
© L’Oréal - Reproduction interdite sans l’accord préalable écrit de L’Oréal.
Reproduction prohibited without written agreement of L’Oréal.

Research & Innovation
Advanced Research

20th International Conference on COMPUTATIONAL STATISTICS

C. Gomes, H. Noçairi, M. Thomas, F. Ibanez, J.F. Collin & G. Saporta

Stacking Prediction for a 
Binary

Outcome



© L’Oréal - Reproduction interdite sans l’accord préalable écrit de L’Oréal.
Reproduction prohibited without written agreement of L’Oréal.

Research & Innovation
Advanced Research

20th International Conference on COMPUTATIONAL STATISTICS

Overview

 Introduction

 Specific methodology

 Visualization of the methodology

 Process of validation rules

 Parametrization process for each model

 Data and Application

 Conclusions and Perspectives



© L’Oréal - Reproduction interdite sans l’accord préalable écrit de L’Oréal.
Reproduction prohibited without written agreement of L’Oréal.

Research & Innovation
Advanced Research

20th International Conference on COMPUTATIONAL STATISTICS

Introduction

A large number of supervised classification models have been proposed in the Literature

Solution “stacking" meta-model.

Which One To Choose?

Objective : Prediction of binary outcome

Bias induced by the use of one single statistical approach
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Specific Methodology

Repeated sub-sampling for variables selection

• “Stacking" meta-model
Combining models  Logistic PLS-DA instead of OLS

Strong correlation between predictions

• Small number of observations

• Choice of different models
Boosting, Naïve Bayes, SVM, Sparse PLS-DA, and Expert Scoring
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Each model provides a probability to be A

Visualization of the methodology

BoostingSparse PLS DA SVMNaïve Bayes Score Method
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Inconclusive Conclusion
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Stacking
is a combination of 5 supervised classification methods
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Step 5 : Stacking 
model on the
validation set

Global Stacking 
Step 4 : Stacking model on the learning set

with  variables selected in step 3
Step 3 : Parameterization of each models, 

and selection of the common variables in all subsets

Step 2 : Learning set split into Q subsets

Data
(N observations)

Validation set (30%)Learning set (70%)

1st : Stacking
Meta-model 

Qth : Stacking
Meta-model 

 …

Step 1 : Data split into Learning/ Validation set

 …

1st subsets :
learning (80%)

Test (20%)

Qth subsets :
learning (80%)

Test (20%)

 …
 …

qth subsets :
learning (80%)

Test (20%)

qth : Stacking
Meta-model 

Process of validation rules
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7 5 Example boosting model : 
These performances are represented 

on these graphs

4

3

Research of the optimal parametrization 
for each model by testing their 

performances on the k tests subset (k-fold)

2
Subsequently, a single subsample is retained as the 

validation data for testing the model, and the 
remaining k − 1 subsamples are used as training 

data

Creation of k-fold cross-validation : 
A(1), A(2), …, A(k) each of the k-fold respect 

the proportion of tow groups A and B
1

The parameters for each model 
are chosen accordingly

to the best results on the
k tests subsets (k-fold)
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k-folds of test subsets

qth subsets :
qth learning (80%)

qth Test (20%)

The parameters selected by 5 
trees, are validated by 

qth Test

Parametrization process for each model
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 Comparisons between the five methods and the combined models are done according to two 

features: 

 global performance with ROC analysis

 Concordance assessed by Principal component analysis (PCA)

 A decision system with three intervals is finally proposed to the expert, with a no-decision 
region.

Outils Evaluation Performances



© L’Oréal - Reproduction interdite sans l’accord préalable écrit de L’Oréal.
Reproduction prohibited without written agreement of L’Oréal.

Research & Innovation
Advanced Research

20th International Conference on COMPUTATIONAL STATISTICS

 L'Oreal is developing approaches for safety evaluation (the evaluation of skin 
sensitization) of ingredients by combining multiple in vitro and in silico data.

 Data :

 For this purpose we used a full data set on 165 chemicals composed of 35 different 
variables, representing

 the results from in silico predictions (Derek, TIMES, Toxtree), from DPRA, MUSST,
 Nrf-2 and PGE-2 in vitro assays as well as numerous physico-chemical experimental or 

calculated parameters

 In order to predict substances into two groups (Sensitizer/No-Sensitizer)

Statutory Context
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The stacking appears to be the most efficient (blue 
curve) with the highest area

under the curve (0.949).

Predictions provided by the five models are 
obviously highly positively correlated as shows the 

following PCA analysis

Experimental result Context
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Model StackingModel Boosting

Confidence area of the boosting model and of the stacking model

(Sensitizer     No Sensitizer     )

Sensitizer
Conclusion

No Sensitizer
Conclusion

Inconclusive
Conclusion

85%

15%

(N=67: ≥ 85% and ≤ 15%) (N=135: ≥ 85% and  ≤ 15%)
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Results show that stacking model has better performance than all the other models taken 
separately on a larger set

Performances on the validation set (N = 50)

 Performance comparisons on a validation set (25 Sensitizer and 25 No Sensitizer) :

 Take into account only high probabilities (≥ 85%  and ≤ 15%) : 
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Conclusions and Perspectives

 Conclusions :

 The Stacking Meta-Model gives a prediction model with better performances for the development of
alternative approaches in safety evaluation of chemicals the each of initial five models separately

 The binary outcome revealed the difficulty to split the data into learning/test subsets. To overcome this
problem we have proposed a specific methodology based on samples stratification

 Perspectives :

 Implementation of another model prediction for Stacking meta-model

 Integration of other Sub-models to improve stacking. for example:

 Decision Tree based model on C4.5, Neural Network, Multiblock Redundancy Analysis, …

 Extension of  stacking prediction for a multi-class case …
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