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Abstract. Conjoint analysis seeks to explain an ordered categorical ordinal vari-
able according to several variables using a multiple regression scheme. A common
problem encountered, there, is the presence of missing values in classification-ranks.
In this paper, we are interested in the cases where consumers provide a ranking of
some products instead of rating these products (i.e. explained variable presents
missing values).In order to deal with this problem, we propose a weighted regres-
sion scheme. We empirically show (in several cases of weighting) that, if the number
of missing values is not too large, the data remain useful, and our results are close
to those of the complete order. A simulation study confirms these findings.
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1 Introduction

The conjoint analysis is a data analysis method. It links an explained cate-
gorical ordered variable to several explanatory variables either or unordered
categories. It allows analyzing consumers’ preferences for products defined by
combinations of attributes, according to these last ones.
Initially developed by psychometrics, the conjoint analysis has been intro-
duced in the marketing research field at the beginning of 1970s (Green and
Rao1971). Its use knew a considerable development at the end of 1970s and in
the 1980s (Wittink and Cattin on 1989). The conjoint analysis is a complete
methodology composed of three phases. The first one, based on experimen-
tal design, consists in collecting observations, generally, by direct interviews
where each interviewee evaluates a set of real or hypothetical products.
The second phase corresponds to data processing and the parameters’ esti-
mation. The conjoint analysis decomposes then the preferences according to a
model of additive utility wich is specific for every interviewee. The last phase
is dedicated to the simulation of market shares (Benammou et al. 2007).
We are interested here in the phase of treatment, and thus in the estimation
of the parameters. When a consumer has to classify by order of preference a
set of products, conjoint analysis is a particular case of the ordinary linear
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model.
Generally, the estimation is done by ordinary least square method. It sup-
poses that the consumer gives the same weight to all products and that the
“distance” between two products of successive ranks is the same for all the
ranks of classification. This hypothesis seems plausible in the case of the total
order.
But, in actual fact, the cognitive capacity of the consumer decreases when
the number of scenarios increases and the consumer tends to classify only the
most favorite products. It is easier to imagine two or three products and to
classify them rather than 10 or 12 products. At the end, we obtain missing
ranks in the classification. Benammou et al (2003) show upon an example a
good stability of the results when the missing values don’t exceed half of the
classified scenarios.
In some cases the distance between ranks of classification can be different.
The difference between the second classified product and the first one is much
smaller than the one between the last product and the next to last before.
Thus we propose the use of weighted least square method to model this be-
havior.
Furthermore, if we suppose that the consumer gives intuitively more (respec-
tively less) importance to the most (respectively least) preferred products, it
would then be logical to give a higher weight (respectively weak) to the first
classified products (respectively the last ones).
We propose the use of decreasing weight functions; what give weak weights
for the last classified ranks. These functions seem to better describe the be-
havior of the consumer. The use of fast decreasing weight functions can give
an alternative solution to the problem of partial classification of products,
especially when the number of non classified product is important.

2 Reminder on weighted regression

Let’s consider q products described by p qualitative variables X1, X2, . . .,
Xp in m1, m2, . . .,mp categories respectively. Generally, the associated linear
model is given by (1)

y = Xβ + e (1)

Where β is the vector of parameters to estimate, y the vector of classification

ranks, X the experimental matrix, (q,
p∑
i=1

mi ) the size of X, and e the random

errors vector associated such as V ar(e) = σ2Σ.
Here Σ is the errors variance covariance matrix which equals the identity in
the case of a classic linear model. The value of the Generalized Least Squares
(GLS) estimator is then given by the relation (2)

β̂ = (X′Σ−1X)−1(X′Σy) (2)
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For the weighted least squares (see for example Weisberg , 1985) every coor-
dinate of errors vector e is correlated to all the others; but the variances can
not be the same and the matrix Σ is then in the form (3).

Σ =


W1 0 · · · 0
0 W2 · · · 0
...

. . .
...

0 · · · 0 Wq

 (3)

Where Wi > 0 and
q∑
i=1

Wi = 1.

Let us suppose that a diagonal matrix C such as Σ exists. The matrix
C is then the “square root” of the inverse of the matrix Σ and we have
V ar(Ce) = σ2I. By an appropriate transformation of variables, we can re-
cover the common linear model.
And so if we suppose yw = Cy, Xw = CX and ew = Ce ,
the model becomes yw = Xwβ + ew and we recover the same shape as de-
scribed by the relation (1). This model verifies all the hypotheses required by
the classical linear model and we can use the ordinary least squares method
to estimate its parameters (relation (4)).

β̂ = (X′wXw)−1(X′wyw) (4)

3 Exemple

3.1 The data

To be able to compare our results with those of the literature, we take back
the data of the example treated by Benammou et al (2003), relatives to 263
consumers classifying scenarios of mobile phone subscriptions.

TABLE 1. List and labels of variables

Label Code Categori

Device price (in euro) Device price 0 100

Subscription fee (in euro) Sub fee 0 30

Peak hours definition Peak hours def p1 p2

Duration of subscription (in month) Duration 6 24

Monthly subscription price (in euro) Monthly sub 0 4, 5 9

Price/minute peak hours (in euro) Peak hours 0, 5 0, 7 0, 9

Price/minute off − peak hours (in euro) Off − peak hours 0, 008 0, 1 0, 15
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The scenarios emanate of seven variables, where four variables are in two
categories and three in three categories and the number of parameters linearly
independent to be considered equals 10.The design used is a D-optimal one
with 12 scenarios. The obtained products who presented to 263 consumers
whom answered by a total ranking. We give variables description in table 1.

3.2 The results and their interpretations

3.2.1 Studies of R2

Goodness of fit is measured by multiple correlation coefficient R2. This coef-
ficient is an indicator of the quality of adjustment of the model. When this
coefficient is low it denotes an inadequacy of the model, or an incoherence of
interviewee’s responses. Generally the second hypothesis is retained since the
model seems realistic. We should eliminate interviewee for whom R2 is less
than a critical value fixed by user. (Benammou et al 2003). In this example,
Benammou et al (2003) showed that R2 is close to 1 for almost all individ-
uals, in the total order case. The authors proposed three simple procedures
for estimating missing values. The first one consists in attributing to all the
non classified products the rank of the last classified product increased by
1. In the second one, all the non classified products receive the average of
missing ranks. For the third one, all the non classified products receive the
maximum rank. The results given by the three procedures being equivalent,
we give here those of the first one only.
The R2 of the weighted linear model in the case of total order (see Fig. 1.)
shows that they are better than those of the classic linear model. The adjust-
ment quality improves with the decreasing speed of weight function.
For example in the case of the functions f(x)=e−2x and f(x)=( 1

2 )x the R2 is
very close or equal to 1 for the majority of the individuals.

with no weight weighted by 1
X3

Fig. 1. R2 in the case of total order with and with no weight functions
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3.2.2 Study of the individual utilities
Benammou et al ( 2003 ) showed that the individual utilities remain stable
when the number of missing values does not exceed six -that is half of the
classified scenarios. The use of the weight functions improves considerably
this result (see Fig. 2.). We notice that in the case of the weight functions
of the form f(x)= 1

(X)n and when the number of missing values equals 8
the correlation between individual utilities in the case of total order and the
partial orders is ≥ 0, 8. It increases slightly with the decreasing speed of the
weight function and stabilizes when n exceeds 4. For the same functions when
n > 2 the results remain useful with 9 missing values (the correlation between
individual utilities reaches 0.9 for some factor levels).

with no weight weighted by 1
X3

Fig. 2. Correlation between individual utilities in case of total order and various
partial orders with and without weight functions

3.2.3 Study of the importance’s of the utilities
Benammou et al (2003) showed that the importance of the factor utilities
remain stable when the number of missing values does not exceed six. The
use of the weight functions improves slightly this result (see fig. 3.). The
importance of factors remains stable when the number of missing values is
not very important (about 7). This stability degrades when this number in-
creases. This is due to a strong correlation between these importances (and
thoose of the total order case).
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with no weight weighted by 1
X3

Fig. 3. Correlation between importance’s utilities in case of total order and various
partial orders with and without weight functions

4 Simulation

To generalize our results and to be able to compare them with the existing
literature, we conduct a simulation study analogous to that used by Benam-
mou et al (2003), where the authors have simulated ranks of classifications
in a systematic way. To have a realistic model, we make choice of an utilities
system and simulate ranks that are compatible and coherent adding noises ε
with a given standard deviation to X β.

4.1 R2 study

The simulation of the classification rank is based on the coefficients of a real
data model.This is done in order to guarantee the coherence of the simulated
data with a multiple correlation coefficient close to 1. We give in Fig.4. the
values of R2 for various values of σ2 for the weight function 1

X3 which seems
to give the best adjustment.

We point out that R2 values are close to 0,99 for the majority of the individ-
uals. Other functions such as f(x) = 1

2x , f(x) = exp(−2x) or f(x) = exp( 1
x )

give comparable results.

4.2 Analysis of the individual utilities

The individual utilities remain stable even for an important number of miss-
ing values (about 8). This stability decreases when the number of missing
values increases (see Fig. 5.). The results improve slightly when σ2 increases.
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σ2 = 1 σ2 = 6

Fig. 4. R2 in the case of total order for different values of σ2 weighted by 1
X3

The use of weight functions yields superior results to those obtained by Be-
nammou et al (2003). As an example, we give, in Fig. 5. the correlations
between individual utilities for various values of σ2 in the case of the weight
functions 1

X3 .

σ2 = 1 σ2 = 6

Fig. 5. Correlation between individual utilities in case of total order and various
partial orders for different values of σ2 weighted by 1

X3

4.3 Analysis of the importance’s utilities

Importance’s utilities remain stable for a large number of missing values
(about 8). This stability decreases when the number of missing values in-
creases (see Fig. 6.). The results improve slightly when σ2 increase. The use
of the weight functions improves the results obtained by Benammou et al
(2003). As an example, we give (Fig. 6.) the correlations between the impor-
tances of the utilities for various values of σ2 weighted by 1

X3
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σ2 = 1 σ2 = 6

Fig. 6. Correlation between importance’s utilities in case of total order and various
partial orders for different values of σ2 weighted by 1

X3 .

5 Conclusion

The case of partial ordering in conjoint analysis, is very frequent especially
when the number of proposed product exceeds ten. In this paper, we propose
the use of the weighted least squares to estimate the parameters. Our exper-
imentations showed a good stability of the results under the three quarter
ranked scenarios.We confirm our findings by simulation. It should be remar-
qued that the results are better when the weight functions decreasing speed
is faster.
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Statistique, 148, (4).57- 76.

Cattin, P. and Wittink, D.R. (1989): Commercial Use of Conjoint analysis: An
Update. Journal of Marketing, 53, .91-96.

Green, P.E. and Srinivasan, V. (1990): Conjoint analysis in marketing: new de-
velopments with implications for research and practice. Journal of Marketing,
3-19.

Green, P.E. and Rao, V.R.(1971): Conjoint Measurement for Quantifying Judgment
Data. Journal of Consumers Research, 5 September, 103-123.

Weisberg, S. (1985): Applied linear regression. John Wiley and Sons, inc, second
edition, New York.


