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Abstract

One of the major problems in clustering is the need of
specifying the optimal number of clusters in some clus-
tering algorithms. Some block clustering algorithms
suffer from the same limitation that the number of clus-
ters needs to be specified by a human user. This problem
has been subject of wide research. Numerous indices
were proposed in order to find reasonable number of
clusters. In this paper, we aim to extend the use of these
indices to block clustering algorithms. Therefore, an
examination of some indices for determining the num-
ber of clusters in CROKI2 algorithm is conducted on
synthetic data sets. The purpose of the paper is to test
the performance and ability of some indices to detect
the proper number of clusters on rows and columns par-
titions obtained by a block clustering algorithm.

Introduction
Simultaneous clustering, usually designated by biclustering,
co-clustering or block clustering, is an important technique
in two way data analysis. The term was first introduced
by Mirkin (Mirkin 1996) (recently by Cheng and Church
in gene expression analysis), although the technique was
originally introduced much earlier by J.Hartigan (Hartigan
1975). The goal of simultaneous clustering is to find sub-
matrices, which are subgroups of rows and subgroups of
columns that exhibit a high correlation. A number of al-
gorithms that perform simultaneous clustering on rows and
columns of a matrix have been proposed to date. They have
practical importance in a wide variety of applications such
as biology, data analysis, text mining and web mining. A
wide range of different articles were published dealing with
different kinds of algorithms and methods of simultaneous
clustering. Comparisons of several biclustering algorithms
can be found, e.g., in (Tanay, Sharan, and Shamir 2004),
(Prelic et al. 2006), (Madeira and Oliveira 2004) or (Char-
rad et al. 2008). One of the major problems of simultaneous
clustering algorithms, similarly to the simple clustering al-
gorithms, is that the number of clusters must be supplied as a
parameter. To overcome this problem, numerous strategies
have been proposed for finding the right number of clus-
ters. However, these strategies can only be applied with one
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way clustering algorithms and there is a lack of approaches
to find the best number of clusters in block clustering al-
gorithms. In this paper, we are interested by the problem
of specifying the number of clusters on rows and columns
in CROKI2 algorithm proposed in (Govaert 1983)(Govaert
1995)(Nadif and Govaert 2005). This paper is organized as
follows. In the next section, we present the simultaneous
clustering problem. Then in section 3 we present CROKI2
algorithm. In section 4 and section 5, we present a review of
approaches based on relative criteria for cluster validity and
some clustering validity indices proposed in the literature for
evaluating the clustering results. Moreover, an experimental
study based on some of these validity indices is presented in
section 6 using synthetic data sets.

Simultaneous clustering problem
Given the data matrix A, with set of rows X = (X1, ..., Xn)
and set of columns Y = (Y1, ..., Yn), aij , 1 ≤ i ≤ n and
1 ≤ j ≤ n is the value in the data matrix A corresponding
to row i and column j. Simultaneous clustering algorithms
aim to identify a set of biclusters Bk(Ik, Jk), where Ik is
a subset of the rows X and Jk is a subset of the columns
Y. Ik rows exhibit similar behavior across Jk columns, or
vice versa and every bicluster Bk satisfies some criteria of
homogeneity.

Y1 ... Yj ... Ym

X1 a11 ... a1j ... a1m

... ... ... ... ... ...
Xi ai1 ... aij ... aim

... ... ... ... ... ...
Xn an1 ... anj ... anm

Table 1: Data matrix

CROKI2 algorithm
CROKI2 algorithm is an adapted version of k-means based
on the Chi-square distance. It is applied to contingency ta-
bles to identify a row partition P and a column partition
Q that maximises χ2 value of the new matrix obtained by
grouping rows and columns. CROKI2 consists in applying
K-means algorithm on rows and on columns alternatively
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to construct a series of couples of partitions (Pn, Qn) that
optimizes χ2 value of the new data matrix. Given a contin-
gency table A(X, Y ), with set of rows X and set of columns
Y, the aim of CROKI2 algorithm is to find a row partition
P = (P1, ..., PK) composed of K clusters and a column par-
tition Q = (Q1, ..., QL) composed of L clusters that maxi-
mizes χ2 value of the new contingency table (P, Q) obtained
by grouping rows and columns in respectively K and L clus-
ters. The criterion optimized by the algorithm is :

χ2(P,Q) =
K∑

k=1

L∑

l=1

(fkl − fk.f.l)2

fk.f.l

with
fkl =

∑

i∈Pk

∑

j∈Ql

fij

fk. =
∑

l=1,L

fkl =
∑

i∈Pk

fi.

f.l =
∑

k=1,K

fkl =
∑

j∈Ql

f.j

The new contingency table T1(P,Q) is defined by this
expression:

T1(k, l) =
∑

i∈Pk

∑

j∈Ql

aij

k ∈ [1, ...,K] and l ∈ [1, ..., L].
The author of the algorithm has shown that the maximiza-
tion of χ2(P,Q) can be carried out by the alternated max-
imization of χ2(P, Y ) and χ2(X, Q) which guarantees the
convergence. Inputs of Croki2 algorithm are: contingency
table, number of clusters on rows and columns and number
of runs. The different steps of Croki2 algorithm are the fol-
lowing :

1. Start from the initial position (P (0), Q(0)).

2. Computation of (P (n+1), Q(n+1)) starting from
(P (n), Q(n)).

• Computation of (P (n+1), Q(n)) starting from
(P (n), Q(n)) by applying kmeans on partition
P (n).

• Computation of (P (n+1), Q(n+1)) starting from
(P (n+1), Q(n)) by applying kmeans on partition Q(n).

3. Iterate the step 2 until the convergence.

Cluster validation in clustering algorithms
While clustering algorithms are unsupervised learning pro-
cesses, users are usually required to set some parameters for
these algorithms. These parameters vary from one algorithm
to another, but most clustering algorithms require a param-
eter that either directly or indirectly specifies the number
of clusters. This parameter is typically either k, the num-
ber of clusters to return, or some other parameter that indi-
rectly controls the number of clusters to return, such as an
error threshold. Moreover, even if user has sufficient domain

knowledge to know what a good clustering ”looks” like, the
result of clustering needs to be validated in most applica-
tions. The procedure for evaluating the results of a clustering
algorithm is known under the term cluster validity. In gen-
eral terms, there are three approaches to investigate cluster
validity (Theodoridis and Koutroubas 1999). The first one
is based on the choice of an external criterion. This implies
that the results of a clustering algorithm are evaluated based
on a pre-specified structure, which is imposed on a data set
and reflects user intuition about the clustering structure of
the data set. In other words, the results of classification of
input data are compared with the results of classification of
data not participating in the basic classification. The second
approach is based on the choice of an internal criterion. In
this case, only input data is used for the evaluation of classi-
fication quality. The internal criteria are based on some met-
rics which are based on data set and the clustering schema.
The main disadvantage of these two methods is their com-
putational complexity. Moreover, the indices related to these
approaches aim at measuring the degree to which a data set
confirms an a priori specified scheme. The third approach of
clustering validity is based on the choice of a relative crite-
rion. Here the basic idea is the comparison of the different
clustering methods. One or more clustering algorithms are
executed multiple times with different input parameters on
the same data set. The aim of the relative criterion is to
choose the best clustering schema from the different results.
The basis of the comparison is the validity index. Several va-
lidity indices have been developed and introduced for each
of the above approaches ((Halkidi, Vazirgiannis, and Batis-
takis 2000) and (Theodoridis and Koutroubas 1999)). In this
paper, we focus only on indices proposed for the third ap-
proach.

Validity indices
In this section some validity indices are introduced. These
indices are used for measuring the quality of a clustering re-
sult comparing to other ones which were created by other
clustering algorithms, or by the same algorithms but using
different parameter values. These indices are usually suit-
able for measuring crisp clustering. Crisp clustering means
having non overlapping partitions.

Dunn’s Validity Index
This index (Dunn 1974) is based on the idea of identifying
the cluster sets that are compact and well separated. For any
partition of clusters, where Ci represent the cluster i of such
partition, the Dunn’s validation index, D, could be calculated
with the following formula:

D = min1≤i≺j≤K
d(Ci,Cj)

max1≤k≤Kd′(Ck)

where K is the number of clusters, d(Ci, Cj) is the dis-
tance between clusters Ci and Cj (intercluster distance) and
d′(Ck) is the intracluster distance of cluster Ck.In the case
of contingency tables, the distance used is Chi-2 distance.
The main goal of the measure is to maximise the intercluster
distances and minimise the intracluster distances. Therefore,
the number of clusters that maximises D is taken as the op-
timal number of clusters.
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Davies-Bouldin Validity Index

The DB index (Davies and Bouldin 1979) is a function of the
ratio of the sum of within-cluster scatter to between-cluster
separation.

DB = 1
K

∑
k maxk �=k′

Sn(ck)+Sn(ck′ )
S(ck,ck′ )

where K is the number of clusters, Sn is the average distance
of all objects from the cluster Ck to their cluster centre ck,
S(ck, ck′) distance between clusters centres ck and ck′ . In
the case of contingency tables, the distance used is Chi-2
distance. Hence, the ratio is small if the clusters are com-
pact and far from each other. Consequently, Davies-Bouldin
index will have a small value for a good clustering.

Silhouette Index

The Silhouette validation technique (Rousseeuw 1987) cal-
culates the silhouette width for each sample, average sil-
houette width for each cluster and overall average silhou-
ette width for a total data set. The average silhouette width
could be applied for evaluation of clustering validity and
also could be used to decide how good is the number of se-
lected clusters. To construct the silhouettes S(i) the follow-
ing formula is used:

S(i) =
b(i) − a(i)

maxa(i), b(i)

where a(i) is the average dissimilarity of i-object to all other
objects in the same cluster and b(i) is the minimum of aver-
age dissimilarity of i-object to all objects in other cluster (in
the closest cluster). If silhouette value is close to 1, it means
that sample is ”well-clustered” and it was assigned to a very
appropriate cluster. If silhouette value is about zero, it means
that that sample could be assign to another closest cluster as
well, and the sample lies equally far away from both clus-
ters. If silhouette value is close to 1, it means that sample
is ”misclassified” and is merely somewhere in between the
clusters. The overall average silhouette width for the entire
plot is simply the average of the S(i) for all objects in the
whole dataset. The number of cluster with maximum overall
average silhouette width is taken as the optimal number of
the clusters.

C-Index

This index (Hubert and Levin 1976) is defined as follows:

C =
S − Smin

Smax − Smin

where S is the sum of distances over all pairs of patterns
from the same cluster. Let l be the number of those pairs.
Then Smin is the sum of the l smallest distances if all pairs
of patterns are considered (i.e. if the patterns can belong to
different clusters). Similarly Smax is the sum of the l largest
distances out of all pairs. Hence a small value of C indicates
a good clustering.

Baker and Hubert index
Baker and Hubert index (BH) (Baker and Hubert 1975) is
an adaptation of Goodman and Kruskal Gamma statistic
(Goodman and Kruskal 1954).It is defined as:

BH(k) =
S+ − S−

S+ + S−

where S+ is the number of concordant quadruples, and
S

−
is the number of disconcordant quadruples. For this in-

dex all possible quadruples (q, r, s, t) of input parameters
are considered. Let d(x,y) be the distance between the sam-
ples x and y. A quadruple is called concordant if one of the
following two conditions is true:
• d(q, r) < d(s, t), q and r are in the same cluster, and s and

t are in different clusters.

• d(q, r) > d(s, t), q and r are in different clusters, and s
and t are in the same cluster.

By contrast, a quadruple is called disconcordant if one of
following two conditions is true:

• d(q, r) < d(s, t), q and r are in different clusters, and s
and t are in the same cluster.

• d(q, r) > d(s, t), q and r are in the same cluster, and s and
t are in different clusters.

Obviously, a good clustering is one with many concor-
dant and few disconcordant quadruples. Values of this index
belong to [-1,1]. Large values of BH indicate a good clus-
tering.

Krzanowski and Lai Index
KL index proposed by (Krzanowski and Lai 1988) is defined
as

KL(k) =
∣∣∣∣

DIFF (k)
DIFF (k + 1)

∣∣∣∣

where DIFF (k) = (k − 1)2/pWk−1 − k2/pWk and p is
the number of variables. The number of clusters that maxi-
mizes KL(k) is the good number of clusters.

Calinski and Harabasz Index
The CH index (Calinsky and Harabsz 1974) is defined as:

CH(k) =
B/(k − 1)
W/(n − k)

where B is the sum of squares among the clusters, W is
the sum of squares within the clusters, n is the number of
data points and k is the number of clusters. In the case of
groups of equal sizes, CH is generally a good criterion to
indicate the correct number of groups. The best partition is
indicated by the highest CH value.

Experimental results
CROKI2 algorithm uses k-means to cluster rows and
columns. Therefore, the number of clusters needs to be spec-
ified by user. Once CROKI2 is applied to data set, we use all
indices presented above to validate clustering alternatively
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DataSet K L
Data Set 1 3 3
Data Set 2 4 4
Data Set 3 5 4
Data Set 4 6 3
Data Set 5 6 6

Table 2: DataSets table

Figure 1: Projection of biclusters of Data set 4 on first and second
principal axes obtained by a principal component analysis. Left are
row-clusters and right column-clusters. Both clusters on rows and
columns are well separated.

on rows and columns. For our study, we used 6 synthetic
two-dimensional data sets. Every dataSet is composed of
200 rows and 100 columns generated around K clusters on
rows and L clusters in columns. (See table 2) .

Each index is applied first to row partition then to the col-
umn partition. For each partition, the couple of clusters that
correspond to the best value of the index is choosen as the
good couple of clusters (see example in table 3).

Table 3: Results of application of indices on Data set 1
Indices Row Column Best

partition partition couple
Dunn (3,3) (3,3) (3,3)

(3,4) (4,3)
(3,5) (5,3)
(3,6) (6,3)

BH (3,3) (3,3) (3,3)
(3,5) (5,3)
(3,6) (6,3)

HL (6,2) (4,6) x
KL (4,2) (3,2) x
DB (3,3) (3,3) (3,3)

(3,5) (4,3)
(3,6) (6,3)

CH (3,3) (3,3) (3,3)
(3,4) (4,3)
(3,5) (6,3)

Silhouette (3,3) (3,3) (3,3)

Consequently, for each index, there are two sets of solu-
tions, one set is for the row partition and the other set is for

the column partition. For example, (3,3), (3,4), (3,5) and
(3,6) are couples of clusters that maximize BH index when
applied to row partition of Data set 1. When it is applied
to the column partition, the maximum value of the index is
obtained with couples (3,3), (4,3), (5,3) and (6,3) (figure 2).

Figure 2: BH index calculated on row partition and column parti-
tion of Data Set 1

If one couple of clusters (K,L) belongs to the two sets of
solutions, for example (3,3) in data set 1, then this is the
good couple of clusters (see figures 2 and 3). In this case,
the index is able to find the correct number of clusters on
two dimensions.

Figure 3: Cloud of data points with BH column index on axis Y
and BH row index on axis X. There is only one solution (3,3) for
Data Set 1 represented by the highlighted point.

When there is no couple of clusters (K, L) that maxi-
mizes simultaneously row Index and column index (fig. 4)
i.e. there are many solutions for both row partition and col-
umn partition, the solution depend on the context and user
preferences.

Figure 4: Index HL calculated on row partition and column par-
tition of Data Set 3. There is no couple of clusters (K,L) that
maximizes simultaneously row Index and column index. There are
many solutions for both row partition and column partition.
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In fact, we can choose couple of clusters that corresponds
to best value of row index or column index. In the figure
5, (4,4) is the best solution for column partition and (4,5) is
the best solution for row partition. However, (5,2) has better
value of column index than (4,5) and better value of row
index than (4,4). we propose to compute a weighted index :

GlobalIndex = α ∗ RowIndex + β ∗ ColumnIndex

where α + β = 1
In this case, α and β values depend on the relevancy of the
row partition or the column partition for the user.

Figure 5: Cloud of data points with DB column index on axis Y
and DB row index on axis X. There are many solutions for Data
Set 3. (4,4) is the best solution for column partition and (4,5) is the
best solution for row partition.

Table 4: Comparison of indices results on synthetic datasets
DataSets DS1 DS2 DS3 DS4 DS5
Correct number (3,3) (4,4) (5,4) (6,3) (6,6)
of clusters
Dunn Index (3,3) (4,4) (5,4) (6,3) (6,6)

(9,6)
BH Index (3,3) (4,4) (5,4) (6,3) (6,6)
HL index x x x x x
KL index x x x x x
DB Index (3,3) (4,4) (4,4) (6,3) (6,6)

(4,5) (3,4)
CH index (3,3) (4,4) (4,4) (6,3) (6,6)

(3,3)
Silhouette (3,3) (4,4) (4,4) (6,3) (6,6)

(2,3)
(2,4)

The table 4 summarizes the results of the validity indices,
for different clustering schemes of the above-mentioned data
sets as resulting from the simultaneous clustering using
CROKI2 with its input value (number of clusters on rows
and columns), ranging between 2 and 12. When the num-
ber of clusters is the same on rows and columns, Dunn, BH,
CH, DB and Sihouette indices are able to identify the best
couple of clusters (K,L). But when the number of clusters on
rows and columns is much different, only BH index is able
to identify the correct number of clusters fitting the data set.
(See table 4).

Conclusion and future work
In this paper, we proposed to extend the use of some in-
dices used initially for classic clustering to biclustering al-
gorithms, especially CROKI2 algorithm for contingency ta-
bles. Experimental results show that these indices are able
to find correct number of clusters when applied to data sets
with diagonal structure i.e data sets having the same num-
ber of clusters on rows and columns. This work can be im-
proved by testing other indices on synthetic or real data sets
with known partitions.
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