An asymptotic linearization for non separable convex and integer quadratic programming - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

An asymptotic linearization for non separable convex and integer quadratic programming

Résumé

We present an exact method for solving non separable convex integer quadratic problems (IQP). Such problems arise in financial applications. The method we propose transforms (IQP) into a parameterized mixed linear integer problem which provides an overestimation of (IQP) depending on an integer parameter K. We show that as K gets larger, the overestimation tends to the optimal value of (IQP). The practical value of this approach is supported by numerical experiments. The asymptotic behavior of the method, associated with the determination of a precise feasible solution, allows us to exactly solve instances involving up to 60 bounded integer variables. We compare our computational results with the ones obtained by using a commercial solver (Cplex).
Fichier non déposé

Dates et versions

hal-01126077 , version 1 (06-03-2015)

Identifiants

  • HAL Id : hal-01126077 , version 1

Citer

Eric Soutif, Dominique Quadri. An asymptotic linearization for non separable convex and integer quadratic programming. Optimization 2011, Jul 2011, Lisbon, Portugal. pp.31. ⟨hal-01126077⟩
86 Consultations
0 Téléchargements

Partager

More