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ABSTRACT

This paper presents a performance analysis of likelihood
ratio test (LRT)-based and generalized likelihood ratio test
(GLRT)-based array receivers for the detection of a known
signal corrupted by a potentially noncircular interference.
Studying the distribution of the statistics associated with the
LRT and GLRT, expressions of the probability of detection
(PD) and false alarm (PFA) are given. In particular, an ex-
act closed-form expression of PD and PFA are given for two
LRT-based receivers and asymptotic (with respect to the data
length) closed-form expression are given for PD and PFA for
four GLRT-based receivers. Finally illustrative examples are
presented in order to strengthen the obtained results.

Index Terms— Detection, generalized likelihood ratio
test (GLRT), receiver operating characteristics (ROC), non-
circular, rectilinear, interference, widely linear.

1. INTRODUCTION

The detection of a known signal with unknown parameters
in the presence of noise plus interference (called total noise)
whose covariance matrix is unknown is an important problem
which has received much attention these last decades for ap-
plications such as radar, satellite localization or time acquisi-
tion in radio communications. However, most of the proposed
detectors assume implicitly or explicitly a second order (SO)
circular (or proper) total noise and become suboptimal in the
presence of SO noncircular (or improper) sources of interfer-
ence which may be potentially omnipresent in the aforemen-
tioned applications.

For this reason, some detectors in SO noncircular context
have been introduced, but under the restrictive condition of
either a known signal with known parameters (e.g., [1, 2]) or
a random signal [3]. Despite these works, the major issue of
practical uses consisting in detecting a known signal with un-
known parameters in the presence of an arbitrary unknown
SO noncircular total noise has been investigated to the best
of our knowledge only in [4, 5] for completely or partially
known propagation channel respectively. But no comprehen-
sive performance analysis of these GLRT detectors has been
investigated in these works. In particular, only a Monte Carlo

simulation exhibiting the non probability detection for spe-
cific false alarm and signal to interference plus noise ratio
(SINR) was presented in [5].

The purpose of this paper is to present a comprehensive
performance analysis of some detectors proposed in [5]. The
paper is organized as follows. The observation model and the
statement of the problem are given in Section 2. A review
of the LRT and some GLRT detectors are given in Section
3. A performance analysis of these detectors is presented and
illustrated in Sections 4 and 5 respectively.

2. HYPOTHESES AND PROBLEM FORMULATION

2.1. Hypotheses

Let us consider an array of N narrow-band sensors. Each
sensor is assumed to receive a known linearly modulated dig-
ital signal1 corrupted by a potentially noncircular total noise
composed of interference and background noise. The signal
of interest satisfies the Nyquist condition and is composed of
K real-valued2 known symbols ak.

Under these assumptions, after matched filtering and sam-
pling at the symbol rate3 the vector of complex amplitudes of
the signals at the output of these sensors, (xk)k=1,...K can be
written as follows

xk = ρse
iφsaks + nk, (1)

where s is the steering vector of the known signal, such that
its first component is equal to one. ρs and φs control the am-
plitude and the phase of the known signal on the first sensor
respectively, and nk are the samples of the zero-mean total
noise at the output of the matched filter.

1This signal may either correspond to a training sequence in a radio com-
munication link, a binary coding signal over the coherent processing interval
in radar applications, or a PN code over a symbol period for DS-CDMA net-
works or GPS systems.

2Note that this assumption is not so restrictive since rectilinear signals
such as DS-BPSK signals in particular, are currently used in a large domain
of practical applications. Extension to complex-valued symbols leads to more
involved derivations of some GLRT receivers, but the analysis of Section 4
extends straightforwardly.

3Note that the samples xk are sufficient statistics for the detection prob-
lem when the total noise is whitely Gaussian distributed only.



2.2. Second order statistics of the data

The SO statistics of the potentially noncircular data xk are
defined by

Rx(k) def= E(xkxH
k ) = πs(k)ssH + Rn(k),

Cx(k) def= E(xkxT
k ) = πs(k)e2iφsssT + Cn(k),

where πs(k) def= ρ2
sa

2
k since ak is deterministic.

2.3. Problem formulation

The problem addressed in this paper is the detection problem
with two hypotheses H0 and H1, respectively associated with
the presence of total noise nk only and signal plus total noise
in the data (xk)k=1,...,K based on the GLRT.

H0 : xk = nk, k = 1, .., K
H1 : xk = ρse

iφsaks + nk, k = 1, .., K.
(2)

To derive GLRT-based receivers, we need the following theo-
retical assumptions4 which are not necessarily verified or re-
quired in practice.

A.1: the matrices Rn(k) and Cn(k) do not depend on k
A.2: the samples (nk)k=1,..K are independent zero-mean

Gaussian and possibly noncircular.
Under these conditions, the parameters of the distribution

of (xk)k=1,..K are (ρs, φs), s and (Rn,Cn)5. As each of
these parameters may be either known or unknown, depend-
ing on the application, different GLRT-based receivers has
been derived in [5].

3. REVIEW OF THE LRT AND GLRT RECEIVERS

3.1. Clairvoyant receivers

We first consider the unrealistic case of completely known
parameters. According to the statistical theory of detection [6,
Ch. 3], the optimal detector is the LRT receiver that consists
in comparing to a threshold, the likelihood ratio LR(x,K)
defined by

LR(x,K) def=
p[(xk)k=1,..K/H1]
p[(xk)k=1,..K/H0]

.

With assumptions A.1 and A.2, it is straightforward to
prove [5], that the LRT receiver decides H1 if the statistic
OPT(x,K) defined by

OPT(x,K) def= w̃H
o r̂x̃,a (3)

is greater than a specific threshold, where w̃o
def= R−1

ñ s̃φ

is the so-called widely linear spatial matched filter (SMF)

4These assumptions are not critical in the sense that the GLRT-based re-
ceivers derived under these assumptions still provide good decision perfor-
mance even if most of the latter are not verified in practice.

5Rn and Cn are supposed arbitrary Hermitian and complex symmetric
structured matrices respectively.

[7], s̃φ
def= [eiφssT , e−iφssH ]T , Rñ

def= E[ñkñH
k ] with

ñk
def= [nT

k ,nH
k ]T and r̂x̃,a

def= 1
K

∑K
k=1 x̃kak where x̃k

def=
[xT

k ,xH
k ]T . In the particular case of a SO circular total noise

(Cn = O), the statistic OPT(x,K) (3) reduces to the con-
ventional one defined by

CONV(x, K) def= 2<[wH
c r̂x,a]. (4)

with wc
def= eiφsR−1

n s and r̂x,a
def= 1

K

∑K
k=1 xkak.

3.2. GLRT receivers

In most of situations of practical interest, the parameters
(ρs, φs) and (Rn,Cn) are unknown, while for some appli-
cations the steering vector s is known or unknown (see ap-
plications given in [5]). Thereby, we resort to GLRT approach
where we maximize p[(xk)k=1,..K ; θ1] and p[(xk)k=1,..K ; θ0]
with respect to the unknown parameters θ1 and θ0 under
H1 and H0 respectively, and use the resulting LR (de-
noted GLR(x,K)) as a decision statistic. Depending on
the unknown parameters θ1 and θ0, different expressions
of GLR(x,K) have been derived in [5]. For example for
(ρs, φs) unknown only,
2 ln[GLR(x,K)] = K r̂H

x̃,aR
−1
ñ S(SHR−1

ñ S)−1SHR−1
ñ r̂x̃,a

(5)
with S def=

(
s 0
0 s∗

)
.

4. PERFORMANCE ANALYSIS

4.1. Clairvoyant receivers

To be able to quantify and to compare the performance of
the previous clairvoyant receivers, we assume in this subsec-
tion that the propagation channel has no delay spread and that
the total noise nk is composed of a BPSK interference with
equiprobable symbols bk ∈ {−1, +1}, plus background noise
n′k uncorrelated with each other. Under these assumptions nk

is written as
nk = ρ1e

iφ1bk j1 + n′k, (6)

where j1 is the steering vector of the interference whose first
component is equal to one, and where (n′k)k=1,..,K are spa-
tially white zero-mean circularly Gaussian independent dis-
tributed random variables (RV) with E(n′kn

′H
k ) = η2I.

The probability of detection and false alarm associated
with the threshold λ are given respectively by

PD = P [OPT(x,K) > λ/H1] =

P [ρs(
1
K

K∑

k=1

a2
k)w̃H

o s̃φ+ρ1w̃H
o j̃φ

1
K

K∑

k=1

akbk+
1
K

K∑

k=1

akw̃H
o ñ′k >λ]

= P [β + α(
K∑

k=1

a2
k)−1/2

K∑

k=1

akbk + n′K > λ] (7)

PFA = P [OPT(x, K) > λ/H0]

= P [ρ1w̃H
o j̃φ

1
K

K∑

k=1

akbk +
1
K

K∑

k=1

akw̃H
o ñ′k > λ]



= P [α(
K∑

k=1

a2
k)−1/2

K∑

k=1

akbk + n′K > λ] (8)

with j̃φ
def= [eiφ1jT1 , e−iφ1jH1 ]T , α

def= ρ1
K (

∑K
k=1 a2

k)1/2w̃H
o j̃φ,

β
def= ρs( 1

K

∑K
k=1 a2

k)w̃H
o s̃φ =ρs( 1

K

∑K
k=1 a2

k)s̃H
φ R−1

ñ s̃φ >0

and n′K
def= 1

K

∑K
k=1 akw̃H

o ñ′k which is a real-valued zero-
mean Gaussian RV with variance σ2= η2

K2 (
∑K

k=1 a2
k)‖w̃o‖2.

Conditioning PD (7) and PFA (8) on the different equiprob-
able symbols (b1, ..., bK), we obtain by the total probability
formula

PD=
1

2K

2K∑

i=1

Q

(
λ−β−α(

∑K
k=1 a2

k)−1/2
∑K

k=1 akb
(i)
k

σ

)
,

(9)

PFA=
1

2K

2K∑

i=1

Q

(
λ−α(

∑K
k=1 a2

k)−1/2
∑K

k=1 akb
(i)
k

σ

)
,

(10)
where (b(i)

1 , ..., b
(i)
K )i=1,...,2K denote the 2K different binary

symbols (b1, ..., bK) and Q(x) def=
∫ +∞

x
1√
2π

e−u2/2du.
Expressions (9) and (10) of PD and PFA are valid for the

conventional receiver (4) as well, with now
α

def= 2ρ1
K (

∑K
k=1 a2

k)1/2<(eiφ1wH
c j1), β

def= 2ρs( 1
K

∑K
k=1 a2

k)

<(eiφswH
c s) = 2ρs( 1

K

∑K
k=1 a2

k)sHR−1
n s > 0 and n′K

def=
2
K<(

∑K
k=1 akwH

c n′k) which is a zero-mean Gaussian RV
with variance σ2 = 2η2

K2 (
∑K

k=1 a2
k)‖wc‖2.

Numerical computation of (9) and (10) are computa-
tionally costly for large values of K. But for these values,
using the central limit theorem, the distribution of the RV
(
∑K

k=1 a2
k)−1/2

∑K
k=1 akbk can be approximated by a zero-

mean and unit variance Gaussian distribution. In this case (9)
and (10) become respectively

PD ≈ Q
(

λ− β√
α2 + σ2

)
(11)

PFA ≈ Q
(

λ√
α2 + σ2

)
. (12)

This gives the closed-form expression of the ROC of clair-
voyant receivers (3) and (4)

PD ≈ Q
(
Q−1(PFA)−

√
SINR

)
(13)

where SINR = β2

α2+σ2 is Ktimes the mean (with respect to
ak) of the SINR at the output of the widely linear SMF w̃o

and of the linear SMF wc, respectively. Computation and
comparison of these SINR are done in [7] for BPSK signal of
interest and not reported here for want of space.

4.2. GLRT receivers

Depending on the unknown parameters θ among (ρs, φs), s
and (Rn,Cn), we consider the following practical four cases:

C1: (ρs, φs) is unknown, s and (Rn,Cn) are known

C2: (ρs, φs) and s are unknown, (Rn,Cn) is known
C3: (ρs, φs) and (Rn,Cn) are unknown, s is known
C4: (ρs, φs), s and (Rn,Cn) are unknown.

For each of these cases, the probability density function of
(xk)k=1,..K under H0 and H1 is the same, except that the
value of the unknown parameter vector θ is different. De-
compose the general unknown parameter θ in θs and θr

that collect the unknown parameters among (ρs, φs), s and
(Rn,Cn), respectively. s and r represent the dimensions of
the real-valued vector unknown parameters θs and θr. Note
that (Rn,Cn) is of no concern and is sometimes referred to as
a nuisance parameter. For identifiability reasons, we must use
reparameterizations, to get the parameters θs and θr that are
given for each cases by θs = [ρs cos(φs), ρs sin(φs)]T with
s = 2 for C1 and C3 and θs = [<(ρse

iφss)T ,=(ρse
iφss)T ]T

with s = 2N for C2 and C4. There is no nuisance parameter
for C1 and C2. θr = [(Rn)i,i,<((Rn)i,j),=((Rn)i,j) for
1 ≤ i < j ≤ N,<((Cn)i,j),=((Cn)i,j) for 1 ≤ i ≤ j ≤
N ]T with r = N(2N + 1) for C3 and C4. In this situa-
tion, detection problem (2) can be recast as the following
composite hypothesis testing problem [8], [6, Ch. 6]

H0 : p[(xk)k=1,..K ; θs = 0,θr]
H1 : p[(xk)k=1,..K ; θs 6= 0,θr].

(14)

With these notations, GLR(x, K) becomes

GLR(x,K) =
p[(xk)k=1,..K ; θ̂s1 , θ̂r1 ]

p[(xk)k=1,..K ;θs0 , θ̂r0 ]
,

with θs0 = 0 and (θ̂s1 , θ̂r1) and θ̂r0 are the maximum likeli-
hood estimates of (θs, θr) and θr under H1 and H0, respec-
tively.

The exact distribution of GLR(x,K) under H1 and H0

for the true distribution of the data appears prohibitive to
compute. For example, the derivation of the distribution
of simplest statistic (5) after conditioning on the symbols
(b1, .., bK), comes down to derive the distribution of the Her-
mitian form zHΩz where z is a zero-mean circular Gaussian
RV with covariance matrix arbitrary with respect to Ω, for
which no simple closed-form expression is available. But
asymptotically with respect to K and under the assumptions
for which the GLRT has been derived, i.e., according to a
noncircular Gaussian distribution of the data, Wilk’s theorem
with nuisance parameters [10, p.132] can be applied. Thus
the following convergence in distribution follows:

2 ln[GLR(x,K)] L→ χ2(s) under H0, (15)

where χ2(s) denotes the chi-squared distribution with s de-
grees of freedom. Under H1, it may be shown [9, Ch. 23.7]
under the assumption6 that θs can take values near 0, that
2 ln[GLR(x,K)] is approximately distributed as

2 ln[GLR(x,K)] a∼ χ2(s, µK) under H1, (16)
6The following more formal definition is given in [6, A. 6A]: ‖θs‖2 =

c/
√

K for some constant c, where θs is embedded in an adequate sequence
indexed by K.



where χ2(s, µK) denotes the noncentral chi-squared distribu-
tion with s degrees of freedom and noncentrality parameter
µK , which is a measure of discrimination between the two
hypotheses given by [8] and [6, Ch. 6] given by

µK = θT
s

[
Is,s(0, θr)− Is,r(0, θr)I−1

r,r(0, θr)Ir,s(0, θr)
]
θs,

where θs and θr are the true values under H1, and the terms in
the brackets are given by partitioning the Fisher information
matrix of (xk)k=1,..K for θ = (θT

s , θT
r )T as

IK(θ) =
(

Is,s(θs, θr) Is,r(θs, θr)
Ir,s(θs,θr) Ir,r(θs, θr)

)
.

We prove that µK=(
∑K

k=1 a2
k)ρ2

s s̃
H
φ R−1

ñ s̃φ for the four cases.
Since the asymptotic distribution of 2 ln[GLR(x, K)] under
H0 does not depend on any unknown parameter, the detector
is a constant false alarm rate (CFAR) detector. But in general
this CFAR property holds only for large data (K À 1).

We note that this performance analysis cannot be used to
obtain the asymptotic distributions of 2 ln[GLR(x,K)] de-
rived under the circular Gaussian distribution of the data, but
applied under noncircular Gaussian distribution of the data
described in [5].

5. ILLUSTRATIONS

To illustrate the analysis of performance of Section 4, we con-
sider an array of N = 2 omnidirectional sensors equispaced
half a wavelength apart. The phase and the direction of arrival
with respect to broadside, of both the BPSK signal of inter-
est and the BPSK interference are assumed constant over a
burst of K symbols. They take the following values: φs = 0,
θs = 0, φ1 = π/4 and θ1 = π/9. The input SNR and inter-
ference to noise ratio (INR) are defined by SNR = ρ2

s/η2 and
INR = ρ2

1/η2, respectively.
Fig.1 shows the empirical, the exact and approximate the-

oretical ROCs of the optimal (3) and conventionnel (4) clair-
voyant receivers for K = 4 and K = 64.
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Fig.1 Theoretical and empirical ROCs for SNR = −15dB and INR = 5dB.
We see that the optimal receiver largely outperforms con-

ventionnel ones and that the two theoretical (exact and ap-
proximate) ROCs coincide for both values of K. In fact, ap-
proximations (11) and (12) of (9) and (10), respectively, re-
main very accurate (to two significant digits) for K = 4 in all
the scenarios.

Fig.2 shows the empirical and the asymptotic theoretical
ROCs of the four GLRT receivers compared to the exact the-
oretical ROC of the optimal clairvoyant receiver described in
Section 3.
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Fig.2 Asymptotic theoretical and empirical ROC for SNR = −20dB, INR
= 0dB and K = 64.

Comparing the five ROCs, we see that the clairvoyant re-
ceiver outperforms the four GLRT receivers, the performance
improves with the knowledge of the steering vector s, whereas
for the validity conditions of our analysis (i.e., very weak
SNR and large data size), the knowledge of (Rn,Cn) does
not improve the performance. Furthermore, we observe that
the empirical ROCs fit the asymptotic theoretical ones for the
relatively small data length K = 64.
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