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Chapter 1

Principal Component Analysis: Application to
Statistical Process Control

1.1. Introduction

Principal component analysis (PCA) is an exploratory statistical method for
graphical description of the information present in large datasets. In most applications,
PCA consists of studyingp variables measured onn individuals. Whenn andp are
large, the aim is to synthesize the huge quantity of information into an easy and
understandable form.

Unidimensional or bidimensional studies can be performed on variables using
graphical tools (histograms, box plots) or numerical summaries (mean, variance,
correlation). However, these simple preliminary studies in a multidimensional context
are insufficient since they do not take into account the eventual relationships between
variables, which is often the most important point.

Principal component analysis is often considered as the basic method of factor
analysis, which aims to find linear combinations of thep variables called components
used to visualize the observations in a simple way. Because it transforms a large
number of correlated variables into a few uncorrelated principal components, PCA
is a dimension reduction method. However, PCA can also be used as a multivariate
outlier detection method, especially by studying the last principal components. This
property is useful in multidimensional quality control.

Chapter written by Gilbert SAPORTA and Ndèye NIANG.
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2 Data Analysis

1.2. Data table and related subspaces

1.2.1. Data and their characteristics

Data are generally represented in a rectangular table withn rows for the individuals
andp columns corresponding to the variables. Choosing individuals and variables to
analyze is a crucial phase which has an important influence onPCA results. This
choice has to take into account the aim of the study; in particular, the variables have
to describe the phenomenon to analyze.

Usually PCA deals with numerical variables. However, ordinal variables such as
ranks can be also processed by PCA. Later in this chapter, we present the concept of
supplementary variables which afterwards integrates nominal variables.

1.2.1.1.Data table

Let X be the(n, p) matrix of observations:

X =




x1
1 . . . xp1
...

...
...

x1
i xji xpi
...

...
...

x1
n . . . xpn




wherexji is the value of individuali for variablej (denotedxj) which is identified with
a vector ofn components(xj1, . . . , x

j
n)′. In a similar way, an individuali is identified

to a vectorxi of p components withxi = (x1
i , . . . , x

p
i )

′.

Table 1.1 is an example of such a data matrix. Computations have been carried out
with SPAD 5 software, version 51, kindly provided by J.-P. Gauchi.

The data file contains 57 brands of mineral water described by11 variables
defined in Table 1.2. The data come from the bottle labels. Numerical variables are
homogenous, they are all active variables (see section 1.4.3). A variable of a different
kind such as price would be considered as a supplementary variable. On the other
hand, qualitative variables such as country, type and whether still or sparkling (PG)
are necessarily supplementary variables.

1. DECISIA (former CISIA-CERESTA), Building Hoche, 13 rue Auger, 93697 Pantin cedex.



Principal Component Analysis 3

Name Country Type PG CA MG NA K SUL NO3 HCO3 CL
Evian F M P 78 24 5 1 10 3.8 357 4.5
Montagne des Pyrénées F S P 48 11 34 1 16 4 183 50
Cristaline-St-Cyr F S P 71 5.5 11.2 3.2 5 1 250 20
Fiée des Lois F S P 89 31 17 2 47 0 360 28
Volcania F S P 4.1 1.7 2.7 0.9 1.1 0.8 25.8 0.9
Saint Diéry F M G 85 80 385 65 25 1.9 1350 285
Luchon F M P 26.5 1 0.8 0.2 8.2 1.8 78.1 2.3
Volvic F M P 9.9 6.1 9.4 5.7 6.9 6.3 65.3 8.4
Alpes/Moulettes F S P 63 10.2 1.4 0.4 51.3 2 173.2 1
Orée du bois F M P 234 70 43 9 635 1 292 62
Arvie F M G 170 92 650 130 31 0 2195 387
Alpes/Roche des Ecrins F S P 63 10.2 1.4 0.4 51.3 2 173.2 10
Ondine F S P 46.1 4.3 6.3 3.5 9 0 163.5 3.5
Thonon F M P 108 14 3 1 13 12 350 9
Aix les Bains F M P 84 23 2 1 27 0.2 341 3
Contrex F M P 486 84 9.1 3.2 1187 2.7 403 8.6
La Bondoire Saint Hippolite F S P 86 3 17 1 7 19 256 21
Dax F M P 125 30.1 126 19.4 365 0 164.7 156
Quézac F M G 241 95 255 49.7 143 1 1685.4 38
Salvetat F M G 253 11 7 3 25 1 820 4
Stamna GRC M P 48.1 9.2 12.6 0.4 9.6 0 173.3 21.3
Iolh GR M P 54.1 31.5 8.2 0.8 15 6.2 267.5 13.5
Avra GR M P 110.8 9.9 8.4 0.7 39.7 35.6 308.8 8
Rouvas GRC M P 25.7 10.7 8 0.4 9.6 3.1 117.2 12.4
Alisea IT M P 12.3 2.6 2.5 0.6 10.1 2.5 41.6 0.9
San Benedetto IT M P 46 28 6.8 1 5.8 6.6 287 2.4
San Pellegrino IT M G 208 55.9 43.6 2.7 549.2 0.45 219.6 74.3
Levissima IT M P 19.8 1.8 1.7 1.8 14.2 1.5 56.5 0.3
Vera IT M P 36 13 2 0.6 18 3.6 154 2.1
San Antonio IT M P 32.5 6.1 4.9 0.7 1.6 4.3 135.5 1
La Française F M P 354 83 653 22 1055 0 225 982
Saint Benoit F S G 46.1 4.3 6.3 3.5 9 0 163.5 3.5
Plancoët F M P 36 19 36 6 43 0 195 38
Saint Alix F S P 8 10 33 4 20 0.5 84 37
Puits Saint Georges/Casino F M G 46 33 430 18.5 10 8 1373 39
St-Georges/Corse F S P 5.2 2.43 14.05 1.15 6 0 30.5 25
Hildon bleue B M P 97 1.7 7.7 1 4 26.4 236 16
Hildon blanche B M G 97 1.7 7.7 1 4 5.5 236 16
Mont Roucous F M P 1.2 0.2 2.8 0.4 3.3 2.3 4.9 3.2
Ogeu F S P 48 11 31 1 16 4 183 44
Highland Spring B M P 35 8.5 6 0.6 6 1 136 7.5
Parot F M G 99 88.1 968 103 18 1 3380.51 88
Vernière F M G 190 72 154 49 158 0 1170 18
Terres de Flein F S P 116 4.2 8 2.5 24.5 1 333 15
Courmayeur IT M P 517 67 1 2 1371 2 168 1
Pyrénées F M G 48 12 31 1 18 4 183 35
Puits Saint Georges/MonoprixF M G 46 34 434 18.5 10 8 1373 39
Prince Noir F M P 528 78 9 3 1342 0 329 9
Montcalm F S P 3 0.6 1.5 0.4 8.7 0.9 5.2 0.6
Chantereine F S P 119 28 7 2 52 0 430 7
18 Carats F S G 118 30 18 7 85 0.5 403 39
Spring Water B S G 117 19 13 2 16 20 405 28
Vals F M G 45.2 21.3 453 32.8 38.9 1 1403 27.2
Vernand F M G 33.5 17.6 192 28.7 14 1 734 6.4
Sidi Harazem MO S P 70 40 120 8 20 4 335 220
Sidi Ali MO M P 12.02 8.7 25.5 2.8 41.7 0.1 103.7 14.2
Montclar F S P 41 3 2 0 2 3 134 3

Table 1.1.Data table

1.2.1.2.Summaries

1.2.1.2.1. Centroid

Let x be the vector of arithmetic means of each of thep variables, defining the
centroid:

x = (x1, . . . , xp)′
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Name Complete water name as labeled on the bottle
Country Identified by the official car registration letters; sometimes it is

necessary to add a letter, for example Crete: GRC (Greece Crete)
Type M for mineral water, S for spring water
PG P for still water, G for sparkling water
CA Calcium ions (mg/litre)
MG Magnesium ions (mg/litre)
NA Sodium ions (mg/litre)
K Potassium ions (mg/litre)
SUL Sulfate ions (mg/litre)
NO3 Nitrate ions (mg/litre)
HCO3 Carbonate ions (mg/litre)
CL Chloride ions (mg/litre)

Table 1.2.Variable description

wherexj =
∑n
i=1 pix

j
i .

If the data are collected following a random sampling, then individuals all have the
same importance in the computations of the sample characteristics. The same weight
pi = 1/n is therefore allocated to each observation.

However, it can be useful for some applications to use weightpi varying from one
individual to another as grouped data or a reweighted sample. These weights, which
are positive numbers adding to 1, can be viewed as frequencies and are stored in a
diagonal matrix of sizen:

Dp =




p1

. . .
pn


 .

We then have the following matrix expressions:x = X′Dp1n where1n represents the
vector ofRn with all its components equal to 1. The centered data matrix associated
with X is thenY with yji = xji −xj andY = X−1nx

′ = (In−1n1
′
nDp)X, where

In is the unity matrix of dimension n.

1.2.1.2.2. Covariance matrix and correlation matrix

Lets2j =
∑n

i=1 pi(x
j
i−xj)2 andsk` =

∑n
i=1 pi(x

k
i −xk)(x`i−x`), the variance of

variablej and the covariance between variablesk and`, respectively. They are stored
in the covariance matrixS = X′DpX− xx′ = Y′DpY.

We define the linear correlation coefficient between variablesk and` by:

rk` =
sk`
sks`

.
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If Z is the standardized data table associated withX, zji = (xji − xj)/sj , we have
Z = YD1/s whereD1/s the diagonal matrix of the inverse of standard deviations:

D1/s =




1/s1
. . .

1/sp


 .

R is the correlation matrix containing the linear correlation coefficients between
all pairs of variables; we haveR = D1/sSD1/s. R is the covariance matrix of
standardized variables. It summarizes linear dependency structure between thep
variables.

Tables 1.3 and 1.4 list the numerical summaries associated with the dataset
example.

Variable Mean Standard deviation Minimum Maximum
CA 102.46 118.92 1.20 528.00
MG 25.86 28.05 0.20 95.00
NA 93.85 195.51 0.80 968.00
K 11.09 24.22 0.00 130.00

SUL 135.66 326.31 1.10 1371.00
NO3 3.83 6.61 0.00 35.60

HCO3 442.17 602.94 4.90 3380.51
CL 52.47 141.99 0.30 982.00

Table 1.3.Simple statistics for continuous variables

CA MG NA K SUL NO3 HCO3 CL
CA 1.00
MG 0.70 1.00
NA 0.12 0.61 1.00
K 0.13 0.66 0.84 1.00

SUL 0.91 0.61 0.06 –0.03 1.00
NO3 –0.06 –0.21 –0.12 –0.17 –0.16 1.00

HCO3 0.13 0.62 0.86 0.88 –0.07 –0.06 1.00
CL 0.28 0.48 0.59 0.40 0.32 –0.12 0.19 1.00

Table 1.4.Correlation matrix

1.2.2. The space of statistical units

The Pearson geometrical approach is based on a data cloud associated with the
observations: each unit defined byp coordinates is then considered as an element of a
vector space ofp dimensions, referred to as the space of statistical units. The centroid
x defined in section 1.2.1.2 is then the barycenter of the data cloud.

PCA consists of visualizing the most reliable data cloud possible within a space
of a few dimensions.[AQ: Have reworded; please confirm correct]The analysis is
based on distances between points representing the individuals. The method by which
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these distances are computed influences the results to a large extent. It is therefore
essential to determine it before any.[AQ: Is some text missing?]

1.2.2.1. ‘The metric’

In the usual 3D physical space, computing a distance is simple using Pythagoras’
formula. However, in statistics, the problem is more complicated: how can distances
between individuals described by variables having measurement units as different as
euros, kg, km, etc. be calculated? The Pythagoras formula isas arbitrary as any other.
The following general formulation therefore has to be used:M is a positive definite
symmetric matrix of sizep and the distance between two individualxi andxj is
defined by the quadratic form:

d2(xi,xj) = (xi − xj)′M(xi − xj) = d2(i, j).

In theory, the choice ofM depends on the user who is the only one to precisely
determine the adequate metric. In practice, however, the usual metrics in PCA are
M = Ip if the variances are not too different and are expressed in the same
measurement unit; otherwise, the metricM = D1/s2 , the diagonal matrix of the
variance inverses, is preferred. This latter metric is the most used (default option in
many PCA programs) because as well as suppressing the measurement units, it gives
the same importance in the computation of distances to each variable, whatever its
variance. Using this metric is equivalent to standardizingthe variables, setting them
dimensionless and setting them all the same variance of 1. Inthe example, the variable
standard deviations are very different (Figure 1.3), and then the variables will be
standardized.

REMARK 1.1.– Every symmetric positive matrixM can be written asM = TT′. We
therefore have:x′

iMxj = x′
iT

′Txj = (Txi)
′(Txj). It is then possible to useX and

the metricM rather than the identity metricIp and the transformed data matrixXT′.
PCA usually consists of standardizing the variables and using the identity metricIp,
referred to as standardized PCA.

1.2.2.2. Inertia

Inertia is a fundamental notion of PCA. The total inertia of adata cloud is the
weighted mean of square distances between points and the centroid. It represents the
dispersion of the data cloud around the barycenter. Note that

Ig =

n∑

i=1

pi(xi − x)′M(xi − x) =

n∑

i=1

pi||xi − x||2.

It can be shown that the inertia around a particular point, defined by:

Ia =

n∑

i=1

pi(xi − a)′M(xi − a),
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may be written according to Huyghens formula:

Ia = Ig + (x− a)′M(x− a) = Ig + ||x− a||2.

It can be also shown that twice the total inertia is equal to the average of all of pairs
of square distances between then individuals. However, the most used equation is:

I = tr(MS) = tr(SM).

Then, ifM = Ip, the inertia is equal to the sum of thep variances. In the case of
the metricM = D1/s2 , the inertia equals the trace of the correlation matrix i.e.p, the
number of variables. The inertia then does not depend on the variables values but only
on their number.

In the following chapter, this last case will be considered.For PCA with a general
metricM, see the books of Saporta [SAP 06] or Lebartet al. [LEB 06].

1.2.3. Variables space

Each variable is defined byn coordinates; it is then considered as a vector of
a space ofn dimensions referred to as variable space. To compute the ’distances’
between variables, we useDp, the diagonal weight matrix, which has (in case of zero-
mean variables) the following properties:

– the scalar product between two variablesxk andx` is

(xk)′Dpx
` =

n∑

i=1

pix
k
i x

`
i ,

which is the covariancevk`;

– the square norm of a variable is then equal to its variance

||xj ||2Dp
= s2j

and the standard deviation represents the variable ‘length’;

– by denoting the angle between two variables asθk`, we have

cos θk` =
< xk,x` >

||xk|| . ||x`|| =
vk`
sks`

= rk`,

which is the linear correlation coefficient.

In the variables space, we are interested in angles rather than distances and the
variables will be represented as vectors rather than points.
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1.3. Principal component analysis

1.3.1. The method

Recall that the purpose of PCA is to find synthetic representations of large
numerical datasets, in particular by using 2D plots. If the initial spaces of statistical
units and variables representation have too many dimensions, it is impossible to
visualize the data cloud. We therefore look for spaces with few dimensions best fitting
the data cloud, that is, which save the best initial cloud configuration.

The method consists of projecting the data cloud in order to minimize the
shrinkage of the distances which are inherent to the projection. This is equivalent
to choosing the projection spaceF which maximizes the criterion:

n∑

i=1

n∑

j=1

pipjd
2(i, j).

The subspace we look for is such that the average of the squaredistances between
projections is maximal (the projection reduces distances); in other words, the inertia
of projections cloud has to be maximal. It is shown [SAP 06] that the search of the
subspaceF can be sequential: first we look for the 1D subspace with maximal inertia
then we look for the 1D subspace orthogonal to this[AQ: Changed ‘the former’ to
‘this’; please confirm the meaning has not been changed]with maximal inertia,
and so on.

1.3.2. Principal factors and principal components

We begin by looking for a 1D subspace i.e. a straight line defined by a unit vector
u = (u1, . . . , up)

′. As explained in the previous section, the vector has to be defined
such that the points projected onto its direction have maximal inertia. The projection,
or coordinateci, of an individuali onto∆ is defined by:ci =

∑p
j=1 x

j
iuj (Figure 1.1).

The list of the individuals coordinatesci on∆ forms a new artificial variablec =
(c1, . . . , cn)

′ =
∑p

j=1 xjuj = Xu; it is a linear combination of the original variables.
The inertia (or variance) of points projected onto∆ is then:

Var(c) =

n∑

i

pic
2
i = c′Dpc = u′X′DpXu = u′Su.

Recall that the usual case of standardized PCA is considered; the covariance matrix
of standardized data then corresponds then to the correlation matrixR. The criterion
of maximizing the inertia of projected points onto∆ is then written as:

max
u

u′Su = max
u

u′Ru,
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x1

-

x2 6

∆

����

������������x1q

AA

c1

x2qA
AA

c2

Figure 1.1. Projection onto direction∆

under the constraintu′u = 1.

The solution of this quadratic maximization problem isu1, the eigenvector ofR
associated with the largest eigenvalueλ1. We then search the vectoru2 orthogonal to
u1 such that the inertia of points projected onto this direction is maximal. Similarly, it
is shown thatu2 is the eigenvector ofR associated with the second largest eigenvalue
λ2. More generally, the subspace ofq dimensions which we are looking for is spanned
by the firstq eigenvectors of the matrixR associated with the largest eigenvalues.

Vectorsuj are calledprincipal factors. They contain the coefficients to be applied
to the original variables in the linear combinationc = Xu.

Principal components are artificial variables defined by principal factors:cj =
Xuj ; they contain the coordinates of the orthogonal projections of individuals onto
the axes defined by theuj .

In practice, PCA will consist of diagonalizing theR matrix to obtain theuj and
computing the principal componentscj = Xuj .

See Tables 1.5 and 1.6 for the example results.

Number Eigenvalues % % cumulated
1 3.8168 47.71 47.71
2 2.0681 25.85 73.56
3 0.9728 12.16 85.72
4 0.7962 9.95 95.67
5 0.1792 2.24 97.91
6 0.0924 1.16 99.07
7 0.0741 0.93 100.00
8 0.0004 0.00 100.00

Table 1.5.Eigenvaluesλ1, λ2, etc.
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Eigenvectors
Variables 1 2 3 4 5

CA –0.28 –0.54 –0.17 –0.20 0.01
MG –0.47 –0.18 –0.04 –0.17 –0.46
NA –0.44 0.29 –0.03 0.17 0.62
K –0.43 0.32 0.01 –0.12 –0.45

SUL –0.23 –0.60 –0.03 –0.03 0.33
NO3 0.12 0.06 –0.97 0.15 –0.06

HCO3 –0.40 0.35 –0.13 –0.35 0.24
CL –0.32 –0.07 0.07 0.86 –0.15

Table 1.6.Eigenvectors

1.3.3. Principal factors and principal components properties

1.3.3.1.Principal component variance

The variance of a principal component is equal to the eigenvalueλ: Var(cj) = λj .
The variance ofu is defined bySu = Ru, u′u = 1 and:

Var(c) = c′Dpc = u′X′DpXu = u′Su = u′Ru = u′(λu) = λu′u = λ.

The principal components are therefore linear combinations of original variables with
maximal variance.

1.3.3.2.A maximal association property

The variablec1 has the greatest link toxj in the sense of the square correlations
sum:

∑p
j=1 r

2(c,xj) is maximal. It is shown [SAP 06] that:

p∑

j=1

r2(c,xj) =
c′DpZZ′Dpc

c′Dpc

whereZ is the standardized data table. The maximum of this ratio is reached whenc
is the eigenvector ofZZ′Dp associated with its largest eigenvalue:ZZ′Dpc = λc.

The principal componentc is then a linear combination of the columns ofZ: c =
Zu and thenZZ′Dpc = λc becomesZZ′DpZu = λZu. Since we haveZ′DpZ = R

andZRu = λZu and, if the rank ofZ is p, we obtainRu = λu.

1.3.3.3.Reconstitution formula

Post-multiplying both members ofXuj = cj by u′
j and summing overj, we have

X

p∑

j=1

uju
′
j =

p∑

j=1

cju′
j .

It can easily be shown that
∑p
j=1 uju

′
j = Ip since theuj are orthonormal. We then

find X =
∑p

j=1 cju′
j . The centered data table may be reconstituted using factors
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and principal components. If we only use the firstq terms corresponding to the firstq
largest eigenvalues, we have the best approximation ofX by a matrix of rankq in the
least-squares sense (Eckart–Young theorem).

To summarize, it can be said that PCA consists of transforming original correlated
variablesxj into new variables, the principal componentscj , which are uncorrelated
linear combinations of thexj with maximal variance and with the greatest link to the
xj . PCA is therefore a linear factorial method.

Non-linear extensions of PCA exist: we look for variable transformations, for
example, by splines [DEL 88] available in some software (prinqual procedure in SAS).
[AQ: Please define SAS]

1.4. Interpretation of PCA results

PCA provides graphical representations allowing the visualization of relations
between variables and the eventual existence of groups of individuals and groups
of variables. PCA results are 2D figures and tables. Their interpretation is the most
delicate phase of the analysis and has to be carried out according to a precise scheme
to be explained later.

Before beginning the interpretation itself, it is useful tostart with a brief
preliminary reading of the results in order to roughly verify the dataset contents. It
is possible that by examining the first principal plane, we observe some individuals
completely outside the rest of the population. This implieseither (1) the presence
of erroneous data such as typing errors or measurement errorwhich have to be
corrected, or (2) individuals totally different from others which must be removed
from the analysis to better observe the remaining individuals (they can be reintroduced
afterwards as supplementary elements).

After this preliminary study, PCA results can then be examined more closely; we
begin with the interpretation phase which consists of several stages.

REMARK 1.2.– Although simultaneous representations of individuals and variables
called ‘biplot’ [GOW 96] exist, we recommend representing the set separately in order
to avoid confusion.

1.4.1. Quality of representations onto principal planes

PCA allows us to obtain graphical representation of individuals in a space of fewer
dimensions thanp, but this representation is only a deformed vision of the reality. One
of the most crucial points in interpreting the results of PCAconsists of appreciating
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this deformation (or, in other words, the loss of information due to the dimension
reduction) and in determining the number of axes to retain.

The criterion usually employed to measure PCA quality is thepercentage of total
inertia explained. It is defined:

λ1 + λ2 + . . .+ λk
λ1 + λ2 + . . .+ λk + . . .+ λp

=
λ1 + λ2 + . . .+ λk

Ig
.

This is a global measure which has to be completed with other considerations.
First, the number of variables must be taken into account: a 10% inertia does not have
the same interest for a 20-variable table or for a 100-variable table.

Second, at the individual level, it is necessary to look at the reliability of the
representation of each individual, independently of the global inertia percentage.[AQ:
Have reworded; please confirm correct]It is possible to have a first principal plane
with a large total inertia and to find that two individuals, far from each other in the full
space, have very close projections (Figure 1.2).

�
�
�
�
�
��

�
�
�
�
�
��

x2

q

f2O �
�

�
��

x1
q

f1θ

Figure 1.2. Close projections of distant points

The most widely used measure of an individual representation quality is the cosine
of the angle between the principal plane and the vectorxi. If this cosine is large,xi is
close to the plane and we can then examine the position of its projection onto the plane
with respect to other points; if the cosine is small, we will be wary of any conclusion.

1.4.2. Axis selection

Axis selection is an essential point of PCA but has no rigorous solution. There
are theoretical criteria based on statistical tests or eigenvalue confidence intervals but
the latter are useful only for non-standardized PCA and thep-dimensional Gaussian
case. In the most frequent practical case of correlation matrices, only empirical criteria
are applicable. The best known is the Kaiser rule: for standardized data, principal
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components corresponding to eigenvalues larger than 1 are retained; this means only
components which ‘bring’ more than original variables are of interest.

It is also usual to employ a scree test, which consists of detecting the existence of
a significant decay on the eigenvalues diagram. This is not always easy in practice,
however.

In the example we use the Kaiser rule combined with the eigenvalues diagram (see
Table 1.7). A break is detected after the second eigenvalue and we retain two axes
corresponding to 73.56% explained inertia. The third axis is easily interpreted, but as
it is identified with the variable NO3 (correlation –0.96) and is not correlated with
other variables, it is not of great interest.

Number Eigenvalues % % cumulated
1 3.8168 47.71 47.71 ********************************** **********************************************
2 2.0681 25.85 73.56 ********************************** **********
3 0.9728 12.16 85.72 *********************
4 0.7962 9.95 95.67 *****************
5 0.1792 2.24 97.91 ****
6 0.0924 1.16 99.07 **
7 0.0741 0.93 100.00 **
8 0.0004 0.00 100.00 *

Table 1.7.Eigenvalues scree plot

1.4.3. Internal interpretation

PCA results are obtained from variables and individuals called active elements, in
contrast to supplementary elements which do not participate directly in the analysis.
Active variables and individuals are used to compute principal axes; supplementary
variables and individuals are then projected onto these axes.

Active variables (numerical) are those with interesting intercorrelations: they are
the main variables of the study. Supplementary variables provide useful information
for characterizing the individuals but are not directly used in the analysis. We are
only interested by the correlations of supplementary variables and active variables via
principal components, and not by the correlations between supplementary variables.
Internal interpretation consists of analyzing the resultsusing active variables and
individuals. Supplementary elements study is carried out in the external interpretation
phase.

1.4.3.1.Variables

PCA yields principal components, which are new artificial variables defined by
linear combinations of original variables. We must be able to interpret these principal
components (according to original variables). This is donesimply through the
computations of linear correlation coefficientsr(c,xj) between principal components
and original variables. The largest coefficients (in absolute value) close to 1 are
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those of interest (see Table 1.8). In standard PCA, we use standardized data and the
computation ofr(c,xj) is particularly simple. It may be shown thatr(c,xj) =

√
λuj .

Coordinates
Variables 1 2 3 4 5

CA –0.55 –0.78 –0.17 –0.18 0.01
MG –0.91 –0.25 –0.04 –0.15 –0.20
NA –0.86 0.41 –0.03 0.15 0.26
K –0.84 0.46 0.01 –0.11 –0.19

SUL –0.45 –0.87 –0.03 –0.03 0.14
NO3 0.23 0.09 0.96 0.13 –0.03

HCO3 –0.78 0.50 –0.13 –0.31 0.10
CL –0.62 –0.10 0.07 0.77 –0.06

Table 1.8.Variable-factor correlations or variables coordinates

Usually the correlation between the variables for a couple of principal components
is synthesized on a graph called the ‘correlation display’ on which each variablexj

is positioned by abscissar(c1,xj) and ordinater(c2,xj). Analyzing the correlation
display allows detection of possible groups of similar variables or opposite groups of
variables having different behavior, giving a sense of principal axes.

In the example (Figure 1.3), axis 1 is negatively correlatedto all the vari-
ables (except NO3 which is not significant). Observations with the largest negative
coordinate on the horizontal axis correspond to water with the most important
mineral concentrations. Along the vertical axis, waters with high calcium and sulfate
concentration are in opposition with waters with high potassium and carbonate
concentration.

REMARK 1.3.– ‘Size effect’ When all original variables are positively correlated with
each other, the first principal component defines a ‘size effect’. It is known that a
symmetric matrix with all terms positive has a first eigenvector with all its component
having the same sign, which can be chosen to be positive. Thenthe first principal
component is positively correlated to all original variables and individuals are ranked
along axis 1 according to the increase of all variables (on average). The second
principal component distinguishes individuals with similar ‘size’ and is referred to
as the ‘shape factor’.

1.4.3.2.Observations

Interpreting observations consists of examining their coordinates and especially
their resulting graphical representations referred to as principal planes (Figure 1.4).
The aim is to see how the observations are scattered, which observations are
similar and which observations differ from the others. In case of non-anonymous
observations, they can then help to interpret principal axes ; for example, we will
look for opposite individuals along an axis.

Conversely, using results of variables analysis allows observations interpretation.
When, for example, the first component is highly correlated with an original variable,
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Figure 1.3. Variable representation onto plane 1, 2

it means that individuals with large positive coordinates along axis 1 are characterized
by this variable of value much larger than average (the origin of the axes represents
the centroid of data cloud).

In observation study, it is also very useful to look at the individual contributions of
each axis for help in interpreting axes.[AQ: Have reworded; please confirm correct]

Contribution is defined bypi(c
k
i )2

λk
, wherecki represents the value for individuali of the

kth componentck andλk =
∑n
i=1 pi(c

k
i )

2.

The important contributions are those that exceed observation weight. However, it
is necessary to be careful when an individual has an excessive contribution which can
produce instability. Removing it can highly modify the analysis results. The analysis
should be made without this point, which can be added as a supplementary element.
Observations such as ARVIE and PAROT (Figure 1.4) are examples of such points.

It should be noted that, for equal weight, contributions do not provide more
information than coordinates. Table 1.9 lists coordinates, contributions and square
cosines of angles with principal axes which allow the evaluation of the quality of
the representation (see section 1.4.1).
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Figure 1.4. Observations representation on plane 1, 2

1.4.4. External interpretation: supplementary variables and individuals

Recall that supplementary elements do not participate in the computations of
principal axes, but are very useful afterwards in consolidating and enriching the
interpretation.

The case of numerical supplementary variables has to be distinguished from the
categorical variables. The former are positioned on the correlation display after having
simply computed the correlation coefficient between each supplementary variable and
the principal components. The interpretation is made in thesame way as for active
variables through the detection of significant correlations.

For supplementary categorical variables, we generally represent each category by
its barycenter in the observation space. Some software (especially SPAD, for example)
provide helps with interpretation by giving test values which measure the distance of
the point representing a category of the origin.

More precisely, the test value measures this distance in number of standard
deviations of a normal distribution. They allow an extremalposition of a subgroup
of observations to be displayed. A category will be considered as significant for an
axis if its associated test value is larger in absolute valuethan 2 (with a 5% risk).
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Individuals Coordinates Contributions Square cosines
Identifier P. Rel. DISTO 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Evian 1.75 0.71 0.72 0.06 0.06 –0.21 –0.18 0.2 0.0 0.0 0.1 0.30.73 0.01 0.01 0.06 0.04
Montagne des Pyrénées 1.75 1.080.95 0.19 0.15 0.33 0.01 0.4 0.0 0.0 0.2 0.00.84 0.04 0.02 0.10 0.00
Cristaline–St–Cyr 1.75 1.38 0.98 0.16 0.54 0.00 0.07 0.4 0.0 0.5 0.0 0.00.69 0.02 0.21 0.00 0.00
Fiée des Lois 1.75 0.80 0.38 –0.11 0.60 –0.21 –0.22 0.1 0.0 0.7 0.1 0.50.18 0.02 0.45 0.05 0.06
Volcania 1.75 2.81 1.45 0.33 0.71 0.15 0.07 1.0 0.1 0.9 0.1 0.00.75 0.04 0.18 0.01 0.00
Saint Diéry 1.75 16.07–3.54 1.48 0.13 0.56 –0.95 5.8 1.9 0.0 0.7 8.90.78 0.14 0.00 0.02 0.06
Luchon 1.75 2.36 1.40 0.25 0.52 0.12 0.11 0.9 0.1 0.5 0.0 0.10.83 0.03 0.12 0.01 0.00
Volvic 1.75 2.12 1.32 0.41 –0.12 0.24 –0.11 0.8 0.1 0.0 0.1 0.10.82 0.08 0.01 0.03 0.01
Alpes/Moulettes 1.75 1.31 1.07 0.01 0.40 –0.06 0.04 0.5 0.0 0.3 0.0 0.00.87 0.00 0.12 0.00 0.00
Orée du bois 1.75 6.37–1.22 –2.02 0.16 –0.49 –0.370.7 3.5 0.0 0.5 1.40.23 0.64 0.00 0.04 0.02
Arvie 1.75 52.52 –6.51 2.67 0.10 0.35 –1.2519.5 6.1 0.0 0.3 15.40.81 0.14 0.00 0.00 0.03
Alpes/Roche des Ecrins 1.75 1.311.07 0.01 0.40 –0.06 0.04 0.5 0.0 0.3 0.0 0.00.87 0.00 0.12 0.00 0.00
Ondine 1.75 1.93 1.14 0.22 0.74 –0.03 0.06 0.6 0.0 1.0 0.0 0.00.67 0.03 0.28 0.00 0.00
Thonon 1.75 2.35 0.96 0.05 –1.17 0.01 –0.10 0.4 0.0 2.5 0.0 0.10.39 0.00 0.58 0.00 0.00
Aix les Bains 1.75 0.99 0.66 –0.03 0.59 –0.30 –0.12 0.2 0.0 0.6 0.2 0.10.44 0.00 0.35 0.09 0.02
Contrex 1.75 25.50–2.18 –4.29 –0.57 –1.40 0.072.2 15.6 0.6 4.3 0.00.19 0.72 0.01 0.08 0.00
La Bondoire Saint Hippol 1.75 6.57 1.33 0.26 –2.13 0.41 0.00 0.8 0.1 8.2 0.4 0.00.27 0.01 0.69 0.03 0.00
Dax 1.75 1.78 –0.62 –0.64 0.61 0.61 –0.07 0.2 0.3 0.7 0.8 0.00.22 0.23 0.21 0.21 0.00
Quézac 1.75 15.10–3.37 0.36 –0.18 –1.56 –0.785.2 0.1 0.1 5.4 6.00.75 0.01 0.00 0.16 0.04
Salvetat 1.75 3.00 0.11 –0.41 0.14 –0.77 0.25 0.0 0.1 0.0 1.3 0.60.00 0.06 0.01 0.20 0.02
Stamna 1.75 1.66 1.04 0.15 0.73 0.06 0.04 0.5 0.0 1.0 0.0 0.00.66 0.01 0.32 0.00 0.00
Iolh 1.75 1.00 0.73 0.09 –0.24 –0.05 –0.35 0.2 0.0 0.1 0.0 1.20.53 0.01 0.06 0.00 0.12
Avra 1.75 24.03 1.45 0.22 –4.63 0.58 –0.22 1.0 0.0 38.7 0.7 0.50.09 0.00 0.89 0.01 0.00
Rouvas 1.75 1.63 1.20 0.23 0.32 0.14 –0.04 0.7 0.0 0.2 0.0 0.00.88 0.03 0.06 0.01 0.00
Alisea 1.75 2.43 1.44 0.30 0.45 0.16 0.06 0.9 0.1 0.4 0.1 0.00.85 0.04 0.08 0.01 0.00
San Benedetto 1.75 1.130.83 0.18 –0.29 –0.09 –0.30 0.3 0.0 0.2 0.0 0.90.61 0.03 0.08 0.01 0.08
San Pellegrino 1.75 4.15–0.74 –1.79 0.33 –0.21 –0.150.3 2.7 0.2 0.1 0.20.13 0.77 0.03 0.01 0.01
Levissima 1.75 2.40 1.38 0.27 0.58 0.11 0.07 0.9 0.1 0.6 0.0 0.00.80 0.03 0.14 0.01 0.00
Vera 1.75 1.42 1.15 0.18 0.21 0.03 –0.07 0.6 0.0 0.1 0.0 0.00.93 0.02 0.03 0.00 0.00
San Antonio 1.75 1.80 1.30 0.27 0.13 0.10 0.02 0.8 0.1 0.0 0.0 0.00.94 0.04 0.01 0.01 0.00
La Française 1.75 68.27–5.64 –2.83 0.45 5.28 0.5514.6 6.8 0.4 61.3 3.00.47 0.12 0.00 0.41 0.00
Saint Benoit 1.75 1.93 1.14 0.22 0.74 –0.03 0.06 0.6 0.0 1.0 0.0 0.00.67 0.03 0.28 0.00 0.00
Plancoët 1.75 1.10 0.68 0.19 0.73 0.11 –0.12 0.2 0.0 1.0 0.0 0.20.42 0.03 0.49 0.01 0.01
Saint Alix 1.75 1.88 1.04 0.33 0.74 0.28 –0.02 0.5 0.1 1.0 0.2 0.00.58 0.06 0.29 0.04 0.00
Puits Saint Georges/Casi 1.75 6.28–1.29 1.62 –0.79 –0.20 1.03 0.8 2.2 1.1 0.1 10.30.27 0.42 0.10 0.01 0.17
St–Georges/Corse 1.75 2.701.33 0.32 0.84 0.28 0.08 0.8 0.1 1.3 0.2 0.10.66 0.04 0.26 0.03 0.00
Hildon bleue 1.75 13.11 1.51 0.27 –3.22 0.54 –0.08 1.0 0.1 18.8 0.6 0.10.17 0.01 0.79 0.02 0.00
Hildon blanche 1.75 1.52 1.13 0.07 –0.15 0.07 0.12 0.6 0.0 0.0 0.0 0.10.84 0.00 0.02 0.00 0.01
Mont Roucous 1.75 2.84 1.53 0.35 0.50 0.23 0.08 1.1 0.1 0.5 0.1 0.10.82 0.04 0.09 0.02 0.00
Ogeu 1.75 1.09 0.97 0.19 0.15 0.29 0.01 0.4 0.0 0.0 0.2 0.00.87 0.03 0.02 0.08 0.00
Highland spring 1.75 1.79 1.17 0.21 0.61 0.04 0.02 0.6 0.0 0.7 0.0 0.00.77 0.02 0.21 0.00 0.00
Parot 1.75 63.44–6.61 3.99 –0.40 –1.58 1.0920.1 13.5 0.3 5.5 11.60.69 0.25 0.00 0.04 0.02
Vernière 1.75 7.65–2.27 0.26 0.19 –1.27 –0.88 2.4 0.1 0.1 3.6 7.60.67 0.01 0.00 0.21 0.10
Terres de Flein 1.75 1.33 0.86 –0.03 0.45 –0.14 0.16 0.3 0.0 0.4 0.0 0.20.55 0.00 0.16 0.02 0.02
Courmayeur 1.75 29.42–1.90 –4.83 –0.46 –1.30 0.461.7 19.8 0.4 3.7 2.10.12 0.79 0.01 0.06 0.01
Pyrénées 1.75 1.06 0.98 0.19 0.14 0.23 0.00 0.4 0.0 0.0 0.1 0.00.90 0.03 0.02 0.05 0.00
Puits Saint Georges/Mono 1.75 6.37–1.32 1.62 –0.80 –0.20 1.02 0.8 2.2 1.1 0.1 10.20.27 0.41 0.10 0.01 0.16
Prince Noir 1.75 30.69–2.29 –4.80 –0.23 –1.46 0.332.4 19.6 0.1 4.7 1.10.17 0.75 0.00 0.07 0.00
Montcalm 1.75 2.94 1.49 0.31 0.71 0.17 0.09 1.0 0.1 0.9 0.1 0.10.76 0.03 0.17 0.01 0.00
Chantereine 1.75 0.87 0.38 –0.20 0.54 –0.42 –0.15 0.1 0.0 0.5 0.4 0.20.17 0.05 0.33 0.20 0.02
18 Carats 1.75 0.51 0.17 –0.22 0.48 –0.23 –0.25 0.0 0.0 0.4 0.1 0.60.06 0.09 0.45 0.10 0.13
Spring Water 1.75 6.53 0.88 0.10 –2.37 0.23 –0.24 0.4 0.0 10.1 0.1 0.60.12 0.00 0.86 0.01 0.01
Vals 1.75 7.28 –1.54 1.82 0.24 –0.43 1.15 1.1 2.8 0.1 0.4 12.90.33 0.46 0.01 0.03 0.18
Vernand 1.75 1.87–0.29 1.13 0.44 –0.33 0.18 0.0 1.1 0.3 0.2 0.30.04 0.68 0.10 0.06 0.02
sidi harazem 1.75 1.91–0.38 0.13 0.12 1.10 –0.44 0.1 0.0 0.0 2.7 1.90.08 0.01 0.01 0.64 0.10
sidi ali 1.75 1.98 1.11 0.27 0.78 0.12 0.06 0.6 0.1 1.1 0.0 0.00.62 0.04 0.30 0.01 0.00
montclar 1.75 1.93 1.32 0.23 0.31 0.08 0.09 0.8 0.0 0.2 0.0 0.10.91 0.03 0.05 0.00 0.00

Table 1.9.Coordinates, contributions and square cosine of individuals

In the example, the barycenter of sparkling waters (and consequently, that of still
waters) is more than 3 standard deviations from the origin (−3, 5). Sparkling waters
are significantly very far from the origin.

It is easy to plot supplementary individuals onto the principal axes. Since we
have the formulae allowing principal components computations, we simply have
to compute linear combinations of these supplementary points characteristics.[AQ:
Please indicate where Table 1.10 should be cross-referenced]
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Categories Test values Coordinates
Label EFF. P.ABS 1 2 3 4 5 1 2 3 4 5
1. Country
France 40 40.00–1.9 0.7 2.1 –0.5 0.7–0.33 0.09 0.18 –0.04 0.03
Britain 4 4.00 1.2 0.2 –2.7 0.5 –0.2 1.17 0.16 –1.28 0.22 –0.05
Greece 2 2.00 0.8 0.2 –3.5 0.4 –1.0 1.09 0.15 –2.44 0.26 –0.29
Greece-Crete 2 2.000.8 0.2 0.8 0.2 0.0 1.12 0.19 0.52 0.10 0.00
Italy 7 7.00 0.7 –1.5 0.4 –0.5 0.1 0.49 –0.77 0.13 –0.17 0.01
Morocco 2 2.00 0.3 0.2 0.6 1.0 –0.6 0.36 0.20 0.45 0.61 –0.19
2 . Type
Mineral 38 38.00–2.5 –0.5 –1.2 –0.7 0.4–0.46 –0.07 –0.11 –0.06 0.01
Spring 19 19.00 2.5 0.5 1.2 0.7 –0.4 0.92 0.13 0.22 0.11 –0.03
3 . PG
Sparkling 16 16.00–3.5 2.7 –0.5 –1.8 0.3–1.44 0.82 –0.11 –0.34 0.03
Still 41 41.00 3.5 –2.7 0.5 1.8 –0.3 0.56 –0.32 0.04 0.13 –0.01

Table 1.10.Coordinates and test values of the categories[AQ: What do EFF. and P.ABS.
represent?]

1.5. Application to statistical process control

1.5.1. Introduction

Online statistical process control is essentially based oncontrol charts for measure-
ments, drawing the evolution of a product or process characteristics. A control chart
is a tool which allows a shift of a location (mean) or a dispersion (standard deviation,
range) parameter regarding fixed standard or nominal valuesto be detected through
successive small samples(xi, i = 1, 2, . . . , n).

Several types of control charts exist [MON 85, NIA 94], all based on the assump-
tion that the distribution ofxi is N (µ0, σ0). Standard or nominal valuesµ0 andσ0

are assumed known or fixed. If this is not the case, they are replaced by unbiased
estimations.

Here, we are only interested in classical Shewhart control charts for the detection
of process mean shifts. In Shewhart control charts, at each instanti we use onlyxi, the
mean value of observations available, which is compared to lower (LCL) and upper
(UCL) control limits:

LCL = µ0 − 3σ0/
√
n and UCL = µ0 + 3σ0/

√
n.

This control chart can be seen as a graphical representationof a succession of
statistical testsH0 : µ = µ0 againstH1 : µ 6= µ0 for a set of samples; the standard
deviationσ0 is assumed known. The critical region corresponds to the control chart
from the control area. This equivalence to hypothesis testswill facilitate extension to
several variables.

In most of the cases there are not one but several characteristics to simultaneously
control. The usual practice consists of using as many chartsas characteristics. This
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method has the major drawback that it does not take into account the correlations
between variables representing thesep characteristics. That then leads to undesired
situations of false alarms (Figure 1.5). The univariate charts may signal an out-of-
control situation while the multivariate process is under control (region B and C) or,
more severe, a non-detection of a multivariate process shift (region A) may occur.
[AQ: Have reworded; please confirm correct]
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Figure 1.5. Multivariate control chart

A global approach through multivariate charts is thereforethe only adequate
approach (see [NIA 02]). Principal component analysis, which provides artificial but
uncorrelated variables, is, in some sense, a first solution to the problem of correlated
characteristics. We will see later that once a shift has beendetected, adequate
univariate charts may help to determine which variables areresponsible of this shift,
or assignable causes.

1.5.2. Control charts and PCA

1.5.2.1.PCA and outliers

Multivariate control charts are based on a transformation of a Rp vector in a scalar
through a quadratic function. They can be seen as methods formultidimensional
outlier detection. These methods consist of finding a sub-order inRp generally based
on a multivariate distance measure (a detailed study can be found in [BAR 84]). This
measure is then used in a statistical test, to decide if an observation is an outlier
when the standardized statistic has an abnormally large or small value, under a model
hypothesis (in quality control, normality assumption is often made).

In the multidimensional case, an outlier may be the result ofan extreme value
for only one of thep principal components or the result of small systematic errors in
several directions. This latter type of outlier corresponds to the problem of orientation
(correlation) and not of location (mean) or dispersion (variance). Using principal
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component analysis, not as a dimension reduction method butrather as an outlier
detection method, facilitates the search for extreme directions.

To best summarize the data structure, not only the first components should be
retained but also the last components considered as the residuals of the analysis.
Jolliffe [JOL 86] has shown that the first components allow the detection of outliers
which inflate the variances and covariances. These outliersare also extreme on
original variables, so they can be directly detected. The first components do not yield
supplementary information.

On the other hand, outliers not visible on original variables (those that perturb
the correlation between variables) will be detected on the last principal components.
Several methods of outliers detection based on PCA have beenproposed by many
authors, specially Hawkins [HAW 74], Gnanadesikan [GNA 77], Jolliffe [JOL 86] and
Barnett and Lewis [BAR 84].

Proposed techniques consist of applying formal statistical tests to principal
components individually or conjointly. These tests are based on residual statistics
computed using the lastq principal components. The most widely used residual
statistics are:

R2
1i =

p∑

k=p−q+1

(cki )
2 =

p∑

k=p−q+1

λk(y
k
i )

2,

whereyk = ck
√
λk

, R2
1i is a weighted sum of the standardized principal components

which give more importance to principal components with large variances and

R2
2i =

p∑

k=p−q+1

(cki )
2/λk =

p∑

k=p−q+1

(yki )
2.

The distributions of these statistics are easily obtained.If the observations are
normally distributed with known meanµ and varianceΣ, yk have an exact Gaussian
distributionN (0, 1). If there are no outliers in the data, the residual statisticsR2

1i and
R2

2i haveχ2
q distribution. Whenµ andΣ are unknown, it is also possible (using their

estimations) to obtain approximate distributions of theseresidual statistics and then to
perform statistical tests.

1.5.2.2.Control charts associated with principal components

In quality control, PCA is used as a method for detecting shifts considered as
outliers. The last principal components may be as interesting as the first components,
since the type or the direction of the shifts area priori unknown.

Recall that principal components are defined as linear combinations of original
variables, which best summarize the data structure. They take into account the
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correlations between variables and then, even taken individually, they help to detect
shifts (unlike original variables).

Note that principal components charts should not be used instead of but in
conjunction with multivariate charts. The problem of falsealarms and non-detection
of out-of-control (noted on Figure 1.5) is attenuated but not completely suppressed
for uncorrelated principal components. The 3-sigma control limits for standardized
principal components are then±3/

√
n. The presence of outliers can be tested with a

control chart on theR2
2i, whose upper control limit corresponds to the fractile1 − α

of aχ2
q.

For residual statistics, the presence of outliers can be tested with a control chart
defined by:

UCL = χ2
q,1−α, LCL = 0 and Stat = R2

2i.

EXAMPLE.– We have simulated 30 samples of 5 observations from a multinormal
distributionN3(0, R); the three variables are assumed to have zero mean and variances
equal to 0.5, 0.3 and 0.1, respectively. The correlation matrix is:

R =




1
0.9 1
0.1 0.3 1


 .

We have then simulated a mean shift for the last five samples which consists of
increasing the first variable mean and diminishing the second variable mean by half of
their standard deviation. This situation is detected by theadequate multidimensional
control chart [NIA 94] as well as the last principal component control chart. In
Figure 1.6, note that the last five control points are clearlydetected while the
phenomenon is not visible on the first two principal components.

When the number of characteristics is small, it is possible to find a simple
interpretation for the principal components based on a small number of variables
among thep original variables. Control charts based on principal components not only
allow the detection of shifts but also help with the detection of assignable causes.

On another hand, if the number of variables is very large, theproposed methods
require many control charts for the first and the last components, which may be
unpractical.[AQ: Changed ‘annoying’ to ‘unpractical’; please confirm ok] We
may only use the firstq components, as in the dimension reduction approach of PCA,
but then it is necessary (1) to test the quality of the representation of thep original
variables by theq components and (2) to use methods based on residuals for outliers
or shifts detection.
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Figure 1.6. Control chart for the 3rd principal component (Prin 3)

Furthermore, even if we findq principal components summarizing at best the
information present in thep original variables, theseq components depend on a large
number of variables or on all original variables. To simplify the principal components
interpretation, other methods ofprojection pursuithave been proposed [NIA 94]. The
work done by Caussinuset al. [CAU 03] (see Chapter 3) is useful in improving these
methods.

1.6. Conclusion

PCA is a very efficient method for representing correlated data. It is widely used
in market study, opinion surveys and in the industrial sector more and more.

We have presented principal components analysis essentially as a linear method
for dimension reduction, in which we are generally interested in the first principal
components. Through its application to statistical process control, we have seen that
PCA can be also used as a multidimensional outlier detectiontechnique, based on the
last components.

Non-linear extensions of PCA exist and will be used more frequently [DEL 88,
SCH 99].
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