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Av. Prof. Luiz Freire, s/n - Cidade Universitária, CEP 50740-540, Recife-PE,
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Abstract. This paper aims to adapt clusterwise regression to interval-valued data.
The proposed approach combines the dynamic clustering algorithm with the center
and range regression method for interval-valued data in order to identify both
the partition of the data and the relevant regression models, one for each cluster.
Experiments with a car interval-valued data set show the usefulness of combining
both approaches.
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1 Introduction

There is a large amount of publications on symbolic interval-valued data (see
Billard and Diday (2007)). Symbolic interval-valued data occur in two con-
texts: either when one has uncertainty on individual values, or when one has
variation like eg in medical data such as blood pressure, pulse rate observed
on a daily time period. We will consider here only the second case.

Several methods have been proposed to deal with the case where the
response y as well as the predictors are interval-valued variables. We will
use the centre and range method proposed by Lima Neto and De Carvalho
(2008). Assuming that data are homogeneous (ie there is only one regression
model for the whole data set ) can be misleading. Clusterwise regression has
been proposed long ago, as a way to identify both the partition of the data
and the relevant regression models, one for each class. Clusterwise regression
may be viewed as a particular mixture or latent class model, or from a data
analytic perspective as a combination of cluster and regression analysis.

In this paper we adapt clusterwise regression to interval-valued data. The
paper is organized as follows. Section 2.1 presents approaches for interval
data regression, section 2.2 is a short presentation of clusterwise regression.
Section 3 presents how clusterwise regression is extended to interval data.
Section 4 presents experiments with a car interval-valued data set in order
to show the usefulness of combining both approaches. Finally, section 5 gives
concluding remarks.
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2 A Brief Overview of Regression for Interval-Valued
Data and Clusterwise Linear Regression

2.1 Regression for Interval Data

Billard and Diday (2000) considered the center method where one fits a re-
gression model to the mid-points of the intervals. They predict the bounds of
y by applying the model for the centers to the upper bounds of the predictors
(resp. the lower bounds). The same model is thus applied to predict the cen-
ters and the (upper and lower) bounds. The MinMax method (Billard and
Diday (2002)) consists in fitting two different regressions, one for all upper
bounds, the other for all lower bounds.

Recently Lima Neto and de Carvalho (2008) presented the “center and
range method”: in short, this method consists of fitting two linear models,
one for the centers of the intervals, another one for the range. The prediction
for a new example is given by the prediction of the center ± the half of the
predicted range. In their paper, Lima Neto and de Carvalho (2008) proved
with extensive simulations the superiority of the last method compared to the
centre and the MinMax method, and it is why we will use it in the following.

2.2 Clusterwise Linear Regression

Clusterwise linear regression is a useful technique when heterogeneity is
present in the data. It is a mix of cluster analysis and regression where clus-
ters are obtained in a supervised way in order that for each cluster we have
the “best” regression model.

This “local” regression model may also be viewed as a particular mixture
model (Wayne et al 1988 and Hennig 2000) who used maximum likelihood
estimation. Clusterwise linear regression has been also analyzed in a fuzzy
framework (D’Urso and Santoro (2006)). We focus here on least squares tech-
niques. In the basic model the number of clusters is supposed to be known.

Let y be a response variable and x a p-dimensional vector of regressors.
From an algorithmic point of view the aim is to find simultaneously an opti-
mal partition of the data in K clusters, 1 < K < n and K regression vectors
β(k) (1 < k < K) one for each cluster such that one maximizes the overall
fit or minimize the sum of squared residuals:

K∑
k=1

∑
i∈Pk

(εi(k))2

where Pk is the kth cluster, ŷi(k) is the prediction of y (assuming i ∈ Pk) and

yi = (xi)Tβ(k) + εi(k) =
p∑
j=1

βj(k)xij + εi(k) = ŷi(k) + εi(k)
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Numerous algorithms have been proposed to solve this problem: some use
combinatorial optimisation techniques like Spaeth (1979) who proposes an
exchange algorithm. We will use here the special case of k-means clustering
which has been proposed by Diday and Simon (1976) and Bock (1989) and
belongs to the family of alternated least squares techniques:
Step 1: Starting from an initial partition, one estimates separately a regression
model for each cluster.
Step 2: Each observation is moved to the cluster (or model) giving the smallest
square residual (i.e, the best prediction). Once all observations have been
reclassified, we obtain a new partition.

Step 1 and 2 are then iterated until convergence (i.e, stability of the parti-
tion), or when the criterium does not decrease enough. It is necessary to have
enough observations in each cluster (Charles (1977)) in order to estimate the
regression coefficients by OLS. Like in k-means clustering, it is possible that
some clusters become empty and that the final number of clusters may be
less than the initial guess K. Choice of K remains difficult: some have advo-
cated for AIC or BIC- like criteria (Plaia 2001)). From a empirical machine
learning point of view, K should be chosen by some validation technique
(cross-validation, bootstrap. etc.). The existence of many local minima have
been stressed by Caporossi and Hansen (2007): this implies to choose wisely
the starting partition.

3 Clusterwise regression on interval-valued data

This section presents a clusterwise regression model based on both the dy-
namic clustering algorithm (Diday and Simon (1976)) and the center and
range regression model for interval-valued data (Lima Neto and De Carvalho
(2008)).

Let E = {1, . . . , n} be a set of observations that are described by p + 1
interval-valued variables z, w1, . . . , wp. Each observation i ∈ E (i = 1, . . . , n)
is represented by a vector of intervals ei = (wi1, . . . , wip, zi), where wij =
[wLij , w

U
ij ] (j = 1, . . . , p) and zi = [zLi , z

U
i ].

Let y and xj (j = 1, . . . , p) be, respectively, quantitative bi-variate vari-
ables that assume as their values the midpoints and half ranges of the interval
assumed by the interval-valued variables z and wj . Thus, each observation
i ∈ E (i = 1, . . . , n) is also represented as a vector of bi-variate quantitative
vectors ti = (xi1, . . . ,xip,yi), with

xij =
(
xcij
xrij

)
(j = 1, . . . , p) and yi =

(
yci
yri

)
where xcij = (wLij + wUij)/2, xrij = (wUij − wLij)/2, yci = (zLi + zUi )/2 and
yri = (zUi − zLi )/2.

This clusterwise regression model for interval-valued data looks for a par-
tition of E in K clusters P1, . . . , PK , each cluster being represented by a
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prototype, such that an adequacy criterion measuring the fit between the
clusters and their prototypes are locally minimized. The particularity of this
kind of method is that the prototype of each cluster is represented by the
hyper-plane given by the linear regression relationship between the dependent
variable and the independent predictor variables:

yi(k) = β0(k) +

pX
j=1

βj(k) xij + εi(k) (∀i ∈ Pk) where (1)

β0(k) =

„
βc0(k)

βr0(k)

«
, βj(k) =

„
βcj(k) 0

0 βrj(k)

«
(j = 1, . . . , p) and

εi(k) =

„
εci(k)

εri(k)

«
=

0@ yci −
“
βc0(k) +

Pp
j=1 β

c
j(k) x

c
ij

”
yri −

“
βr0(k) +

Pp
j=1 β

r
j(k) x

r
ij

”1A (∀i ∈ Pk)

The adequacy criterion is defined as:

J =

KX
k=1

X
i∈Pk

(εi(k))
T εik =

KX
k=1

X
i∈Pk

ˆ
(εci(k))

2 + (εri(k))
2˜ (2)

=

KX
k=1

X
i∈Pk

("
yci −

 
βc0(k) +

pX
j=1

βcj(k) x
c
ij

!#2

+

"
yri −

 
βr0(k) +

pX
j=1

βrj(k) x
r
ij

!#2)

This algorithm sets an initial partition and alternates two steps until
convergence when the criterion J reaches a local minimum.

3.1 Step 1: definition of the best prototypes

In the first stage, the partition of E in K clusters is fixed.

Proposition 1. The prototype

ŷi(k) =

(
ŷci(k)

ŷri(k)

)
=

(
β̂c0(k) +

∑p
j=1 β̂

c
j(k) x

c
ij

β̂r0(k) +
∑p
j=1 β̂

r
j(k) x

r
ij

)
(∀i ∈ Pk)

of cluster Pk (k = 1, . . . ,K) has the least square estimates of the parameters
β̂cj(k) and β̂rj(k) (j = 0, 1, . . . , p), which minimizes the clustering criterion J ,
given by the solution of the system of 2 (p+ 1) equations:

β̂ =
(
β̂c0(k), β̂

c
1(k), . . . , β̂

c
p(k), β̂

r
0(k), β̂

r
1(k), . . . , β̂

r
p(k)

)T
= (A)−1b (3)

where A is a matrix 2(p+1)×2(p+1) and b is a vector 2(p+1)×1, denoted
as:
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A =

0BBBBBBBBBBBBBBBBBBBBBBBBB@
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...
...X
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b =

0@X
i∈Pk

yci ,
X
i∈Pk

ycix
c
i1, . . . ,

X
i∈Pk

ycix
c
ip,
X
i∈Pk

yri ,
X
i∈Pk

yri x
r
i1, . . . ,

X
i∈Pk

yri x
r
ip

1AT

3.2 Step 2: definition of the best partition

In this step, the prototypes ŷi(k) (k = 1, . . . ,K) are fixed.

Proposition 2. The optimal clusters Pk (k = 1, . . . ,K), which minimize the
criterion J , are obtained according to the following allocation rule:

Pk = {i ∈ E : (εi(k))
T εi(k) ≤ (εi(h))

T εi(h), ∀h 6= k (h = 1, . . . ,K)} (4)

Given a new observation e = (w1, . . . , wp, z) described by the vector of
bivariate quantitative vectors t = (x1, . . . ,xp,y), the interval z = [zL, zU ]
is predicted from the estimated bivariate vector ŷ(k) = (ŷc(k), ŷ

r
(k)) (k =

1, . . . ,K), as follows

ẑL(k) = ŷc(k) − ŷ
r
(k) and ẑU(k) = ŷc(k) + ŷr(k)

where ŷc(k) = β̂c0(k) +
∑p
j=1 β̂

c
j(k) x

c
j and ŷr(k) = β̂r0(k) +

∑p
j=1 β̂

r
j(k) x

r
j .

“Goodness-of-fit measures” (determination coefficients) for these cluster-
wise regression models are computed, for k=1,. . . ,K, as:

R2
c(k) =

P
i∈Pk

`
ŷci(k) − ȳc(k)

´2
P
i∈Pk

`
yci − ȳc(k)

´2 ; R2
r(k) =

P
i∈Pk

`
ŷri(k) − ȳr(k)

´2
P
i∈Pk

`
yri − ȳr(k)

´2 (5)
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Fig. 1. The car interval-valued data set.

where ȳc(k) =
∑
i∈Pk y

c
i /n, ȳr(k) =

∑
i∈Pk y

r
i /n and R2

c(k), R
2
r(k) are, respec-

tively, the determination coefficient of “center” and “range” models.
Other measures, in order to obtain the performance assessment of these

linear regression models, are the lower (RMSEL) and the upper (RMSEU )
boundaries root-mean-square error. They are computed as

RMSEL =

vuut nP
i=1

`
zLi − ẑLi

´2
n

; RMSEU =

vuut nP
i=1

`
zUi − ẑUi

´2
n

(6)

4 Application: a car interval-valued data set

The car data set1 (Figure 1) consists of a set of 33 car models described
by 2 interval-valued variables: price y and engine capacity x1. The aim is
to predict the interval values of y (the dependent variable) from x1 through
linear regression models. In this application, the 2 interval-valued variables –
Price and Engine Capacity –, have been considered for clustering purposes.
The clusterwise regression algorithm has been performed on this data set
in order to obtain a partition in K = {1, 2, 3} clusters. For a fixed number
of clusters K, the clustering algorithm is run 100 times and the best result
according to the adequacy criterion is selected.

Table 1 presents the regression equations fitted over the car interval-
valued data set. Table 2 gives the determination coefficients for the 1-cluster,
2-cluster and 3-cluster partitions.In order to obtain a better preditive model, the estimates of the K regres-
sion models given by the K-cluster partition (K = 1, 2, 3), obtained with this
algorithm, were combined according to the “stacked regressions” approach.
According to Breiman (1996), this approach uses cross validation data and
1 This data set is available with the SODAS software at
http://www.info.fundp.ac.be/asso/index.html.
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Table 1. Fitted regression equations over the whole car interval-valued data set

K − partition cluster k “Center Model” “Range Model”

1 1 ŷc(1) = −98840.9 + 79.2xc1 ŷr(1) = −341.4 + 60.9xr1

2 1 ŷc(1) = −63462.2 + 59.6xc1 ŷr(1) = −4560.1 + 47.1xr1
2 ŷc(2) = −22836.5 + 68.8xc1 ŷr(2) = 34563.6 + 68.6xr1

1 ŷc(1) = −77422.1 + 82.0xc1 ŷr(1) = 2229.7 + 92.2xr1
3 2 ŷc(2) = −58484.1 + 71.1xc1 ŷ

r
(2) = 101952.9− 546.7xr1

3 ŷc(3) = −73362.1 + 62.0xc1 ŷr(3) = −9755.9 + 53.2xr1

Table 2. Determination coefficients for the fitted regression equations over the
whole car interval-valued data set

K-partition 1 2 3

cluster k 1 1 2 1 2 3

R2
c(k) 0.93 0.95 0.91 0.97 0.99 0.98

R2
r(k) 0.53 0.79 0.66 0.98 0.98 0.83

least squares under non-negativity constraints for forming linear combina-
tions of different predictors to give improved prediction accuracy.

The car interval-valued data set L was partitioned into 10 folds L(j) (j =
1, . . . , 10) of size as nearly equal as possible. For a fixed number of clusters
K, the clustering algorithm is run 100 times on 9 folds L(j) = L − L(j) and
the best result according to the adequacy criterion is selected. The K regres-
sion models are used to give preditions for the lower and upper boundary of
the dependent variable on the L(j) learning data set. These predictions were
combined according to the “stacked regressions” approach to obtain the pre-
dictions for the observations belonging to the test data set L(j). The RMSEL
and RMSEU measures are computed from the predicted values on the test
data sets L(j) (j = 1, . . . , 10).

This process is repeated 100 times and it is calculated the average and
standard deviation of the RMSEL and RMSEU measures (Table 3). Even
if the observed mean differences are not statistically significant, we can con-
clude that 2 regression models given by the 2-cluster partition give the best
preditive model through the “stacked regressions” approach.

Table 3. Average Root-mean-square error for the combined estimates of the K
regression models

K-partition 1 2 3

RMSEL 96649.28 (13812.49) 90417.42 (13538.22) 94993.75 (11376.24)

RMSEU 143416.6 (17294.02) 135471.4 (17027.49) 137825.9 (14243.29)
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5 Concluding Remarks

This paper introduced a suitable clusterwise regression model for interval-
valued data. The proposed model combines the dynamic clustering algorithm
with the center and range regression model for interval-valued data in order
to identify both the partition of the data and the relevant regression models
(one for each cluster). Experiments with a car interval-valued data set showed
the interest of this approach. Other experiments on medical data sets are in
progress.
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