PLS Regression with Functional Predictor and Missing Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

PLS Regression with Functional Predictor and Missing Data

Résumé

Time-average approximation and principal component analysis of the stochastic process underlying the functional data are the main ingredients for adapting NIPALS algorithm to estimate missing data in the functional context. The influence of the amount of missing data in the estimation of linear regression models is studied using the PLS method. A simulation study illustrates our methodology. Keywords: functional data, missing data, PLS, functional regression models.
Fichier principal
Vignette du fichier
RC1813.pdf (213.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01125705 , version 1 (23-03-2020)

Identifiants

  • HAL Id : hal-01125705 , version 1

Citer

Cristian Preda, Gilbert Saporta, Ben Hadj Mbarek. PLS Regression with Functional Predictor and Missing Data. PLS'09,6th Int. Conf. on Partial Least Squares and Related Methods, Sep 2009, Pékin, China. pp.17-22. ⟨hal-01125705⟩
87 Consultations
90 Téléchargements

Partager

More