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NbClust An examination of indices for determining the number of clusters :
NbClust Package

Description

NbClust package provides 30 indices for determining the number of clusters and proposes to user
the best clustering scheme from the different results obtained by varying all combinations of number
of clusters, distance measures, and clustering methods.

Usage

NbClust(data, diss="NULL", distance = "euclidean",
min.nc=2, max.nc=15, method = "ward",
index = "all", alphaBeale = 0.1)

Arguments

data matrix or dataset (the only mandatory argument)

diss dissimilarity matrix to be used. By default, diss="NULL", but if it is replaced
by a dissimilarity matrix, distance should be "NULL".

distance the distance measure to be used to compute the dissimilarity matrix. This must
be one of: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"
or "NULL". By default, distance="euclidean". If the distance is "NULL",
the dissimilarity matrix (diss) should be given by the user. If distance is not
"NULL", the dissimilarity matrix should be "NULL".

min.nc minimal number of clusters, between 2 and (number of objects - 1)

max.nc maximal number of clusters, between 2 and (number of objects - 1), greater or
equal to min.nc. By default, max.nc=15.

method the cluster analysis method to be used. This should be one of: "ward", "single",
"complete", "average", "mcquitty", "median", "centroid", "kmeans".

index the index to be calculated. This should be one of : "kl", "ch", "hartigan", "ccc",
"scott", "marriot", "trcovw", "tracew", "friedman", "rubin", "cindex", "db", "sil-
houette", "duda", "pseudot2", "beale", "ratkowsky", "ball", "ptbiserial", "gap",
"frey", "mcclain", "gamma", "gplus", "tau", "dunn", "hubert", "sdindex", "din-
dex", "sdbw", "all" (all indices except GAP, Gamma, Gplus and Tau), "alllong"
(all indices with GAP, Gamma, Gplus and Tau included).

alphaBeale significance value for Beale’s index.

Details

1. Notes on the "Distance" argument
The following distance measures are written for two vectors x and y. They are used when the
data is a d-dimensional vector arising from measuring d characteristics on each of n objects
or individuals.
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• Euclidean distance : Usual square distance between the two vectors (2 norm).

d(x, y) =

 d∑
j=1

(xj − yj)2

 1
2

• Maximum distance: Maximum distance between two components of x and y (supremum
norm).

d(x, y) = sup
1≤j≤d

|xj − yj |

• Manhattan distance : Absolute distance between the two vectors (1 norm).

d(x, y) =

d∑
j=1

|xj − yj |

• Canberra distance : Terms with zero numerator and denominator are omitted from the
sum and treated as if the values were missing.

d(x, y) =

d∑
j=1

|xj − yj |
|xj |+ |yj |

• Binary distance : The vectors are regarded as binary bits, so non-zero elements are "on"
and zero elements are "off". The distance is the proportion of bits in which only one is on
amongst those in which at least one is on.

• Minkowski distance : The p norm, the pth root of the sum of the pth powers of the
differences of the components.

d(x, y) =

 d∑
j=1

|xj − yj |p
 1

p

2. Notes on the "method" argument
The following aggregation methods are available in this package.

• Ward : Ward method minimizes the total within-cluster variance. At each step the pair
of clusters with minimum cluster distance are merged. To implement this method, at
each step find the pair of clusters that leads to minimum increase in total within-cluster
variance after merging. This increase is a weighted squared distance between cluster
centers. The initial cluster distances in Ward minimum variance method are defined to be
the squared Euclidean distance between points:

Dij = ‖xi − yj‖2

• Single : The distance Dij between two clusters Ci and Cj is the minimum distance
between two points x and y, with x ∈ Ci, y ∈ Cj .

Dij = minx∈Ci,y∈Cj
d(x, y)

A drawback of this method is the so-called chaining phenomenon: clusters may be forced
together due to single elements being close to each other, even though many of the ele-
ments in each cluster may be very distant to each other.
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• Complete : The distance Dij between two clusters Ci and Cj is the maximum distance
between two points x and y, with x ∈ Ci, y ∈ Cj .

Dij = maxx∈Ci,y∈Cj
d(x, y)

• Average : The distance Dij between two clusters Ci and Cj is the mean of the distances
between the pair of points x and y, where x ∈ Ci, y ∈ Cj .

Dij = sumx∈Ci,y∈Cj

d(x, y)

ni × nj

where ni and nj are respectively the number of elements in clusters Ci and Cj . This
method has the tendency to form clusters with the same variance and, in particular, small
variance.

• McQuitty : The distance between clusters Ci and Cj is the weighted mean of the
between-cluster dissimilarities:

Dij = (Dik +Dil) /2

where cluster Cj is formed from the aggregation of clusters Ck and Cl.
• Median : The distance Dij between two clusters Ci and Cj is given by the following

formula:

Dij =
(Dik +Dil)

2
− Dkl

4

where cluster Cj is formed by the aggregation of clusters Ck and Cl.
• Centroid : The distance Dij between two clusters Ci and Cj is the squared euclidean

distance between the gravity centers of the two clusters, i.e. between the mean vectors of
the two clusters, x̄i and x̄j respectively.

Dij = ‖x̄i − x̄j‖2

This method is more robust than others in terms of isolated points.
• Kmeans : This method is said to be a reallocation method. Here is the general principle:

(a) Select as many points as the number of desired clusters to create initial centers.
(b) Each observation is then associated with the nearest center to create temporary clus-

ters.
(c) The gravity centers of each temporary cluster is calculated and these become the new

clusters centers.
(d) Each observation is reallocated to the cluster which has the closest center.
(e) This procedure is iterated until convergence.

3. Notes on the "Index" argument

3.1. CH index. Calinski and Harabasz (1974)

CH(q) =
trace(Bq)/(q − 1)

trace(Wq)/(n− q)
Where
Wq =

∑q
k=1

∑
i∈Ck

(xi − ck) (xi − ck)
T is the within-group dispersion matrix for data clus-

tered into q clusters.
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Bq =
∑q
k=1 nk ∗(ck − c) (ck − c)T is the between-group dispersion matrix for data clustered

into q clusters.
xi = p-dimensional vector of observations of the ithobject in cluster k.
ck = centroid of cluster k
c = centroid of data matrix
nk = number of objects in cluster Ck

The value of q (q ∈ (2, ..., n − 2)), which maximizes CH(q), is regarded as specifying the
number of clusters.
This index is calculated if index = "ch" or "all" or "alllong".
The program for this index comes from the index.G1 function of the ClusterSim package.
However, the program was slightly corrected to take into account clusters with only one ob-
servation.
References : Milligan and Cooper (1985), Calinski and Harabasz (1974), Gordon (1999) and
Walesiak and Dudek (2011).

3.2. Duda index. Duda and Hart (1973)

duda =
Je(2)

Je(1)
=
Wk +Wl

Wm

where
Je(2) is the sum of squared errors within cluster when the data are partitioned into two clusters
and Je(1) gives the squared errors when only one cluster is present.
Wk, Wl, Wm are defined as Wq in CH Index.
It is assumed that clusters ck and cl are merged to form cm.
Bkl = Wm −Wk −Wl, if cm = ck ∪ cl.
ni = number of observations in cluster ci, i = k, l,m.
The optimal number of clusters is the smallest q such that

duda ≥ 1− 2

πp
− z

√√√√2
(

1− 8
π2p

)
nmp

= critV alueDuda

p is the number of variables in the data set
z is a standard normal score. Several values for the standard score were tested and the best
results were obtained when the value was set to 3.20.
This index is calculated if index = "duda" or "all" or "alllong".
References : Milligan and Cooper (1985), Duda and Hart (1973), Gordon (1999) and
SAS/STAT(R) 9.2 User’s Guide, Second Edition, the Cluster Procedure, Miscellaneous For-
mulas.

3.3. Pseudot2 index. Duda and Hart (1973)

pseudot2 =
Bkl

Wk+Wl

nk+nl−2

Bkl,Wk,Wl are defined in Duda index.
nk and nl are the number of objects in respectively Ck and Cl clusters.
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The optimal number of clusters is the smallest q such that:

pseudot2 ≤
(

1− critV alueDuda
critV alueDuda

)
× (nk + nl − 2)

This index is calculated if index = "pseudot2" or "all" or "alllong".
References : Milligan and Cooper (1985), Duda and Hart (1973), Gordon (1999) and
SAS/STAT(R) 9.2 User’s Guide, Second Edition, the Cluster Procedure, Miscellaneous For-
mulas.

3.4. C-index. Hubert and Levin (1976)

cindex =
Du− (r ×Dmin)

(r ×Dmax)− (r ×Dmin)

Dmin 6= Dmax

cindex ∈ (0, 1)
Du is the sum of all within-cluster dissimilarities
r = number of within-cluster dissimilarities
Dmin = smallest within-cluster dissimilarity
Dmax = largest within-cluster dissimilarity
The value of q (q ∈ (2, ..., n − 2)) which minimizes cindex is considered as specifying the
number of clusters.
This index is calculated if index = "cindex" or "all" or "alllong".
The program for this index comes from the index.G3 function of the ClusterSim package.
References : Milligan and Cooper (1985), Hubert and Levin (1976), Gordon (1999) and
Walesiak and Dudek (2011).

3.5. Gamma index. Baker and Hubert (1975)

gamma =
s(+)− s(−)

s(+) + s(−)

where:
s(+)= number of concordant comparisons
s(−)= number of discordant comparisons

The maximum value across the hierarchy levels is used to select the optimal number of clus-
ters.
In NbClust, this index is calculated only if index = "gamma" or "alllong" because of its high
computational demand.
The program and the formulas for this index is based on the index.G2 function of the Cluster-
Sim package, but the .C function was reprogrammed in R language.
References : Milligan and Cooper (1985), Baker and Hubert (1975), Milligan (1981), Gor-
don (1999) and Walesiak and Dudek (2011).
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3.6. Beale index. Beale (1969)
Beale index is defined by the following formula :

beale = F ≡

(
Wm−(Wk+Wl)

Wk+Wl

)
((

nm−1
nm−2

)
2

2
p − 1

)
where
Wk, Wl, Wm are defined as Wq in Calinski and Harabasz index
nm is the number of objects in cluster Cm.
It is assumed that clusters Ck and Cl are merged to form Cm.
The optimal number of clusters is obtained by comparing F with an Fp,(Nm−2)p distribution.
The null hypothesis of a single cluster is rejected for significantly large values of F . By de-
fault, in NbClust, the 10% significance level was used to reject the null hypothesis.
This index is calculated if index = "beale" or "all" or "alllong".
References : Milligan and Cooper (1985), Beale (1969) and Gordon (1999)

3.7. Cubic Clustering Criterion (CCC). Sarle (1983)

ccc = ln

[
1− E

(
R2
)

1−R2

] √
np∗

2

(0.001 + E (R2))
1.2

where

R2 = 1− trace(W )

trace(T )

T = X ′X is the total-sample sum-of-squares and crossproducts (SSCP) matrix (p× p)
W=T-B is the within-cluster SSCP matrix (p× p)
B = X̄ ′Z ′ZX̄ is between-cluster SSCP matrix (p× p)
X̄ = (Z ′Z)−1Z ′X
Z is a cluster indicator matrix (n × q) with element zik = 1 if the ithobservation belongs to
the kthcluster, 0 otherwise.

E(R2) = 1−

∑p∗
j=1

1
n+uj

+
∑p
j=p∗+1

u2
j

n+uj∑p
j=1 u

2
j

[ (n− q)2

n

] [
1 +

4

n

]
where :
uj =

sj
c

sj = square root of the jth eigenvalue of T
(n−1)

c =
(
v∗
q

) 1
p∗

v∗ =
∏p∗

j=1 sj
p∗ is chosen to be the largest integer less than q such that u∗p is not less than one.
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The maximum values across the hierarchy levels is used to indicate the optimal number of
clusters in the data.
This index is calculated if index = "ccc" or "all" or "alllong".
References : Milligan and Cooper (1985) and Sarle (1983).

3.8. PtBiserial index. Examined by Milligan (1980,1981)

ptbiserial =

(
d̄b − d̄w

) (
fwfb/n

2
d

)1/2
Sd

where:
dw = sum of within cluster distances
db = sum of between cluster distances
d̄w,d̄b = respective means
Sd = standard deviation of all distances
nd = total number of distances
fw = number of within cluster distances
fb = number of between cluster distances
This index is calculated if index = "ptbiserial" or "all" or "alllong".
References : Milligan and Cooper (1985), Milligan (1980,1981), Kraemer (1982) and ltm
package.

3.9. Gplus index. Reviewed by Rohlf (1974) and examined by Milligan (1981a)

G(+) =
2s(−)

nd (nd − 1)

where:

s(-) is the number of discordant comparisons i.e. the number of times where two points which
were in the same cluster had a larger distance than two points not clustered together.
nd = total number of distances (which is the same as the total number of observations or ob-
jects under study).
Minimum values of the index are used to determine the optimal number of clusters in the data.
In NbClust, this index is calculated only if index = "gplus" or "alllong" because of its high
computational demand.
References : Milligan and Cooper (1985), Rohlf (1974) and Milligan (1981a).

3.10. DB index. Davies and Bouldin (1979)
The Davies and Bouldin index is a function of the ratio of the sum of within-cluster scatter to
between-cluster separation. It is calculated by the following formula :

DB(q) = 1/q

q∑
r=1

maxs,r 6=s
Sr + Ss
drs
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where
r, s = 1, ..., q=cluster number
q = number of clusters (q ≥ 2)
Cr, Cs = rth, sth cluster
drs = v

√∑p
j=1 |crj − csj |

v = distance between centroids of clusters Cr and Cs
(for v = 2, drs is the euclidean distance)
cr = (cr1, ..., crp)= centroid of cluster Cr
Sr = u

√
1
nr

∑
i∈Cr

∑p
j=1 |xij − crj |

u = dispersion measure of a cluster Cr

(for u=2, Sr is the standard deviation of the distance of objects in cluster Cr to the centroid of
cluster Cr)
nr and ns are respectively the number of objects in clusters Cr and Cs.
The value of q, which minimizes DB(q), is regarded as specifying the number of clusters.
In NbClust, this index is calculated if index = "db" or "all" or "alllong".
The program and the formulas for this index come from the index.DB function of the Cluster-
Sim package.
References : Milligan and Cooper (1985), Davies and Bouldin (1979 and Walesiak and
Dudek (2011).

3.11. Frey index. Frey and Van Groenewoud (1972)
Frey index is the ratio of difference scores from two successive levels in the hierarchy. The
numerator is the difference between the mean outside-cluster distances, d̄v , from each of the
two hierarchy levels (level j and level j+1). The denominator is the difference between the
mean within cluster distances from the two levels (level j and level j+1). The authors proposed
using a ratio score of 1.00 to identify the correct cluster level. The ratios often varied above
and below 1.00. The best results occurred when clustering was continued until the ratio fell
below 1.00 for the last series of times. At this point, the cluster level before this series was
taken as the optimal partition. If the ratio never fell below 1.00, a one cluster solution was
assumed.

K =
d̄vj+1

− d̄vj
d̄sj+1

− d̄sj
where
d̄v = mean outside-cluster distance
d̄s = mean within-cluster distance
In NbClust, this index is calculated if index = "frey" or "all" or "alllong".
References : Milligan and Cooper (1985) and Frey and Van Groenewoud (1972).

3.12. Hartigan index. Hartigan (1975)
The Hartigan index is computed as follows :

hartigan =

(
trace(Wq)

trace(Wq+1)
− 1

)
(n− q − 1)

whereWq =
∑q
k=1

∑
i∈Ck

(xi− x̄k)(xi− x̄k)T is the within-group dispersion matrix for data
clustered into q clusters, q ∈ (1, ..., n− 2).
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xi = p-dimensional vector of objects of the ith object in cluster Ck,
x̄k = centroid of cluster k,
n is the number of observations in the data matrix.

Maximum value of the index is taken as indicating the correct number of clusters in the data
(q in (1, ..., n - 2)).
This index is calculated if index = "hartigan" or "all" or "alllong".
The program and the formulas for this index come from the index.H function of the Cluster-
Sim package.
References : Milligan and Cooper (1985), Hartigan (1975) and Walesiak and Dudek (2011).

3.13. Tau index. Reviewed by Rohlf (1974) and tested by Milligan (1981a)
Tau index is computed as follows:

Tau =
s(+)− s(−)

[(nd (nd − 1) /2− t) (nd (nd − 1) /2)]
1/2

where
s(+) is the number of concordant comparisons
s(-) is the number of discordant comparisons.
nd is the total number of distances (which is the same as the total number of observations or
objects under study)
t is the number of comparisons of two pairs of points where both pairs represent within cluster
comparisons or both pairs are between cluster comparisons.
The maximum value in the hierarchy sequence was taken as indicating the correct number of
clusters.
This index is calculated only if index = "tau" or "alllong" because of its high computational
cost.
References : Milligan and Cooper (1985), Milligan (1981a) and Rohlf (1974).

3.14. Ratkowsky index. Ratkowsky and Lance (1978)
This index is based on this formula :

S̄

q1/2

.
The value of S̄ is equal to the average of the ratios of B/T where B stands for the Sum of
Squares Between the clusters for each variable and T for the Total Sum of Squares for each
variable.
The optimal number of clusters is that value of q for which S̄

q1/2 has its maximum value.
If the value of q is made constant, the Ratkowsky and Lance criterion can be reduced from
S̄
q1/2 to S̄.
In NbClust package, Ratkowsky and Lance index is computed with the following formula :

ratkowsky = mean(
√
B/T )

This index is calculated if index = "ratkowsky" or "all" or "alllong".
The program and the formulas for this index come from the clustIndex function of the cclust
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package.
References : Milligan and Cooper (1985), Ratkowsky and Lance (1978), Hill (1980), Dimi-
triadou (2002) and Dimitriadou (2009).

3.15. Scott index. Scott and Symons (1971)
Scott index is based on the following formula :

nlog (|T | / |W |)

where

n is the number of elements in the data set,
T is the total sum of squares (see CCC index),
W is the sum of squares within the clusters (see CCC index).
The maximum difference between hierarchy levels was used to suggest the correct number of
partitions.
This index is calculated if index = "scott" or "all" or "alllong".
The program for this index is based on the clustIndex function of the cclust package, but it is
a little bit different. The difference comes from the definition of the W and T matrices.
References : Milligan and Cooper (1985), Scott and Symons (1971) and Dimitriadou (2009).

3.16. Marriot index. Marriot (1971)

marriot = k2|W |

where W is defined as in CCC index.
The maximum difference between successive levels was used to determine the best partition
level. This index is calculated if index = "marriot" or "all" or "alllong".
The program for this index is based on the clustIndex function of the cclust package, but it is
a little bit different. The difference comes from the definition of the W matrix. References :
Milligan and Cooper (1985), Marriot (1971), Dimitriadou (2002) and Dimitriadou (2009).
3.17. Ball index. Ball and Hall (1965)
This index is based on the average distance of the items to their respective cluster centroids.

ball =
W

q

where q is the number of clusters and W is the sum of squares within the clusters.
The largest difference between levels was used to indicate the optimal solution.
This index is calculated if index = "ball" or "all" or "alllong".
The program for this index come from the clustIndex function of the cclust package.
References : Milligan and Cooper (1985), Ball and Hall (1965), Dimitriadou (2002) and
Dimitriadou (2009).

3.18. TraceCovW index. Milligan and Cooper (1985)
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This index represents the trace of the within clusters pooled covariance matrix.

trcovw = trace (cov (W ))

where W is defined as in CCC.
Maximum differences scores between levels were used to indicate the optimal solution.
This index is calculated if index = "tracecovw" or "all" or "alllong".
The program for this index is based on the clustIndex function of the cclust package, but it
is a little bit different. The difference comes from the definition of the W and T matrices.
References : Milligan and Cooper (1985) and cclust package.

3.19. TraceW index. Milligan and Cooper (1985)

tracew = trace(W )

where W is defined as in CCC index.

Given that the criterion increases monotonically with solutions containing fewer clusters, max-
imum of the second differences scores were used to determine the number of clusters in the
data.
This index is calculated if index = "tracew" or "all" or "alllong".
The program for this index is based on the clustIndex function of the cclust package, but it is
a little bit different. The difference comes from the definition of the W matrix. References :
Milligan and Cooper (1985), Edwards and Cavalli-Sforza (1965), Friedman and Rubin (1967),
Orloci (1967), Fukunaga and Koontz (1970) and Dimitriadou (2009).

3.20. Friedman index. Friedman and Rubin (1967)
This index was proposed as a basis for non hierarchical clustering method.

friedman = trace
(
W−1B

)
where B and W are defined as in CCC index.
The maximum difference in values of this criterion was used to indicate the optimal number
of clusters. This index is calculated if index = "friedman" or "all" or "alllong".
The program for this index is based on the clustIndex function of the cclust package, but it is
a little bit different. The difference comes from the definition of the W and B matrices. Ref-
erences : Milligan and Cooper (1985), Friedman and Rubin (1967) and Dimitriadou (2009).

3.21. Mcclain index. McClain and Rao (1975)

This index consists of the ratio of two terms. The first term is the average within cluster
distance divided by the number of within cluster distances. The denominator value was the
average between cluster distance divided by the number of cluster distances. It is computed
as follows :
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mcclain =
mean

(∑k=1
q

∑nk

i=1

∑nk

j=i+1 dij

)
mean

(∑q
k=1

∑
i∈Ck

∑q
l=k+1

∑
j∈Cl

dij

)
where

q is the Number of clusters,
nk is the number of objects in the kth cluster, k ∈ [1...q]k in [1...q]
dij = distance between ith and jth objects
The minimum value of the index is used to indicate the optimal number of clusters.
This index is calculated if index = "mcclain" or "all" or "alllong".
References : Milligan and Cooper (1985) and McClain and Rao (1975).

3.22. Rubin index. Friedman and Rubin (1967)
This index is based on the ratio of the determinant of the total sum of squares and cross
products matrix to the determinant of the pooled within cluster matrix.

rubin = |T |/|W |

where T and W are defined as in CCC index.

The minimum value of second differences between levels was used.
This index is calculated if index = "rubin" or "all" or "alllong".
The program for this index is based on the clustIndex function of the cclust package. The
difference in results comes from difference in definition of W and T matrices.
References : Milligan and Cooper (1985), Friedman and Rubin (1967) and Dimitriadou E
(2009).

3.23. KL index. Krzanowski and Lai (1988)

KL(q) =

∣∣∣∣ DIFFqDIFFq+1

∣∣∣∣
where

DIFFq = (q − 1)
2/p

trace (Wq−1)− q2/ptrace (Wq)

Wqis defined as in Hartigan.
The value of q, which maximizes KL(q), is regarded as specifying the number of clusters.
This index is calculated if index = "kl" or "all" or "alllong".
The program and the formulas for this index come from the index.KL function of the Clus-
terSim package, but the program was corrected to take into account clusters with only one
observation.
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References : Krzanowski and Lai (1988) and Walesiak and Dudek (2011).

3.24. Silhouette index. Kaufman and Rousseeuw (1990)

silhouette =

n∑
i=1

S(i)/n, silhouette ∈ [−1, 1]

where
S(i) = b(i)−a(i)

max{a(i);b(i)}

a(i) =

∑
j∈Crß

dij

nr−1 is the average dissimilarity of the ith object to all other objects of Cr
cluster
b(i) = mins6=rdiCs

diCs =

∑
j∈Cs

dij

ns
is the average dissimilarity of the ith object to all objects of Cs cluster

Cr and Cs are respectively rth and sth clusters
nr and ns are respectively the number of objects in clusters Cr and Cs.
Maximum values of the index are used to determine the optimal number of clusters in the data.
S(i) is not defined for k = 1 (only one cluster). This index is calculated if index = "silhouette"
or "all" or "alllong".
The program for this index comes from the index.S function of the ClusterSim package.
References : Kaufman and Rousseeuw (1990), Rousseeuw (1987) and Walesiak and Dudek
(2011).

3.25. Gap index. Tibshirani et al. (2001)

The estimated gap statistic is computed as follows :
Gap(q) = 1

B

∑B
b=1 logWqb − logWq

where
B is the number of reference data sets generated using uniform prescription
Wqb is the within-dispersion matrix defined as in Hartigan index.
The optimal number of clusters is choosen via finding the smallest q such that:
Gap(q) ≥ Gap(q + 1)− sq+1, (q = 1, ..., n− 2)

where : sq = sdq
√

1 + 1/B
sdq is the standard deviation of {logWqb} , b = 1, ..., B :

sdq =

√√√√ 1

B

B∑
b=1

(logWqb − l̄)2

l̄ =
1

B

B∑
b=1

logWqb

Which is the same as: CritV alueGap = Gap(q)???Gap(q + 1) + sq+1 >= 0, (q =
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1, ..., n− 2)

In NbClust, Gap index is calculated only if ("index" = "gap" or "alllong") because of its high
computational cost.
References : Tibshirani et al. (2001) and Walesiak and Dudek (2011).

3.26. Dindex. Lebart et al. (2000)
The Dindex is based on clustering gain on intra-cluster inertia. Intra-cluster inertia can be
defined as:

W (P q) =
1

q

q∑
k=1

1

nk

nk∑
i=1

d(xi, ck)

Given two partitions, P k−1 composed of k − 1 clusters and P k composed of k clusters, the
clustering gain on intra-cluster inertia is defined as :

Gain = W (P q−1)−W (P q)

This clustering gain should be minimized. The optimal cluster configuration can be identi-
fied by the sharp knee that corresponds to a significant decrease of the first differences of
clustering gain versus the number of clusters. This knee or great jump of gain values can be
identified by a significant peak in second differences of clustering gain.
Dindex is calculated if ("index" = "dindex" or "all" or "alllong"). References : Lebart et al.
(2000).

3.27. Dunn index. Dunn(1974)

The Dunn index defines the ratio between the minimal intercluster distance to maximal intra-
cluster distance. The index is given by:

Dunn =
min1≤i<j≤qd(Ci, Cj)

max1≤k≤qdiam(Ck)

Where q is the number of clusters,
d(Ci, Cj) is the dissimilarity function between two clusters Ci and Cj defined as d(Ci, Cj) =
minx∈Ci,y∈Cj d(x, y)
diam(C) is the diameter of a cluster. It can be defined as follows :

diam(C) = maxx,y∈Cd(x, y)

Dunn index should be maximized.
Dunn is calculated if ("index" = "dunn" or "all" or "alllong"). References : Dunn (1974) and
clValid package.
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3.28. Hubert index. Hubert and Arabie 1985

Hubert Γ statistic is the point serial correlation coefficient between any two matrices. When
the two matrices are symmetric, Γ can be written in its raw form as :

Γ(P,Q) =
1

M

n−1∑
i=1

n∑
j=i+1

PijQij

where
M = n(n− 1)/2,
P is the proximity matrix of the data set,
Q is an n× n matrix whose (i, j) element is equal to the distance between the representative
points (vci, vcj) of the clusters where the objects xi and xj belong.
We note, that for q = 1 or q = n, the index is not defined.

The definition of Hubert normalized Γ statistic is given by the following equation :

Γ̄ =
(
∑n−1
i=1

∑n
j=i+1(Pij − µP )(Qij − µQ))

σPσQ

where µP , µQ, σP , σQ are the respective means and variances of P, Q matrices. This index
takes values between -1 and 1. If P andQ are not symmetric then all summations are extended
over all n2 entries and M = n2.
High values of normalized Γ statistic indicate the existence of compact clusters. Thus, in the
plot of normalized Γ versus q, the number of clusters, we seek a significant knee that corre-
sponds to a significant increase of normalized Γ as q varies from qmax to 2, where qmax is the
maximum possible number of clusters.
The number of clusters at which the knee occurs is an indication of the number of clusters that
underlie the data. In NbClust, second differences values of normalized Γ statistic are plotted
to help distinguish the knee from other anomalies. A significant peak in this plot indicates the
optimal number of clusters.
This index is computed if ("Index"= "hubert" or "all" or "alllong").
References : Hubert and Arabie (1985), Bezdek and Pal (1998) and Halkidi et al. (2001).

3.29. SDindex. Halkidi et al.(2000)
The SD validity index definition is based on the concepts of average scattering for clusters and
total separation between clusters. It is computed as follows :

SDindex(q) = αScat(q) +Dis(q)

The first term (Scat(q) indicates the average compactness of clusters (i.e. intra-cluster dis-
tance).

Scat(q) =
1

q

q∑
k=1

‖σ(ck)‖ / ‖σ(X)‖

where
q is the number of clusters, σX is the variance of the data set X,
|X| = (XTX)2)1/2.
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The second termDis(q) indicates the total separation between the q clusters (i.e. an indication
of inter-cluster distance).

Dis(q) =
Dmax

Dmin

q∑
k=1

(
q∑
z=1

‖ck − cz‖

)−1

where Dmax = max(|ck − cz|) ∀k, zin1, 2, 3, ..., q is the maximum distance between cluster
centers.
The Dmin = min (‖ck − cz‖) ∀k, z ∈ {1, 2, 3, ..., q} is the minimum distance between clus-
ter centers.
Alpha is a weightening factor equal to Dis(qmax) where qmax is the maximum number of
input clusters.
The number of clusters, q, that minimizes the above index can be considered as an optimal
value for the number of clusters present in the data set.
Unlike in clv package, where Alpha is equal to qmax, in NbClust package, Alpha is equal to
Dis(qmax) as it is mentioned (Halkidi, 2000).
This index is computed if ("Index"= "SDindex" or "all" or "alllong").
References : (Halkidi, 2000)

3.30. SDbw. Halkidi et al.(2001)

The SDbw validity index definition is based on the criteria of compactness and separation
between clusters. It is computed as follows:

SDbw(q) = Scat(q) +Density.bw(q)

The first term, Scat(q), is the same computed in SDindex. The second term, Density.bw(q),
is the inter-cluster density. It evaluates the average density in the region among clusters in
relation to the density of the clusters.

Density.bw(q) =
1

q(q − 1)

q∑
i=1

 q∑
j=1,i6=j

density(uij)

max(density(ci), density(cj))


where ci and cj are the centers of clusters and uij the middle point of the line segment defined
by the clusters centers ci, cj .

density(u) =

nij∑
l=1

f(xl, u)

nij is the number of tuples that belong to the clusters Ci and Cj . f(x, u) is equal to 0 if d(x,u)
> stdev and 1 otherwise.
Stdev is the average standard deviation of clusters.

stdev =
1

q

√√√√ q∑
i=1

‖σ(ci)‖
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The number of clusters q that minimizes SDbw is considered as the optimal value for the
number of clusters in the data set.
This index is computed if ("Index"= "SDbw" or "all" or "alllong").
References : Halkidi and Vazirgiannis (2001)

The table below summarizes indices implemented in NbClust and the criteria used to select the
optimal number of clusters.

Index in literature Index in NbClust Optimal number of clusters
1. Krzanowski and Lai "kl" or "all" or "alllong" Maximum value of the index
2. Calinski and Harabasz "ch" or "all" or "alllong" Maximum value of the index
3. Hartigan "hartigan" or "all" or "alllong" Maximum difference between

hierarchy levels of the index
4. Cubic Clustering Criterion "ccc" or "all" or "alllong" Maximum value of the index
5. n log (|T |/|W |) "scott" or "all" or "alllong" Maximum difference between

hierarchy levels of the index
6. k2|W | "marriot" or "all" or "alllong" Max. value of second differences

between levels of the index
7. Trace Cov W "trcovw" or "all" or "alllong" Maximum difference between

hierarchy levels of the index
8. Trace W "tracew" or "all" or "alllong" Maximum value of absolute second

differences between levels of the index
9. Trace W−1B "friedman" or "all" or "alllong" Maximum difference between

hierarchy levels of the index
10. |T |/|W | "rubin" or "all" or "alllong" Minimum value of second differences

between levels of the index
11. C-index "cindex" or "all" or "alllong" Minimum value of the index
12. Davies and Bouldin "db" or "all" or "alllong" Minimum value of the index
13. Silhouette "silhouette" or "all" or "alllong" Maximum value of the index
14. Je(2)/Je(1) "duda" or "all" or "alllong" Smallest nc such that index > criticalValue
15. Pseudot2 "pseudot2" or "all" or "alllong" Smallest nc such that index < criticalValue
16. Beale "beale" or "all" or "alllong" nc such that critical value of the index >= alpha
17. c/k.5 "ratkowsky" or "all" or "alllong" Maximum value of the index
18. Ball and Hall "ball" or "all" or "alllong" Maximum difference between hierarchy

levels of the index
19. Point-Biserial "ptbiserial" or "all" or "alllong" Maximum value of the index
20. Gap "gap" or "alllong" Smallest nc such that criticalValue >= 0
21. Frey and Groenewood "frey" or "all" or "alllong" the cluster level before that index value < 1.00
22. McClain and Rao "mcclain" or "all" or "alllong" Minimum value of the index
23. Gamma "gamma" or "alllong" Maximum value of the index
24. G(+) "gplus" or "alllong" Minimum value of the index
25. Tau "tau" or "alllong" Maximum value of the index
26. Dunn "dunn" or "all" or "alllong" Maximum value of the index
27. Modified statistic of Hubert "hubert" or "all" or "alllong" Graphical method
28. SD "sdindex" or "all" or "alllong" Minimum value of the index
29. Lebart "dindex" or "all" or "alllong" Graphical method
30. SDbw "sdbw" or "all" or "alllong" Minimum value of the index
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Value

All.index Values of indices for each partition of the dataset obtained with a number of
clusters between min.nc and max.nc.

All.CriticalValues

Critical values of some indices for each partition obtained with a number of
clusters between min.nc and max.nc.

Best.nc Best number of clusters proposed by each index and the corresponding index
value.

Author(s)

Malika Charrad, Nadia Ghazzali, Veronique Boiteau and Azam Niknafs
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Examples

## A 2-dimensional example
x<-rbind(matrix(rnorm(100,sd=0.1),ncol=2),

matrix(rnorm(100,mean=1,sd=0.2),ncol=2),
matrix(rnorm(100,mean=5,sd=0.1),ncol=2),
matrix(rnorm(100,mean=7,sd=0.2),ncol=2))

NbClust(x, diss="NULL", distance = "euclidean", min.nc=2, max.nc=8,
method = "complete", index = "ch", alphaBeale = 0.1)

## A 3-dimensional example
x<-rbind(matrix(rnorm(150,sd=0.3),ncol=3),

matrix(rnorm(150,mean=3,sd=0.2),ncol=3),
matrix(rnorm(150,mean=5,sd=0.3),ncol=3))

NbClust(x, diss="NULL", distance = "euclidean", min.nc=2, max.nc=10,
method = "ward", index = "dindex", alphaBeale = 0.1)

## A 5-dimensional example
x<-rbind(matrix(rnorm(150,sd=0.3),ncol=5),

matrix(rnorm(150,mean=3,sd=0.2),ncol=5),
matrix(rnorm(150,mean=1,sd=0.1),ncol=5),
matrix(rnorm(150,mean=6,sd=0.3),ncol=5),
matrix(rnorm(150,mean=9,sd=0.3),ncol=5))

NbClust(x, diss="NULL", distance = "euclidean", min.nc=2, max.nc=10,
method = "ward", index = "all", alphaBeale = 0.1)

## A real data example
data<-iris[,-c(5)]
NbClust(data, diss="NULL", distance = "euclidean", min.nc=2, max.nc=6,

method = "ward", index = "kl", alphaBeale = 0.1) ## KL index

NbClust(data, diss="NULL", distance = "euclidean", min.nc=2, max.nc=6,
method = "kmeans", index = "hubert", alphaBeale = 0.1)

NbClust(data, diss="NULL", distance = "manhattan", min.nc=2, max.nc=6,
method = "complete", index = "all", alphaBeale = 0.1)
## Only indices with low computational cost (26 indices).
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