test (20%) the proportion of tow groups A and B remaining k - | subsar;ptles are used as training
ata
k-folds of fraining subsets
o = L DOROETRS
% | EDHHQWDB ﬁ
Se QH Research of the optimal parametrization
TIRE for each model by testing their
The parameters selected by o ", N performances on the k tests subset (k-fold)
trees, are validated by TR
gth Test
Example boosting model :
. fcfolds of festsubsels These performances are represented
3. on these graphs
The parameters for each model s
are chosen accordingly §
to the best results on the " D I
k tests subsets (k-fold) vl Rimbdroftress Tt T
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Dutils Evaluation Performances

= [omparisons between the five methods and the combined models are done according to two

features:

> global performance with ROC analysis

> [Loncordance assessed by Principal component analysis (PCA)

= A decision system with three intervals is finally proposed to the expert, with a no-decision
region.
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Statutory Context

m |'Orealis developing approaches for safety evaluation (the evaluation of skin
sensitization) of ingredients by combining multiple in vitro and in silico data.

= Data:

> For this purpose we used a full data set on 163 chemicals composed of 33 different
variables, representing

> the results from /7 silico predictions (Derek, TIMES, Toxtree), from DPRA, MUSST,

> Nrf-2 and PGE-2 /i vitro assays as well as numerous physico-chemical experimental or
calculated parameters

= |n order to predict substances into two groups (Sensitizer/ )
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Correlation Circle by PCA

CP2: 3.42%

CP1:91.95%

Predictions provided by the five models are
obviously highly positively correlated as shows the
following PCA analysis

Experimental result Context

————
| Source of the Curve
= — Stacking
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Bayesian
0,6
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1 - Specificity

The stacking appears to be the most efficient (blue
curve) with the highest area
under the curve (0.943).
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Confidence area of the boosting model and of the stacking model
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Performances on the validation set (N = 50)

m Performance comparisons on a validation set (Za Sensitizer and Za No Sensitizer) :

> lake into account only high probabilities (2 80% and < 15%) :

of the prediction PLSDA Bayes
| sensitivity | 8461 | 8750 | 8421 | 8636 | 9500 | 9100 |
|_Concordance | 9000 | 9524 | 8857 | 8947 | 9200 | 9250 |
_ Kappa | 79% | so% | 7% | 7% | 4% | 85% |

Results show that stacking model has better performance than all the other models taken
separately on a larger set
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Conclusions and Perspectives

m [onclusions :

> The Stacking Meta-Model gives a prediction model with better performances for the development of
alternative approaches in safety evaluation of chemicals the each of initial five models separately

> The binary outcome revealed the difficulty to split the data into [earning/test subsets. To overcome this
problem we have proposed a specific methodology based on samples stratification

= Perspectives :

> |mplementation of another model prediction for Stacking meta-model
> |ntegration of other Sub-models to improve stacking. for example:
> Decision Tree based model on C4.9, Neural Network, Multiblock Redundancy Analysis, ...

> Extensionof stacking prediction for a multi-class case ...
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