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Abstract. Structural equation models (SEMs) are multivariate latent variable
models used to model causality structures in data. A Bayesian estimation and val-
idation of SEMs is proposed and identifiability of parameters is studied. The latter
study shows that latent variables should be standardized in the analysis to ensure
identifiability. This heuristics is in fact introduced to deal with complex identifia-
bility constraints. To illustrate the point, identifiability constraints are calculated
in a marketing application, in which posterior draws of the constraints are derived
from the posterior conditional distributions of parameters.
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1 Structural equation models

1.1 Context

Structural equation models (SEMs) are multivariate latent variable models
used to represent latent structures of causality in data. The observed (mani-
fest) variables are associated with latent variables in the outer (measurement)
model and causality links are assumed between latent variables in the inner
(structural) model. This situation typically arises with satisfaction surveys
as illustrated in section 3 where the observed variables are the questions and
the latent variables are loyalty, satisfaction and image as in figure 2.

1.2 Model

Denoting Yi the row vector of observed values for individual i on the p man-
ifest variables and Zi the row vector of scores of individual i on the q latent
variables, the measurement model is expressed as

Yi = Ziθ + Ei, 1 ≤ i ≤ n (1)

where Ei is the measurement error term distributed Ei ∼ N (0, Σε) with
Σε diagonal and θ is the q × p matrix of regression coefficients.
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If Zi were known, the measurement model (1) would reduce to a linear
regression model.

Denoting Hi the endogenous latent variables and Ξi the exogeneous latent
variables, the structural equations are equivalently given by the following
expressions

Hi = HiΠ +ΞiΓ +∆i

Hi = ZiΛ+∆i Λt =
(
Πt Γ t

)
Πt

0Hi = Γ tΞi +∆i Π0 = Id−Π
(2)

where Π is the q1 × q1 matrix of regression coefficients between endoge-
neous latent variables , Γ is the q2 × q1 matrix of regression coefficients be-
tween endogeneous and exogeneous latent variables. ∆i is the error term dis-
tributed ∆i ∼ N (0, Σδ), independent with Ξi and Ξi is distributed N (0, Φ).

1.3 The role of latent variables and identifiability constraints

Basically LV are unidimensional concepts, measured on manifest variables
(usually on different scales). They provide practitioners with useful unob-
served information on individuals. Since latent variables are not observed
they are unscaled. Unlike Palomo et al. (2007) who advocate a free mean
and variance model for latent variables, this paper aims to prove that latent
variables should be standardized in the run of the analysis, for identifiabil-
ity concerns, see section 2.6 for a brief overview. This standardization step is
showed to be an heuristics leading to the improved Gibbs sampling algorithm
presented in section 2.4.

2 Bayesian estimation of SEM

2.1 Bayesian estimation

In the latent variable model defined by equations (1) and (2), well-known
techniques of data augmentation and imputation, see Tanner and Wong
(1987), are implemented in a Gibbs algorithm (see section 2.4) under nor-
mality and conjugacy assumptions. See Box and Tiao (1973) for calculations
in multivariate Normal models and Gelman et al.(2004) for Gibbs sampling.

2.2 Conditional posterior distribution of latent variables

Let Θ = {θ,Σε, Π0, Γ,Σδ, Φ}. The conditional posterior distribution of the
latent variables is expressed as

[Zi|Yi, Θ] ∝ [Yi|Zi, Θ] [Zi|Θ]
∝ [Yi|Zi, θ, Σε] [Zi|Π0, Γ,Σδ, Φ]
∝ [Yi|Zi, θ, Σε] [Hi|Ξi, Π0, Γ,Σδ] [Ξi|Φ]

(3)
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where [Yi|Zi, θ, Σε] is the likelihood of individual i computed from the
measurement model (1) and [Zi|Π0, Γ,Σδ] is the joint prior distribution of
latent variables deduced from the structural equations (2)

Zi|Π0, Γ,Σδ, Φ ∼ N (0, ΣZ) (4)

ΣZ =
(

(Πt
0)−1 (Γ tΦΓ +Σδ)Π−1

0 (Πt
0)−1

Γ tΦ
ΦΓΠ−1

0 Φ

)
(5)

Immediate computation gives

Zi|Yi, θ, Σε, Λ,Σδ, Φ ∼ N
(
DθΣ−1

ε Yi, D
)

(6)

where D−1 = θΣ−1
ε θt +Σ−1

Z .

2.3 Conditional posterior distributions of parameters

The conditional posterior distribution of parameters is expressed as

[Θ|Y, Z] ∝ [Y, Z|Θ] [Θ]
∝ [Y |Z, θ,Σε] [θ,Σε] [H|Ξ,Λ,Σδ] [Λ,Σδ] [Ξ|Φ] [Φ]

(7)

where prior independance between inner and outer parameters is assumed.
The last expression implies that the posterior distributions of parameters

can be computed separately from the following expressions

[θ,Σε|Y,Z] = [Y |Z, θ,Σε] [θ,Σε]
[Λ,Σδ|Y,Z] = [H|Ξ,Λ,Σδ] [Λ,Σδ]

[Φ|Z] = [Ξ|Φ] [Φ]
(8)

Let θk = (θk1 . . . θknk), the vector of regression coefficients of block k
where nk is the number of manifest variables in block k with θk1 = 1 for
identifiability (see section 2.6), Λk the kth column of Λ and Σεk and Σδk the
associated error terms. Conjugate prior distributions are

θkj |Σεkj ∼ N (θ0k, ΣεkjΣε0k) , Σ−1
εkj ∼ Gamma (α0εk, β0εk)

Λk|Σδk ∼ N (Λ0k, ΣδkΣδ0k) , Σ−1
δk ∼ Gamma (α0δk, β0δk)

Φ−1 ∼ InvWishart (R0, d0)

(9)

Let Ykj the jth manifest variable of block k, and Zk the associated latent
variable. Combining (8) and (9) gives the posterior distributions



472 Demeyer, S. et al.

θkj |Y, Z,Σεkj ∼ N (DkjAkj , ΣεkjDkj)

Σ−1
εk1 ∼ G

(
n

2
+ α0εkj , β0εkj +

1
2

(Ykj − Zk)t (Ykj − Zk)
)

Σ−1
εkj ∼ G

(
n

2
+ α0εkj , β0εkj +

1
2

[
Y tkjYkj − (DkjAkj)

t
D−1
kj DkjAkj +

θ2
0k

Σε0k

])
Dkj =

(
ZtkZk +Σ−1

ε0k

)−1
, Akj = Σ−1

ε0kθ0k + ZtkYkj

Λk|Y,Z,Σδk ∼ N
(
D̃kÃk, ΣεkD̃k

)
Σ−1
δk ∼ G

(
n

2
+ α0δk, β0δk +

1
2

[
Y tkYk −

(
D̃kÃk

)t
D̃k
−1
D̃kÃk + Λt0kΣ

−1
δk Λ0k

])
D̃k =

(
ZtkZk +Σ−1

δk

)−1
, Ãk = Σ−1

δk Λ0k + ZtHk

Φ|Z ∼ InvWishart
(
ΞtΞ +R−1

0 , n+ d0

)
2.4 The Gibbs sampler

Gibbs algorithm (see figure 1) alternates sampling in the conditionnal poste-
rior distribution of parameters given data and latent variables (step 1), and
sampling in the conditional posterior distributions of latent variables given
data and parameters (step 3 to 7). Step 2 is the heuristics whose role is to
ensure identifiability of the model by scaling the latent variables.

Initialisation : θ0, Σ0
ε , Λ

0, Σ0
δ , Φ

0

At iteration t :

a. sampling in the conditional posterior distribution of latent variables:
Zt ∼ Z|Y, θt−1, Σt−1

ε , Λt−1, Σt−1
δ , Φt−1

b. standardization of latent variables: define Z∗t the standardized LV
c. Σt

ε ∼ Σε|Y,Z∗t, θt−1, Λt−1, Σt−1
δ , Φt−1

d. θt ∼ θ|Y,Z∗t, Σt
ε, Λ

t−1, Σt−1
δ , Φt−1

e. Σt
δ ∼ Σ

|
δY,Z

∗t, Λt−1, θt, Σt
ε, Φ

t−1

f. Λt ∼ Λ|Y,Z∗t, Σt
δ, θ

t, Σt
ε, Φ

t−1

g. Φt ∼ Φ|Y,Z∗t, θt, Σt
ε, Λ

t, Σt
δ

Fig. 1. Steps of Gibbs algorithm

After enough runs of Gibbs algorithm, conditional posterior simulations
are supposed to be drawn from the marginal distributions of parameters.



Contributions to Bayesian Structural Equation Modeling 473

2.5 Validation

Validation is based on Posterior Predictive p-values as developed in Gelman
and al. (1996). PP p-values are derived from posterior predictive distribu-
tions, integrated out both parameters and latent variables. Let yrep be a
simulated dataset under the same model that generated the observed dataset
y, say H0, and the same parameters Θ and latent variables Z. The posterior
predictive distribution of yrep is then defined as:

PH0 (yrep|y) =
∫

PH0 (yrep, Θ, Z|y) dΘdZ

=
∫

PH0 (yrep|Θ,Z) [Θ,Z|y] dΘdZ
(10)

The PP p-value is defined as the tail probability of a given discrepancy
function D (analogous to the use of statistics to compute classical p-values)
under the posterior predictive distribution :

PPp (y) = PH0 (D (yrep, Θ, Z) ≥ D (y,Θ, Z) |y)

=
∫

PH0 (D (yrep, Θ, Z) ≥ D (y,Θ, Z)) [Θ,Z|y] dΘdZ (11)

Lee (2007) selected the following discrepancy function to test SEMs:

D (yrep, Θ, Z) =
n∑
i=1

(
yrepi − Ziθi

)t
Σi
ε

(
yrepi − Ziθi

)
(12)

where θi and Σi
ε are the current values in the run of Gibbs algorithm.

The PP p-value is thus computed as the proportion of runs for which
D
(
yrep, Θ

i, Zi
)

is higher than D
(
y,Θi, Zi

)
. H0 is not rejected if the PP

p-value is near 0.5.

2.6 Identifiability issues

Identifiability of structural equation models is the injectivity of the likelihood
function integrated out the latent variables namely

∀Yi, [Yi|Θ] =
[
Yi|Θ̃

]
=⇒ Θ = Θ̃ (13)

where Yi is marginally distributed as N (0, ΣY ) and ΣY = θtΣZθ +Σε.
With the notations of section 2.3 and denoting ΣZ = {ρij , 1 ≤ i, j ≤ K},

ΣY is the block matrix

ΣY =


ρ11θ1θ

t
1 +Σε1 ρ12θ1θ

t
2 . . . ρ1Kθ1θ

t
K

ρ12θ1θ
t
2 ρ22θ2θ

t
2 +Σε2 . . .

...
...

ρ1Kθ1θ
t
K . . . . . . ρKKθKθ

t
K +ΣεK

 (14)
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Identifiability constraints are directly derived from definition (13) applied
to the Normal likelihood, giving ΣY = Σ̃Y .

The identifiability equations arising from this equality are

ρkkθ
2
ki + σ2

ki = ρ̃kkθ̃
2
kiσ̃

2
ki, i = 1 . . . nk, k = 1 . . .K (15)

ρkkθkiθkj = ρ̃kkθ̃kiθ̃kj , 1 ≤ i < j ≤ nk, k = 1 . . .K (16)

ρkk′θkiθk′j = ρ̃kk′ θ̃kiθ̃k′j , 1 ≤ i ≤ nk, 1 ≤ j ≤ nk′ , k = 1 . . .K (17)

Equations (15) and (16) are derived from the block diagonal elements of
ΣY and equation (17) is derived from the extra block diagonal elements of
ΣY .

If θk1 = θ̃k1 and ρkk = ρkk′ for a fixed k then equation (16) gives θkj = θ̃kj
for all j. Reporting in equation 15 gives σ2

ki = σ̃2
ki for all k, i. Reporting in

equation (17) gives ρkk′ = ρ̃kk′ for all k, k′. Consequently, a sufficient set of
conditions for identifiability is θk1 = 1 and ρkk = 1 for all k.

The latter constraint is actually expressed in terms of the inner parame-
ters, see the application, obtained by equating to 1 the diagonal elements of
ΣZ given in expression 5. However, posterior sampling of parameters given
these constraints is complicated. The heuristics, consisting in standardizing
latent variable after they have been drawn in their posterior distribution,
should overcome this difficulty, as shown in the application.

3 Application

Consider a part of ECSI model considering only relationships between loyalty,
satisfaction and image (see figure 2), on a subset of n = 202 individuals with
no missing data. The full dataset is the demonstration dataset of XLStat soft-
ware (http://www.xlstat.com/) with ordinal variables treated as continuous
variables. The algorithm is implemented with R software.

Let θ0 and λ0 denote the common prior values of parameters. Priors
on parameters are chosen to reflect confidence in the causality links: θ0 =
0.5, Λ0 = 0.5, Σε0 = 1, Σδ0 = 1 and Φ0 = 1. Early convergence of Gibbs
algorithm for all the parameters and law autocorrelation in posterior samples

is observed. Formula (5) applied to this model with Π0 =
(

1 0
−π12 1

)
and

Γ = (λ1λ2) gives the following expression of ΣZ

0@λ2
1 +Σδ1 + π12λ1λ2 + π2

12

`
λ2

2 +Σδ2
´

; λ1λ2 + π2
12

`
λ2

2 +Σδ2
´

; Φ (λ1 + λ1λ2)
λ1λ2 + π2

12

`
λ2

2 +Σδ2
´

λ2
2 +Σδ2 Φλ2

Φ (λ1 + λ1λ2) Φλ2 Φ

1A
Identifiability constraints are given by equating to 1 the diagonal elements

(see section 2.6)

a)Φ = 1, b)λ2
2 +Σδ2 = 1, c)λ2

1 +Σδ1 + π12λ1λ2 + π2
12

(
λ2

2 +Σδ2
)

= 1
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Posterior samples of these constraints are computed from the posterior
samples of parameters. These distributions are centred in 1 with low disper-
sion as showed in figure 2, which tends to support the heuristics.

Fig. 2. Posterior distributions of the constraints a), b) and c) from left to right

Parameters of interest in SEMs are the correlations between manifest
variables and latent variables and between latent variables. In table 1 θ12,
θ22, θ23, θ32, θ33, θ34, θ35 and λ2 are correlation coefficients whereas π12 and
λ1 are coefficients of a multiple regression. For identifiability θ11 = 1, θ21 = 1
and θ31 = 1 (see section 2.6). From table 1, satisfaction and Image are highly
correlated (0.796), meaning that Image has a great influence on Satisfaction.
All the correlations are represented in the summary graph of figure 2.

θ12 θ22 θ23 θ32 θ33 θ34 θ35 π12 λ1 λ2

mean 0.774 0.705 0.784 0.605 0.457 0.732 0.658 0.475 0.307 0.796

sd 0.060 0.051 0.053 0.063 0.067 0.059 0.059 0.127 0.130 0.047

Table 1. Regression coefficients: posterior mean and standard deviation (sd)

The PPp-value 0.37 < 0.5 is due to the poor adjustment of data with
the Normal distribution. This example however shows interesting features of
Bayesian analysis, like hypothesis testing with PPp-values and the possibility
to look at the variability of parameters and to the variability of functions of
parameters.

4 Conclusion and perspectives

Posterior distributions of all the parameters of SEMs are derived under Nor-
mality and conjugacy assumptions. They are useful material to investigate
aspects of the model like the variability of parameters and functions of pa-
rameters and hypothesis testing. The Gibbs algorithm augmented by the
heuristics presented in this paper, converges rapidly, with low autocorrela-
tions in posterior samples, thus reducing the number of iterations needed.



476 Demeyer, S. et al.

Fig. 3. Graph of correlations

More generally, this paper advocates systematic computation of identifiabil-
ity constraints. Future work will concern structural equation modelling of
mixed continuous and categorical data.
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