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Chapter 1

Principal Component Analysis: Application to
Statistical Process Control

1.1. Introduction

Principal component analysis (PCA) is an exploratory stiail method for
graphical description of the information present in larg&dets. In most applications,
PCA consists of studying variables measured onindividuals. When andp are
large, the aim is to synthesize the huge quantity of infoimmainto an easy and
understandable form.

Unidimensional or bidimensional studies can be performed/ariables using
graphical tools (histograms, box plots) or numerical sum@sa(mean, variance,
correlation). However, these simple preliminary studmea multidimensional context
are insufficient since they do not take into account the examelationships between
variables, which is often the most important point.

Principal component analysis is often considered as thie lbasthod of factor
analysis, which aims to find linear combinations of theariables called components
used to visualize the observations in a simple way. Becausarisforms a large
number of correlated variables into a few uncorrelatedgipad components, PCA
is a dimension reduction method. However, PCA can also beé ase multivariate
outlier detection method, especially by studying the lasigipal components. This
property is useful in multidimensional quality control.

Chapter written by Gilbert #0rRTA and Ndéye NaNG.



2 Data Analysis

1.2. Data table and related subspaces
1.2.1. Data and their characteristics

Data are generally represented in a rectangular tablewitkvs for the individuals
andp columns corresponding to the variables. Choosing indafisland variables to
analyze is a crucial phase which has an important influencB@A results. This
choice has to take into account the aim of the study; in padicthe variables have
to describe the phenomenon to analyze.

Usually PCA deals with numerical variables. However, oatlvariables such as
ranks can be also processed by PCA. Later in this chapterresept the concept of
supplementary variables which afterwards integrates naiwariables.

1.2.1.1. Data table

Let X be the(n, p) matrix of observations:

1 D
ry ... X

_ 1 J D
X = T; T @
1 D

x’l’L :Ln

wherecc{ is the value of indiyiduazl for variablej (denotedk?) which is identified with
a vector ofn componentsz?, ..., x%)’. In a similar way, an individual is identified
to a vectorz; of p components withe; = (x},...,z7)".

Table 1.1 is an example of such a data matrix. Computatiorssixeen carried out
with SPAD 5 software, version¥ kindly provided by J.-P. Gauchi.

The data file contains 57 brands of mineral water described byariables
defined in Table 1.2. The data come from the bottle labels. &tigal variables are
homogenous, they are all active variables (see sectioB)1Alvariable of a different
kind such as price would be considered as a supplementaigblerOn the other
hand, qualitative variables such as country, type and venedtill or sparkling (PG)
are necessarily supplementary variables.

1. DECISIA (former CISIA-CERESTA), Building Hoche, 13 ruaifer, 93697 Pantin cedex.
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1.2.1.2. Summaries
1.2.1.2.1. Centroid

Table 1.1. Data table

Name Country Type PG CA MG NA K SUL NO3 HCO3 CL |
Evian F M P 78 24 5 1 10 38 357 4|5
Montagne des Pyrénées F S P 48 11 34 1 16 4 183 50
Cristaline-St-Cyr F S P 71 55 11.2 3.2 5 1 250 20
Fiée des Lois F S P 89 31 17 2 47 0 360 28
Volcania F S P 41 17 27 09 11 038 258 0.9
Saint Diéry F M G 85 80 38 65 25 1.9 1350 285
Luchon F M P 265 1 08 02 82 18 78.1 2.3
Volvic F M P 99 61 94 57 69 63 65.3 8.4
Alpes/Moulettes F S P 63 10.2 14 0.4 513 2 1732 |1
Orée du bois F M P 234 70 43 9 635 1 292 62
Arvie F M G 170 92 650 130 31 0 2195 387
Alpes/Roche des Ecrins F S P 63 10.2 1.4 04 513 2 1732 |10
Ondine F S P 46.1 43 63 35 9 0 1635 35
Thonon F M P 108 14 3 1 13 12 350 |9
Aix les Bains F M P 84 23 2 1 27 0.2 341 3
Contrex F M P 486 84 9.1 3.2 1187 2.7 403 8.6
La Bondoire Saint Hippolite | F S P 86 3 17 1 7 19 256 21
Dax F M P 125 30.1 126 194 365 0 164.7 156
Quézac F M G 241 95 255 49.7 143 1 16854 38
Salvetat F M G 253 11 7 3 25 1 820
Stamna GRC M P 48.1 9.2 126 04 96 0 1733 21.3
lolh GR M P 54.1 315 82 038 15 6.2 2675 185
Avra GR M P 1108 99 84 0.7 39.7 356 3088 |8
Rouvas GRC M P 25.7 10.7 8 04 96 31 117.2 124
Alisea IT M P 123 26 25 06 101 25 416 0.9
San Benedetto IT M P 46 28 6.8 1 58 6.6 287 2|4
San Pellegrino IT M G 208 55.9 43.6 2.7 549.2 0.45 219.6 74.3
Levissima IT M P 198 1.8 1.7 18 142 15 56.5 0.3
Vera IT M P 36 13 2 06 18 36 154 2)1
San Antonio IT M P 325 6.1 49 07 16 43 1355 1
La Francaise F M P 354 83 653 22 1055 0 225 982
Saint Benoit F S G 461 43 63 35 9 0 1635 35
Plancoét F M P 36 19 36 6 43 0 195 8
Saint Alix F S P 8 10 33 4 20 05 84 37
Puits Saint Georges/Casino|F M G 46 33 430 185 10 8 1373 39
St-Georges/Corse F S P 5.2 2.43 14.05 1.15 6 0 30.5 |25
Hildon bleue B M P 97 17 77 1 4 26.4 236 6
Hildon blanche B M G 97 17 77 1 4 55 236 6
Mont Roucous F M P 12 02 28 04 33 23 49 32
Ogeu F S P 48 11 31 1 16 4 183 44
Highland Spring B M P 35 85 6 0.6 6 1 136 75
Parot F M G 99 88.1 968 103 18 1 3380.51 88
Verniére F M G 190 72 154 49 158 0 1170 8
Terres de Flein F S P 116 4.2 8 25 245 1 333 5
Courmayeur IT M P 517 67 1 2 1371 2 168 1
Pyrénées F M G 48 12 31 1 18 4 183 35
Puits Saint Georges/Monoprif M G 46 34 434 185 10 8 1373 39
Prince Noir F M P 528 78 9 3 1342 0 329 |9
Montcalm F S P 3 06 15 04 87 09 52 0.6
Chantereine F S P 119 28 7 2 52 0 430 7
18 Carats F S G 118 30 18 7 85 05 403 9
Spring Water B S G 117 19 13 2 16 20 405 28
Vals F M G 452 21.3 453 32.8 38.9 1 1403 2y.2
Vernand F M G 335176 192 287 14 1 734 6.4
Sidi Harazem MO S P 70 40 120 8 20 4 335 220
Sidi Al MO M P 12,02 87 255 28 417 0.1 1037 14.2
Montclar F S P 41 3 2 0 2 3 134 3

3

Let  be the vector of arithmetic means of each of theariables, defining the

centroid:

z=(7',...,7")
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Name |Complete water name as labeled on the bottle

Country| Identified by the official car registration letters; somegsnit is
necessary to add a letter, for example Crete: GRC (Greede)Cre
Type | M for mineral water, S for spring water

PG P for still water, G for sparkling water
CA Calcium ions (mg/litre)

MG Magnesium ions (mg/litre)

NA Sodium ions (mg/litre)

K Potassium ions (mg/litre)

SUL Sulfate ions (mg/litre)
NO3 Nitrate ions (mg/litre)
HCO3 | Carbonate ions (mg/litre)
CL Chloride ions (mg/litre)

Table 1.2. Variable description
wherez’ = S| pia).

If the data are collected following a random samplingyttiedividuals all have the
same importance in the computations of the sample chaistater The same weight
p; = 1/n is therefore allocated to each observation.

However, it can be useful for some applications to use weigtérying from one
individual to another as grouped data or a reweighted sarplese weights, which
are positive numbers adding to 1, can be viewed as frequeaci@ are stored in a
diagonal matrix of size:

b1
D, =
Pn

We then have the following matrix expressio@s= X'D, 1,, wherel,, represents the
vector of R™ with all its components equal to 1. The centered data massecated
with X is thenY with y! = 2} -7/ andY = X - 1,7’ = (I, — 1,1/,D,)X, where
1, is the unity matrix of dimension n.

1.2.1.2.2. Covariance matrix and correlation matrix
Lets? =37 ps (2] —77)% andsye = 27, pi(zF —7*) (2! —Z*), the variance of

variablej and the covariance between variabteend/, respectively. They are stored
in the covariance matri§ = X'D, X —zz’' = Y'D,Y.

We define the linear correlation coefficient between vaeisbland/ by:

Ske
The = ——.
SkSe
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If Z is the standardized data table associated Xith! = (7 — 77)/s;, we have
Z =YD, , whereD, /, the diagonal matrix of the inverse of standard deviations:

1/81
Dl/s =
1/sp

R is the correlation matrix containing the linear correlaticoefficients between
all pairs of variables; we havR = D,,,SD;,,. R is the covariance matrix of
standardized variables. It summarizes linear dependeimogtsre between the
variables.

Tables 1.3 and 1.4 list the numerical summaries associatdd the dataset
example.

Variable | Mean Standard deviation| Minimum Maximum
CA [102.46 118.92 1.20 528.00
MG 25.86 28.05 0.20 95.00
NA 93.85 195.51 0.80 968.00
K 11.09 24.22 0.00 130.00
SUL |[135.66 326.31 1.10 1371.00
NO3 | 3.83 6.61 0.00 35.60

HCO3 |442.17 602.94 4.90 3380.51
CL 52.47 141.99 0.30 982.00

Table 1.3. Simple statistics for continuous variables

CA MG NA K SUL NO3 HCO3 CL
CA | 1.00
MG | 0.70 1.00
NA | 0.12 0.61 1.00
K 1013 0.66 0.84 1.00
SUL | 091 0.61 0.06 -0.03 1.00
NO3 |-0.06 -0.21 -0.12 -0.17 -0.16 1.00
HCO3| 0.13 0.62 0.86 0.88 -0.07 —-0.06 1.00
CL |0.28 048 059 040 0.32 -0.12 0.19 100

Table 1.4. Correlation matrix

1.2.2. The space of statistical units

The Pearson geometrical approach is based on a data cloocladed with the
observations: each unit defined pgoordinates is then considered as an element of a
vector space gp dimensions, referred to as the space of statistical uriits.cEntroid
T defined in section 1.2.1.2 is then the barycenter of the datalc

PCA consists of visualizing the most reliable data cloudsgae within a space
of a few dimensiondAQ: Have reworded; please confirm correct] The analysis is
based on distances between points representing the indigidrhe method by which
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these distances are computed influences the results toeadatgnt. It is therefore
essential to determine it before apQ: Is some text missing?]

1.2.2.1.‘The metric’

In the usual 3D physical space, computing a distance is singihg Pythagoras’
formula. However, in statistics, the problem is more cocgikd: how can distances
between individuals described by variables having measen¢ units as different as
euros, kg, km, etc. be calculated? The Pythagoras formakasbitrary as any other.
The following general formulation therefore has to be udddis a positive definite
symmetric matrix of sizep and the distance between two individual and x; is
defined by the quadratic form:

dQ(SL’i,.’IJj) = (387 — SL’j)/M(SL’i — SL’j) = dQ(Z,j)

In theory, the choice oM depends on the user who is the only one to precisely
determine the adequate metric. In practice, however, thalusetrics in PCA are
M = I, if the variances are not too different and are expressed énsame
measurement unit; otherwise, the metN€ = D, /.2, the diagonal matrix of the
variance inverses, is preferred. This latter metric is tlwsthused (default option in
many PCA programs) because as well as suppressing the ragesurunits, it gives
the same importance in the computation of distances to eaicable, whatever its
variance. Using this metric is equivalent to standardizhmgvariables, setting them
dimensionless and setting them all the same variance othelexample, the variable
standard deviations are very different (Figure 1.3), arehtthe variables will be
standardized.

REMARK 1.1.— Every symmetric positive matr can be written ad1 = TT'. We
therefore havet,Mx; = ,T'Tx; = (Tx,) (Tx;). Itis then possible to usk and
the metricM rather than the identity metrik, and the transformed data matBT" .
PCA usually consists of standardizing the variables andgutie identity metrid,,,
referred to as standardized PCA.

1.2.2.2.Inertia

Inertia is a fundamental notion of PCA. The total inertia odlaa cloud is the
weighted mean of square distances between points and threideit represents the
dispersion of the data cloud around the barycenter. Note tha

Iy =Y pi(xi —%)M(z; ) = ) _pille; — 7.
i=1 i=1

It can be shown that the inertia around a particular poirfindd by:

I, = z:p7(51:7 —a)M(z; — a),
i=1
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may be written according to Huyghens formula:

I=1I,+@—a)M(@ —a) = I, + ||z — al|>.

It can be also shown that twice the total inertia is equal écatverage of all of pairs
of square distances between thandividuals. However, the most used equation is:

I =tr(MS) = tr(SM).

Then, ifM = I,,, the inertia is equal to the sum of thevariances. In the case of
the metricM = D, /.2, the inertia equals the trace of the correlation matrixi, éhe
number of variables. The inertia then does not depend orattigbles values but only
on their number.

In the following chapter, this last case will be consideieat. PCA with a general
metricM, see the books of Saporta [SAP 06] or Lelstral. [LEB 06].

1.2.3. Variables space

Each variable is defined by coordinates; it is then considered as a vector of
a space ofr dimensions referred to as variable space. To compute ts&aities’
between variables, we u¥®,, the diagonal weight matrix, which has (in case of zero-
mean variables) the following properties:

— the scalar product between two variabtésandx’ is
n
(x*)Dpx’ = piataf,
i=1

which is the covariance,;
— the square norm of a variable is then equal to its variance

1< |Ib, = 55

and the standard deviation represents the variable ‘length
— by denoting the angle between two variable§;aswe have

<xF xt > Ukt

COS Gkg = =Tke,

[l sese

which is the linear correlation coefficient.

In the variables space, we are interested in angles rathardistances and the
variables will be represented as vectors rather than points
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1.3. Principal component analysis
1.3.1. The method

Recall that the purpose of PCA is to find synthetic represiems of large
numerical datasets, in particular by using 2D plots. If thiédl spaces of statistical
units and variables representation have too many dimessibris impossible to
visualize the data cloud. We therefore look for spaces wveithdimensions best fitting
the data cloud, that is, which save the best initial cloudigoination.

The method consists of projecting the data cloud in order toimize the
shrinkage of the distances which are inherent to the piojecthis is equivalent
to choosing the projection spaéewhich maximizes the criterion:

SO pipid*(i. ).

i=1 j=1

The subspace we look for is such that the average of the sdisti@aaces between
projections is maximal (the projection reduces distandéa)ther words, the inertia
of projections cloud has to be maximal. It is shown [SAP O@it tthe search of the
subspacé’ can be sequential: first we look for the 1D subspace with makinertia
then we look for the 1D subspace orthogonal to fAQ: Changed ‘the former’ to
‘this’; please confirm the meaning has not been changedyith maximal inertia,
and so on.

1.3.2. Principal factors and principal components

We begin by looking for a 1D subspace i.e. a straight line @€fioy a unit vector
u = (u1,...,up) . As explained in the previous section, the vector has to fiaete
such that the points projected onto its direction have makinertia. The projection,
or coordinate:;, of an individuali onto A is defined byc; = Z§:1 x]u; (Figure 1.1).

The list of the individuals coordinates on A forms a new artificial variable =
(c1y...,c0) = Z’;:l x/u; = Xu; itis a linear combination of the original variables.
The inertia (or variance) of points projected od{as then:

Var(c) = Zpic? =c¢'Dyec = u'X'D,Xu = u'Su.

2

Recall that the usual case of standardized PCA is consipieedovariance matrix
of standardized data then corresponds then to the cooeletatrixR.. The criterion
of maximizing the inertia of projected points omvis then written as:

max u’'Su = maxu'Ru,
u u
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T X

X2

Figure 1.1. Projection onto directiomA
under the constraini’u = 1.

The solution of this quadratic maximization problemuig, the eigenvector cR
associated with the largest eigenvalye We then search the vectag orthogonal to
u; such that the inertia of points projected onto this dirgctttomaximal. Similarly, it
is shown thati; is the eigenvector dR associated with the second largest eigenvalue
A2. More generally, the subspacegdimensions which we are looking for is spanned
by the firstg eigenvectors of the matriR associated with the largest eigenvalues.

Vectorsu; are calledorincipal factors They contain the coefficients to be applied
to the original variables in the linear combinatios= Xu.

Principal components are artificial variables defined bygpal factorsic’ =
Xu;; they contain the coordinates of the orthogonal projestiohindividuals onto
the axes defined by the;.

In practice, PCA will consist of diagonalizing tHi& matrix to obtain theu; and
computing the principal components = Xu;.

See Tables 1.5 and 1.6 for the example results.

Number |Eigenvalues| % |% cumulated
1 3.8168 [47.71] 47.71
2.0681 |[25.85 73.56
0.9728 |[12.1§ 85.72
0.7962 | 9.95 95.67
0.1792 | 2.24 97.91
0.0924 | 1.16 99.07
0.0741 | 0.93 100.00
0.0004 | 0.00 100.00

O~NO A~ WN

Table 1.5. Eigenvalues\1, A2, etc.



10 Data Analysis

Eigenvectors
Variables 1 2 3 4 5
CA [-0.28 -0.54 -0.17 -0.20 0.p1
MG |-0.47 -0.18 -0.04 -0.17 -0.16
NA |-0.44 0.29 -0.03 0.17 O.
K -0.43 0.32 0.01 -0.12 -0.45
SUL |[-0.23 -0.60 -0.03 -0.03 0.B3
NO3 0.12 0.06 -0.97 0.15 -0.06
HCO3 [-0.40 0.35 -0.13 -0.35 0.24
CL -0.32 -0.07 0.07 0.86 -0.15

N

Table 1.6. Eigenvectors

1.3.3. Principal factors and principal components properties

1.3.3.1. Principal component variance

The variance of a principal component is equal to the eigeeva Var(c/) = A;.
The variance ofi is defined bySu = Ru, u'u = 1 and:

Var(c) = ¢'Dyc = u'X'D,Xu = u'Su=u'Ru=u(Au) = \wu=\

The principal components are therefore linear combinatafroriginal variables with
maximal variance.

1.3.3.2. A maximal association property

The variablec! has the greatest link t&’ in the sense of the square correlations
sum:)_¥_, r3(c,x7) is maximal. It is shown [SAP 06] that:

¢'D,ZZ'D,c

r2(c,x7) = Do
P

p
=1

J

whereZ is the standardized data table. The maximum of this ratieasled whei
is the eigenvector dZZ’'D,, associated with its largest eigenvald&'D,,c = Ac.

The principal component is then a linear combination of the columnsZifc =
Zu andtherZZ'D,c = A\c become&Z'D,Zu = \Zu. Since we hav&'D,Z = R
andZRu = A\Zu and, if the rank ofZ is p, we obtainRu = Au.

1.3.3.3. Reconstitution formula
Post-multiplying both members &u; = ¢/ by u; and summing ovef, we have

p p

. = Jq’.
X E u;u; c’uj.
1

Jj=1 Jj=

It can easily be shown thaf¥_, u;u); = I, since theu; are orthonormal. We then
find X = Eé’:l cju;.. The centered data table may be reconstituted using factors
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and principal components. If we only use the firgerms corresponding to the firgt
largest eigenvalues, we have the best approximatid by a matrix of rankg in the
least-squares sense (Eckart—Young theorem).

To summarize, it can be said that PCA consists of transfaymiiginal correlated
variablesx’ into new variables, the principal componeatswhich are uncorrelated
linear combinations of the’ with maximal variance and with the greatest link to the
xJ. PCA is therefore a linear factorial method.

Non-linear extensions of PCA exist: we look for variablengsbrmations, for
example, by splines [DEL 88] available in some softwaren(guial procedure in SAS).
[AQ: Please define SAS]

1.4. Interpretation of PCA results

PCA provides graphical representations allowing the Vigagon of relations
between variables and the eventual existence of groupsdofidiuals and groups
of variables. PCA results are 2D figures and tables. Thearfpmetation is the most
delicate phase of the analysis and has to be carried outdingdp a precise scheme
to be explained later.

Before beginning the interpretation itself, it is useful start with a brief
preliminary reading of the results in order to roughly wetifie dataset contents. It
is possible that by examining the first principal plane, weeslie some individuals
completely outside the rest of the population. This impkéther (1) the presence
of erroneous data such as typing errors or measurement \which have to be
corrected, or (2) individuals totally different from otlsewhich must be removed
from the analysis to better observe the remaining indiMsl(they can be reintroduced
afterwards as supplementary elements).

After this preliminary study, PCA results can then be exadimore closely; we
begin with the interpretation phase which consists of shatages.

REMARK 1.2.— Although simultaneous representations of indivislaad variables
called ‘biplot’ [GOW 96] exist, we recommend representing set separately in order
to avoid confusion.

1.4.1. Quality of representations onto principal planes
PCA allows us to obtain graphical representation of indieid in a space of fewer

dimensions thap, but this representation is only a deformed vision of théitre®ne
of the most crucial points in interpreting the results of P@sists of appreciating
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this deformation (or, in other words, the loss of informatidue to the dimension
reduction) and in determining the number of axes to retain.

The criterion usually employed to measure PCA quality ispgereentage of total
inertia explained. It is defined:

A+ A+ A _/\1+/\2+---+)\k
AMAX+ o AN I, '

This is a global measure which has to be completed with otbesiderations.
First, the number of variables must be taken into accoun®?a ihertia does not have
the same interest for a 20-variable table or for a 100-véeiible.

Second, at the individual level, it is necessary to look &t itéliability of the
representation of each individual, independently of tlebgl inertia percentagfAQ:
Have reworded; please confirm correct]it is possible to have a first principal plane
with a large total inertia and to find that two individuals, fitom each other in the full
space, have very close projections (Figure 1.2).

T

0 /LY 1 fo

T2

Figure 1.2. Close projections of distant points

The most widely used measure of an individual represemtgtiality is the cosine
of the angle between the principal plane and the vegtolf this cosine is larger; is
close to the plane and we can then examine the position afdjsgiion onto the plane
with respect to other points; if the cosine is small, we wdlwary of any conclusion.

1.4.2. Axis selection

Axis selection is an essential point of PCA but has no rigerselution. There
are theoretical criteria based on statistical tests omwigleie confidence intervals but
the latter are useful only for non-standardized PCA andptdenensional Gaussian
case. In the most frequent practical case of correlationicest only empirical criteria
are applicable. The best known is the Kaiser rule: for statidad data, principal
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components corresponding to eigenvalues larger than ketamed; this means only
components which ‘bring’ more than original variables araterest.

It is also usual to employ a scree test, which consists ofttiatpthe existence of
a significant decay on the eigenvalues diagram. This is madya easy in practice,
however.

In the example we use the Kaiser rule combined with the eglaerg diagram (see
Table 1.7). A break is detected after the second eigenvaldeae retain two axes
corresponding to 73.56% explained inertia. The third axisasily interpreted, but as
it is identified with the variable NO3 (correlation —0.96)dais not correlated with
other variables, it is not of great interest.

Number Eigenvalues % % cumulated
3.8168 47.71 47.71
2.0681 25.85 73.56
09728 12.16 P S R ———

0.7962 9.95 95.67  rkwkkkikitkkk
0.1792 224 97.91 ik

0.0924 1.16 99.07

0.0741 0.93 100.00

0.0004 0.00 100.00

ONDUAWN

Table 1.7.Eigenvalues scree plot

1.4.3. Internal interpretation

PCA results are obtained from variables and individualledactive elements, in
contrast to supplementary elements which do not partieigaectly in the analysis.
Active variables and individuals are used to compute ppialcaxes; supplementary
variables and individuals are then projected onto thesg.axe

Active variables (numerical) are those with interestinginorrelations: they are
the main variables of the study. Supplementary variablesige useful information
for characterizing the individuals but are not directly dise the analysis. We are
only interested by the correlations of supplementary egand active variables via
principal components, and not by the correlations betweg@plsmentary variables.
Internal interpretation consists of analyzing the resulisng active variables and
individuals. Supplementary elements study is carriedmthé external interpretation
phase.

1.4.3.1. Variables

PCA yields principal components, which are new artificialiafles defined by
linear combinations of original variables. We must be ablmterpret these principal
components (according to original variables). This is daimeply through the
computations of linear correlation coefficiente, x/ ) between principal components
and original variables. The largest coefficients (in ab®olalue) close to 1 are
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those of interest (see Table 1.8). In standard PCA, we useatdized data and the
computation of-(c, x7) is particularly simple. It may be shown thé, x7) = v Au;.

Coordinates
Variables 1 2 3 4 5
CA |-0.55 -0.78 -0.17 -0.18 0.p1
MG |-0.91 -0.25 -0.04 -0.15 -0.P0
NA -0.86 0.41 -0.03 0.15 0.26
K -0.84 0.46 0.01 -0.11 -0.19
SUL |-0.45 -0.87 -0.03 -0.03 0.14
NO3 0.23 0.09 0.96 0.13 -0.03
HCO3 |-0.78 0.50 -0.13 -0.31 0.10
CL -0.62 —-0.10 0.07 0.77 -0.06

Table 1.8. Variable-factor correlations or variables coordinates

Usually the correlation between the variables for a coupgegiacipal components
is synthesized on a graph called the ‘correlation displaydich each variable’
is positioned by abscissdc!, x’) and ordinate-(c?, x7). Analyzing the correlation
display allows detection of possible groups of similar abhkes or opposite groups of
variables having different behavior, giving a sense ofgpal axes.

In the example (Figure 1.3), axis 1 is negatively correlatedall the vari-
ables (except NO3 which is not significant). Observatiorth whe largest negative
coordinate on the horizontal axis correspond to water with most important
mineral concentrations. Along the vertical axis, waterdwkigh calcium and sulfate
concentration are in opposition with waters with high psiasi and carbonate
concentration.

REMARK 1.3.—'Size effect’ When all original variables are pogtivcorrelated with
each other, the first principal component defines a ‘sizeceffd is known that a
symmetric matrix with all terms positive has a first eigertgewith all its component
having the same sign, which can be chosen to be positive. Teefirst principal
component is positively correlated to all original varebhnd individuals are ranked
along axis 1 according to the increase of all variables (ceraye). The second
principal component distinguishes individuals with samilsize’ and is referred to
as the ‘shape factor’.

1.4.3.2. Observations

Interpreting observations consists of examining theirrdo@tes and especially
their resulting graphical representations referred toragipal planes (Figure 1.4).
The aim is to see how the observations are scattered, whickenedtions are
similar and which observations differ from the others. Ise&a@f non-anonymous
observations, they can then help to interpret principakaxi®r example, we will
look for opposite individuals along an axis.

Conversely, using results of variables analysis allownladions interpretation.
When, for example, the first component is highly correlatéti an original variable,
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Figure 1.3. Variable representation onto plane 1,2

it means that individuals with large positive coordinatesg axis 1 are characterized
by this variable of value much larger than average (the origithe axes represents
the centroid of data cloud).

In observation study, it is also very useful to look at thevidlal contributions of
each axis for help in interpreting ax¢&Q: Have reworded; please confirm correct]

. . . . i (c)? L T
Contribution is defined b\ﬁT wherec; represents the value for individuadf the
kth component® and\, = >0, pi(cF)?.

The important contributions are those that exceed obsenvaeight. However, it
is necessary to be careful when an individual has an exeessivribution which can
produce instability. Removing it can highly modify the aysi$ results. The analysis
should be made without this point, which can be added as desupptary element.
Observations such as ARVIE and PAROT (Figure 1.4) are exesrgdlsuch points.

It should be noted that, for equal weight, contributions di provide more
information than coordinates. Table 1.9 lists coordinatesmtributions and square
cosines of angles with principal axes which allow the eviaduaof the quality of
the representation (see section 1.4.1).
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Figure 1.4. Observations representation on plane 1, 2

1.4.4. External interpretation: supplementary variables and indduals

Recall that supplementary elements do not participate éncibmputations of
principal axes, but are very useful afterwards in constibigaand enriching the
interpretation.

The case of numerical supplementary variables has to biaglisthed from the
categorical variables. The former are positioned on theetation display after having
simply computed the correlation coefficient between eappleunentary variable and
the principal components. The interpretation is made insee way as for active
variables through the detection of significant correlagion

For supplementary categorical variables, we generallsesemt each category by
its barycenter in the observation space. Some softwarecesly SPAD, for example)
provide helps with interpretation by giving test values ethineasure the distance of
the point representing a category of the origin.

More precisely, the test value measures this distance inbeurof standard
deviations of a normal distribution. They allow an extrerpasition of a subgroup
of observations to be displayed. A category will be congdeas significant for an
axis if its associated test value is larger in absolute védaa 2 (with a 5% risk).
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Individuals Coordinates Contributions Square cosines

Identifier P.Rel. DISTQ 1 2 3 4 2 3 4 5| 1 2 3 4 5

Evian 1.75 0.71 0.72 0.06 0.06 -0.21 0.0 00 0.1 0.30.73 0.01 0.01 0.06 0.04
Montagne des Pyrénées 1.75 10895 0.19 0.15 0.33 0.0 00 02 0.00.84 0.04 0.02 0.10 0.0
Cristaline-St-Cyr 1.75 138098 0.16 054 0.00 0.0 05 00 0.00.69 0.02 0.21 0.00 0.0
Fiée des Lois 1.75 0.800.38 -0.11 0.60 -0.21 0.0 0.7 01 05018 0.02 045 0.05 0.06
Volcania 1.75 281 145 033 0.71 0.15 01 09 01 0.00.75 004 0.18 0.01 0.0
Saint Diéry 175 16.0f-3.54 148 0.13 056 19 00 07 89078 0.14 0.00 0.02 0.06
Luchon 1.75 2.3¢ 140 0.25 052 0.12 01 05 00 01083 0.03 0.12 0.01 0.0
Volvic 1.75 212 1.32 041 -012 024 01 00 01 01082 0.08 001 0.03 0.01
Alpes/Moulettes 1.75 1.31 1.07 0.01 0.40 -0.06 00 03 00 0.00.87 0.00 0.12 0.00 0.00
Orée du bois 1.75 6.37-1.22 -2.02 0.16 -0.49 35 00 05 14023 0.64 0.00 0.04 0.02
Arvie 175 5252-6.51 267 0.10 035 6.1 00 0.3 15.40.81 0.14 0.00 0.00 0.043
Alpes/Roche des Ecrins 1.75 1.511.07 0.01 0.40 -0.06 0.0 03 00 0.00.87 0.00 0.12 0.00 0.0
Ondine 1.75 193 114 022 0.74 -0.03 0.0 10 00 0.00.67 0.03 0.28 0.00 0.0
Thonon 1.75 2.3% 0.96 0.05 -1.17 0.01 0.0 25 00 0.10.39 0.00 0.58 0.00 0.0
Aix les Bains 1.75 0.99 0.66 -0.03 0.59 -0.30 0.0 06 02 0.1044 000 0.35 0.09 0.02
Contrex 1.75 2550-2.18 -4.29 -0.57 -1.40 156 06 43 0.00.19 0.72 0.01 0.08 0.9
La Bondoire Saint Hippol ~ 1.75 6.9471.33 026 -2.13 041 01 82 04 00027 0.01 069 0.03 0.00
Dax 1.75 1.74-0.62 -0.64 061 061 03 07 08 0.0022 023 021 0.21 0.0
Quézac 175 15.1p-3.37 0.36 -0.18 -1.56 01 01 54 6.00.75 0.01 0.00 0.16 0.04
Salvetat 175 3.0p 0.11 -041 0.14 -0.77 01 00 13 0.0.00 0.06 0.01 0.20 0.02
Stamna 175 1.6p 1.04 0.15 0.73 0.06 00 10 00 0.00.66 0.01 0.32 0.00 0.00
lolh 175 1.0 0.73 0.09 -0.24 -0.05 0.0 01 00 12053 001 0.06 0.00 0.12
Avra 175 2403 145 022 -463 058 0.0 38.7 0.7 0.50.09 0.00 0.89 0.01 0.0
Rouvas 175 1.6 1.20 023 032 0.14 0.0 02 00 0.00.88 0.03 0.06 0.01 0.0
Alisea 1.75 243 144 030 045 0.16 01 04 01 0.00.85 0.04 0.08 0.01 0.0
San Benedetto 175 1.130.83 0.18 -0.29 -0.09 0.0 02 00 09061 003 0.08 0.01 0.08
San Pellegrino 1.75 4.15-0.74 -1.79 0.33 -0.21 27 02 01 02013 0.77 0.03 0.01 0.01
Levissima 1.75 240 1.38 027 058 0.11 0.1 06 00 0.00.80 0.03 0.14 0.01 0.0
Vera 1.75 142 115 0.8 0.21 0.03 00 01 00 0.00.93 0.02 0.03 0.00 0.00
San Antonio 175 1.8p 1.30 0.27 0.13 0.10 0.1 00 00 0.00.94 0.04 001 0.01 0.00
La Francaise 175 68.475.64 -2.83 045 528 6.8 04 613 3.00.47 0.12 0.00 0.41 0.00
Saint Benoit 175 198 1.14 022 0.74 -0.03 00 10 00 0.00.67 0.03 0.28 0.00 0.00
Plancoét 175 1.1p 068 0.19 0.73 0.11 0.0 10 00 0.2042 003 049 0.01 001
Saint Alix 175 184 1.04 033 074 028 01 10 02 0.00.58 0.06 0.29 0.04 0.0
Puits Saint Georges/Casi 175 6{281.29 1.62 -0.79 -0.20 22 11 0.1 10.80.27 0.42 0.10 0.01 0.37
St-Georges/Corse 1.75 20133 032 0.84 0.28 01 13 02 0.1066 0.04 0.26 0.03 0.0
Hildon bleue 175 13.1] 151 0.27 -322 054 0.1 188 0.6 0.10.17 0.01 0.79 0.02 0.0
Hildon blanche 175 15p 1.13 0.07 -0.15 0.07 00 00 00 0.0.84 0.00 0.02 0.00 0.01
Mont Roucous 1.75 28# 153 035 050 0.23 01 05 01 01082 0.04 0.09 0.02 0.00
Ogeu 1.75 1.09 097 019 0.15 0.29 00 00 02 0.00.87 0.03 0.02 0.08 0.00
Highland spring 1.75 17p 117 021 061 0.04 00 07 00 0.00.77 0.02 0.21 0.00 0.00
Parot 175 63.44-6.61 3.99 -0.40 -1.58 135 03 55 11.60.69 0.25 0.00 0.04 0.02
Verniére 1.75 7.6$-2.27 0.26 0.19 -1.27 01 01 36 7.6067 0.01 000 0.21 0.10
Terres de Flein 1.75 133086 -0.03 045 -0.14 0.0 04 00 0.2055 000 0.16 0.02 0.02
Courmayeur 175 29.42-190 -483 -0.46 -1.30 198 04 37 21012 0.79 0.01 0.06 0.01
Pyrénées 1.75 106098 0.19 0.14 0.23 0.0 00 0.1 0.00.90 0.03 0.02 0.05 0.0
Puits Saint Georges/Mono ~ 1.75 6.p71.32 1.62 -0.80 -0.20 22 11 0.1 10.20.27 0.41 0.10 0.01 0.16
Prince Noir 1.75 30.69-2.29 -4.80 -0.23 -1.46 196 0.1 47 11017 0.75 0.00 0.07 0.9
Montcalm 1.75 294 149 031 071 0.17 01 09 01 01076 0.03 0.17 0.01 0.0
Chantereine 1.75 0.8470.38 -0.20 0.54 -0.42 00 05 04 02017 0.05 0.33 0.20 0.02
18 Carats 1.75 0.5 0.17 —0.22 0.48 -0.23 00 04 01 06006 0.09 045 0.10 0.13
Spring Water 175 6.53 0.88 0.10 -2.37 0.23 0.0 101 0.1 0.60.12 0.00 0.86 0.01 0.01
Vals 1.75 7.29-154 182 024 -043 28 0.1 04 12.90.33 0.46 0.01 0.03 0.18
Vernand 175 1.8Y-0.29 1.13 0.44 -0.33 11 03 02 0.30.04 068 0.10 0.06 0.02
sidi harazem 1.75 191-0.38 0.13 0.12 1.10 0.0 00 27 190.08 001 0.01 0.64 O

sidi ali 175 194 111 027 078 0.12 01 11 00 0.00.62 0.04 0.30 0.01 O

montclar 1.75 1.93 132 0.23 0.31 0.08 0.0 02 00 0.10.91 0.03 0.05 0.00 0.

Table 1.9. Coordinates, contributions and square cosine of individua

In the example, the barycenter of sparkling waters (andexunently, that of still
waters) is more than 3 standard deviations from the origi®, §). Sparkling waters
are significantly very far from the origin.

It is easy to plot supplementary individuals onto the pipatiaxes. Since we
have the formulae allowing principal components compatesj we simply have
to compute linear combinations of these supplementarytpaimaracteristic§JAQ:
Please indicate where Table 1.10 should be cross-refereige
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Categories Test values Coordinates
Label EFF. PAB$ 1 2 3 4 5 1 2 3 4 5
1. Country
France 40 40.0p-1.9 0.7 2.1 -05 0/~0.33 0.09 0.18 -0.04 0.03
Britain 4 400 12 02 -27 05 -02117 0.16 -1.28 0.22 -0.05
Greece 2 20p08 02 -35 04 -10109 0.15 -2.44 0.26 -0.29
Greece-Crete 2 20008 0.2 08 02 00112 0.19 052 0.10 0.00
Italy 7 700 07 -15 04 -05 04049 -0.77 0.13 -0.17 0.01
Morocco 2 20003 02 06 10-060.36 020 045 0.61 -0.19
2 . Type
Mineral 38 38.00-2.5 -0.5 -1.2 -0.7 0/40.46 —-0.07 -0.11 -0.06 0.01
Spring 19 19.00 25 05 1.2 0.7 -040.92 0.13 0.22 0.11 -0.03
3.PG
Sparkling 16 16.0p-3.5 2.7 -0.5 -1.8 0/3-1.44 0.82 -0.11 -0.34 0.03
Still 41 41.00 35 -27 05 1.8 -0,30.56 —-0.32 0.04 0.13 -0.01

Table 1.10.Coordinates and test values of the categof&®: What do EFF. and P.ABS.
represent?]

1.5. Application to statistical process control
1.5.1. Introduction

Online statistical process control is essentially basecboitrol charts for measure-
ments, drawing the evolution of a product or process chariatics. A control chart
is a tool which allows a shift of a location (mean) or a disgergstandard deviation,
range) parameter regarding fixed standard or nominal vatube detected through
successive small samplés;,i = 1,2,...,n).

Several types of control charts exist [MON 85, NIA 94], alsbd on the assump-
tion that the distribution ofc; is M (ug, 00). Standard or nominal valugs, andaoy
are assumed known or fixed. If this is not the case, they alaagep by unbiased
estimations.

Here, we are only interested in classical Shewhart conbraits for the detection
of process mean shifts. In Shewhart control charts, at eestant we use onlyz;, the
mean value of observations available, which is comparedwer (LCL) and upper
(UCL) control limits:

LCL:/J,Q—B)O'()/\/E and UCL:M()"-?)O'()/\/E

This control chart can be seen as a graphical representaitiansuccession of
statistical testd, : © = po againstd; : u # po for a set of samples; the standard
deviationo is assumed known. The critical region corresponds to théralochart
from the control area. This equivalence to hypothesis tg#itéacilitate extension to
several variables.

In most of the cases there are not one but several chargictetssimultaneously
control. The usual practice consists of using as many claartharacteristics. This
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method has the major drawback that it does not take into atdbe correlations
between variables representing theseharacteristics. That then leads to undesired
situations of false alarms (Figure 1.5). The univariatertshemay signal an out-of-
control situation while the multivariate process is undantcol (region B and C) or,
more severe, a non-detection of a multivariate process gkifjion A) may occur.
[AQ: Have reworded; please confirm correct]

T2
UCLy [~ 1 e ERREEE
— Region A
. Region B
LCLg [~ 77 77 mmmmmmmmmmmm s =
i I “Region C
: : T
LCLl UCLI

Figure 1.5. Multivariate control chart

A global approach through multivariate charts is thereftre only adequate
approach (see [NIA 02]). Principal component analysis,civlgrovides artificial but
uncorrelated variables, is, in some sense, a first solutiohet problem of correlated
characteristics. We will see later that once a shift has b#etected, adequate
univariate charts may help to determine which variablegesponsible of this shift,
or assignable causes.

1.5.2. Control charts and PCA

1.5.2.1. PCA and outliers

Multivariate control charts are based on a transformatf@iRy vector in a scalar
through a quadratic function. They can be seen as methodsddtidimensional
outlier detection. These methods consist of finding a sdemnR? generally based
on a multivariate distance measure (a detailed study caaurelfin [BAR 84]). This
measure is then used in a statistical test, to decide if arresison is an outlier
when the standardized statistic has an abnormally largenall alue, under a model
hypothesis (in quality control, normality assumption iseofmade).

In the multidimensional case, an outlier may be the resulirokextreme value
for only one of thep principal components or the result of small systematicrerim
several directions. This latter type of outlier correspotudthe problem of orientation
(correlation) and not of location (mean) or dispersion iéwaece). Using principal



20 Data Analysis

component analysis, not as a dimension reduction methodaltiér as an outlier
detection method, facilitates the search for extreme tioes.

To best summarize the data structure, not only the first compts should be
retained but also the last components considered as thduatsiof the analysis.
Jolliffe [JOL 86] has shown that the first components allow tletection of outliers
which inflate the variances and covariances. These outlisFsalso extreme on
original variables, so they can be directly detected. Tis¢ omponents do not yield
supplementary information.

On the other hand, outliers not visible on original variab{those that perturb
the correlation between variables) will be detected on dlsé principal components.
Several methods of outliers detection based on PCA have [regosed by many
authors, specially Hawkins [HAW 74], Gnanadesikan [GNA, d0]liffe [JOL 86] and
Barnett and Lewis [BAR 84].

Proposed techniques consist of applying formal statistieats to principal
components individually or conjointly. These tests areebdasn residual statistics
computed using the last principal components. The most widely used residual

statistics are:
y4

Rii= Y ()= > )

k=p—q+1 k=p—q+1

wherey = \%k R2, is a weighted sum of the standardized principal components
which give more importance to principal components witlgéavariances and

p p

Ri= ) ()/w= Y )

k=p—q+1 k=p—q+1

The distributions of these statistics are easily obtairiethe observations are
normally distributed with known megm and varianc&:, y;. have an exact Gaussian
distributionA\/(0, 1). If there are no outliers in the data, the residual statistif, and
R3, haveX?I distribution. Wherp andX are unknown, it is also possible (using their
estimations) to obtain approximate distributions of thesgdual statistics and then to
perform statistical tests.

1.5.2.2. Control charts associated with principal components

In quality control, PCA is used as a method for detectingtshibnsidered as
outliers. The last principal components may be as intergsts the first components,
since the type or the direction of the shifts arpriori unknown.

Recall that principal components are defined as linear coatioins of original
variables, which best summarize the data structure. Thiey tato account the
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correlations between variables and then, even taken ohailly, they help to detect
shifts (unlike original variables).

Note that principal components charts should not be use&adsof but in
conjunction with multivariate charts. The problem of faidarms and non-detection
of out-of-control (noted on Figure 1.5) is attenuated butcampletely suppressed
for uncorrelated principal components. The 3-sigma cdtitrots for standardized
principal components are the3/,/n. The presence of outliers can be tested with a
control chart on the?3,, whose upper control limit corresponds to the fractile «
ofax;.

For residual statistics, the presence of outliers can ledesith a control chart
defined by:

UCL=x2,_, LCL=0 and Stat= R3,.

ExamMPLE.— We have simulated 30 samples of 5 observations from a mouttial
distributionN3 (0, R); the three variables are assumed to have zero mean andoggian
equal to 0.5, 0.3 and 0.1, respectively. The correlatiorrirmnist

1
R=| 09 1
0.1 03 1

We have then simulated a mean shift for the last five sampléshwdonsists of
increasing the first variable mean and diminishing the sgéeaniable mean by half of
their standard deviation. This situation is detected byattiequate multidimensional
control chart [NIA 94] as well as the last principal componheontrol chart. In
Figure 1.6, note that the last five control points are cleadyected while the
phenomenon is not visible on the first two principal compdsen

When the number of characteristics is small, it is possibldind a simple
interpretation for the principal components based on alsmahber of variables
among the original variables. Control charts based on principal cormgnts not only
allow the detection of shifts but also help with the detattid assignable causes.

On another hand, if the number of variables is very large ptioposed methods
require many control charts for the first and the last comptmenhich may be
unpractical.[AQ: Changed ‘annoying’ to ‘unpractical’; please confirm ok] We
may only use the firsi components, as in the dimension reduction approach of PCA,
but then it is necessary (1) to test the quality of the repriegion of thep original
variables by they components and (2) to use methods based on residuals fa@rsutl
or shifts detection.
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Figure 1.6. Control chart for the 3rd principal component (Prin 3)

Furthermore, even if we fing principal components summarizing at best the
information present in the original variables, thes¢ components depend on a large
number of variables or on all original variables. To simptife principal components
interpretation, other methods pfojection pursuithave been proposed [NIA 94]. The
work done by Caussinuet al. [CAU 03] (see Chapter 3) is useful in improving these
methods.

1.6. Conclusion

PCA is a very efficient method for representing correlateid.dais widely used
in market study, opinion surveys and in the industrial sectore and more.

We have presented principal components analysis esdgratah linear method
for dimension reduction, in which we are generally intezdsin the first principal
components. Through its application to statistical preaastrol, we have seen that
PCA can be also used as a multidimensional outlier detetgicimique, based on the
last components.

Non-linear extensions of PCA exist and will be used more desuly [DEL 88,
SCH 99].
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