
HAL Id: hal-01125685
https://hal.science/hal-01125685

Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validating and Dynamically Adapting and Composing
Features in Concurrent Product-Lines Applications

Nasreddine Aoumeur, Kamel Barkaoui, Gunter Saake

To cite this version:
Nasreddine Aoumeur, Kamel Barkaoui, Gunter Saake. Validating and Dynamically Adapting and
Composing Features in Concurrent Product-Lines Applications. ECBS’09. 16th Annual IEEE In-
ternational Conference and Workshop on the Engineering of Computer Based Systems, 2009, San
Francisco, United States. pp.138-146, �10.1109/ECBS.2009.48�. �hal-01125685�

https://hal.science/hal-01125685
https://hal.archives-ouvertes.fr

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220882537

Validating and Dynamically Adapting and Composing Features in Concurrent

Product-Lines Applications

Conference Paper · August 2009

DOI: 10.1109/ECBS.2009.48 · Source: DBLP

CITATIONS

2
READS

32

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Formal Specification of Elastic Behaviors in Cloud Systems View project

Reverse engineering variability from requirement documents View project

Kamel Barkaoui

Conservatoire National des Arts et Métiers

300 PUBLICATIONS 2,164 CITATIONS

SEE PROFILE

Gunter Saake

Otto-von-Guericke-Universität Magdeburg

645 PUBLICATIONS 6,999 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gunter Saake on 30 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220882537_Validating_and_Dynamically_Adapting_and_Composing_Features_in_Concurrent_Product-Lines_Applications?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220882537_Validating_and_Dynamically_Adapting_and_Composing_Features_in_Concurrent_Product-Lines_Applications?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Formal-Specification-of-Elastic-Behaviors-in-Cloud-Systems?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reverse-engineering-variability-from-requirement-documents?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamel_Barkaoui2?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamel_Barkaoui2?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Conservatoire_National_des_Arts_et_Metiers?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamel_Barkaoui2?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gunter_Saake?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gunter_Saake?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Otto-von-Guericke-Universitaet_Magdeburg?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gunter_Saake?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gunter_Saake?enrichId=rgreq-cdf79371d021d9b19af6a863b52b6eeb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg4MjUzNztBUzoxMDI2NzE3MjE2OTcyODlAMTQwMTQ5MDI1NDk0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Validating and Dynamically Adapting and Composing Features in Concurrent
Product-Lines Applications

Nasreddine Aoumeur Kamel Barkaoui1 Gunter Saake
ITI, FIN, Otto-von-Guericke-Universität Magdeburg
Postfach 4120, D–39016 Magdeburg, GERMANY

1Laboratoire CEDRIC, CNAM, 292 Saint Martin, 75003 Paris - FRANCE E-mail:barkaoui@cnam.fr
E-mail: {aoumeur|saake}@iti.cs.uni-magdeburg.de

Abstract

With the pressing in-time-market towards customized
services, software product lines (SPL) are increas-
ingly characterizing most of software landscape. SPL
are mainly structured through offered features, where
consistentcomposition anddynamic variability are
the driving forces. We contribute to these two chal-
lenging problems when distribution and correctness
are at stake. First, we soundly specify and validate
any feature-oriented requirements using a component-
based Petri nets framework referred to asCO-NETS.
For rapid-prototyping, we semantically interpret in
true-concurrent rewriting logic. For consistently com-
posing features, a flexible feature-algebra is pro-
posed. Finally, for runtime adaptability and integra-
tion of features, we leverageCO-NETS with an explicit
aspectual-level, where features can be dynamically
(un)woven on running components. The approach is
thoroughly explained using a feature-intensive multi-
lift system.
Keywords: Software product lines, Feature modelling
and evolution, Component-based Petri nets, rewriting
logic andMAUDE.

1 Introduction

An SPL is a set of software-intensive systems sharing
a common, managed set of features that satisfies the

specific needs of a particular market segment or mis-
sion. SPL applications are thus developed from a com-
mon set of core assets in a prescribed way [10, 14, 7].
A feature is an increment in program functionality. In
the Feature Oriented Domain Analysis (FODA) [5], a
feature is defined as a prominent or distinctive user-
visible aspect, quality or characteristic of a system. It
defines a logical unit of behavior that is specified by a
set of functional and quality requirements.

Several notations and formalisms such as Use Cases
and scenarios are now very popular for single products
development. In the SPL context, most works [5, 10]
extend UML Use Cases with variability mechanisms
to document PL requirements. features interactions
have been also tackled using using scenarios such as
UML sequence diagrams [6]. Statecharts [8] are often
used for a more detailed design, as they are closer to
the implementation. Features Interaction [16] has been
recently coined as a new research field in software-
engineering for tackling any conflict and contradiction
occurring when putting features together.

Nevertheless, due to the increasing networking and
volatility of applications such as the emerging service-
driven systems [15], existing approaches to features
interaction are becoming transcended. Among the ex-
hibited shortcomings, we aim tackling in this contribu-
tion we point out to the followings.

• The expressiveness of the modeling framework.
Indeed, most of proposals to Features Interac-

tion are based on temporal and process languages
[16], known for their limited structuring.

• The capabilities of exhibitingconcurrent and
distributed behavior require to be promoted, as
premise for service-driven applications.

• The intrinsic ability ofdynamicallyadapting fea-
tures. Indeed, to stay competitive, applications
are adapting quickly to market changes and to sat-
isfying very demanding customers.

We propose thus to first rigorously specifying and
validating service features. Complex features are to be
combined from basic ones into strategies to reflect re-
alistic behaviour. On the other hand, capitalizing on
reflection capabilities, such features can be dynami-
cally manipulated (i.e. added/removed/updated) with-
out stoping non-concerned features or decreasing the
degree of distribution of the whole running applica-
tion. The conceptual model we are proposing, referred
to as CO-NETS, is based on high-level Petri nets [17],
with three main distinguished capabilities:

• Inter-component interactions: Besides coping
with intra-component computation, the model al-
lows behaviorally interacting different compo-
nents composing a complex application. The fea-
tures are thus externalized, with make them very
sensitive and adequate for changes.

• Prototyping and validation: The model is se-
mantically governing by distributed rewriting-
logic [13] and its MAUDE language [4]. Using
current MAUDE implementation, prototypes can
be derived using symbolic concurrent rewriting
techniques. This with the usual graphical anima-
tion permit validating the system against its re-
quirements.

• Runtime adaptability : As we demonstrate in the
paper, recapitulating on reflection [3] and aspect-
oriented techniques [11], we present how to lever-
age the model to cope with dynamic-adaptability

in transparent and separate manner. In this man-
ner, features are dynamically woven on running
components.

The rest of this paper is organized as follows. The
next section presents the informal running example
using UML-class diagrams. In the third section, we
present how to model, compose and validate features
with CO-NETS. In the fourth section, we address
the problem dynamically adapting features using an
aspectual-level over CO-NETS components. We con-
clude this paper by some remarks.

2 The Multi-lift System: Informal Descrip-
tion

To illustrate our approach to features modelling, val-
idation and dynamic evolution, we adopt a simpli-
fied version of a multi-lift system. This applica-
tion has been used in several approaches to FI (e.g.
[18, 9, 16]). Nevertheless, they consider only a sin-
gle lift and the interactions are checked only statically,
that is at design-time.

Attributes

Features

Call(Lift)

Goto(Lift, Floor)

Weight : Real+

<<service>>
User of Lift

Attributes

Features

<<service>>
Lift

State−Lift : [Idle, Up, Down]

Door : [Open, Closed]

Current−Floor : [1,2,...F_max]

Current_Weight : Real+

Called_F(Lift, Floor)

ToGo_F(Lift, Floor, Direction)

Figure 1. The Lift and User services as profile UML
Classes

As depicted in Figure 1, each lift is characterized by:
the Identity, Current floor (shortly Cur Floor) and
Lift-stateexpressing whether the lift isidle, going up
or going down. To keep track of directions while serv-
ing intermediate floors, we add states such ”Stop” as
suffixes for other states. For instance, ”Up.Stop”
implies that the lift is going up and is intermediately
stopping. TheDoor-state(shortly Door), that could

be either open (Open) or closed (Closed). Finally,
Current weight(shortlyWg) is in kg for instance.
The service operations or features acting on such at-
tributes are the following:

• The lift may be called from the outside (by
a user) throughCalled(LiftId, Floor).
This can be initiated throughCall(LiftId).

• We denote a travel to a given floor by
ToGo(LiftId, Floor, Direction).
It is initiated (by the user) through
GoTo(LiftId, Floor).

• Internal features to any lift include: Open-
ing/closing (using sensors) and weight-update.

3 Features Specification inCO-NETS

A service signature defines the structure of service
states and the form of (received/invoked) messages
which have to be accepted by such component states.
In CO-NETS, we define them as follows.

• States are algebraic tuples of the form
〈Id |at1 : vl1, .., atk : vlk , bs1 : vl ′1, ..., bsk ′ :

vl ′k ′〉

Id is an observed identity;at1, .., atk are the lo-
cal attributes whereasbs1, ..., bsk ′ represent the
observed ones.

• Similarly, we distinguish between imported / ex-
ported and internal messages.

3.1 Lift-services structure modelling

First, we precisely define the data required for ex-
pressed a given lift component. These data types in-
clude the lift-states (e.g. idle, up, dw), the floors, the
door-date and the max. allowed for the weight. Alge-
braically, these basic required data takes this form:

obj Lift-Data is
protecting Real+ nat .

sort Door StateF.

op 0, 1, 2,.., k : → Floors.

op idle, Up, Dw, Stop : → StateF.

op . : StateF "Stop" → StateF.

op op, cl : → Door.

op idle, Up, Dw : → StateF.

op Wmx : → Real+ .

endo.

For the lift itself is to be precisely defined with respect to
the CO-NETSstructure as follows. First, its state is to be de-
fined with its attributes. Then, the messages to be received
as features are defined.

service Lift is
extending Service-State .

protecting Lift-Data .

sort Id.Lift < OId .

sort TOGO CALLED LIFT .

(* the Lift service state declaration *)

op 〈 |Cur F : ,St : ,Dr : ,Wg : 〉: Id.Lift

Floors StateF DoorSt Real+ → LIFT .

(* Features declaration *)

op ToGo F : Id.Lift Floors StateF → GOTO .

op Called F : Id.Lift Floors → CALLED .

(* Variable to use in the corresponding net *)

vars L : Id.Lift .

vars S, D : StateF .

vars W, W’ : Real+ .

vars K, K1, K2, K’ : Floors .

endsrv.

3.2 Features behaviour modelling in CO-
NETS

The CO-NETS model is incrementally constructed from its
structure as follows.. The net Places are constructed by as-
sociating with each message generator one ‘message’ place.
With each state sort we also associate one ‘state’ place. The
net transitions, which may include conditions, reflect the in-
tended effect of each feature on service states.

3.2.1 The Lift-service behaviour

Figure 2 depicts the corresponding user multi-lifts CO-
NETS model. This behavior is incrementally conceived by
first associating with the state sortLift a place contain-
ing the different lifts states. Second, with the two message
sortsTOGO andCALLED, we associated two corresponding
places. The corresponding behaviour is captured in terms of
transitions associated with these messages. For instance,the
transitionsTskipgo andTskipcal permit to skip (i.e.
consume) any called/goto messages from/to the same floor
where the lift car is stationing. The transitionTcalled

. . . .

LIFT

Tcalled

Tgofar

Tcallint

. . . .

. . . .
ToGo_F(k, 1, Up)

ToGo_F(l,5, −−)

Tskipgo

Tskipcal

Tgoint

. . . .

Called_F(lk, 10)
. . . .

Called_F(l1,5)

CALLED

Tgonext

. . . .

GoTo(l1,5)

GoTo(l1,5)

. . . .

Call(l)

Call(l1)

TOGO
T

go
to

The multi−lift Co−Nets observed specification
T

ca
ll

us1

USER
GOTOCALL

The observed user specification

〈lf1|Cur F : 4, St : idle, Dr : Op, Wg : 125〉

〈lfj |Cur F : 9, St : Up, Dr : Cl, Wg : 40〉

ToGo F(L, K ,−)

True

〈L|Cur F : K〉

Called F(L, K) True

〈L|Cur F : K〉

∼ToGo F(L,−, −)

〈L|Cur F : K , St : S , Dr : cl〉
Called F(L, K1)

〈
L
|C

u
r

F
:
K

−
1
,
S
t

:
S

.S
to

p
,
D

r
:
c
l〉

〈
L
|C

u
r

F
:
K

+
1
,
S
t

:
S

.S
to

p
,
D

r
:
c
l〉

(K1 > K) (K1 < K)

Called F(L, less(K , K1))
〈L|Cur F : K , St : S , Dr : cl〉

ToGo F(L, K1, S) 〈
L
|C

u
r

F
:
le
s
s
(K

1
,
K

),
S
t

:
S

.S
to

p
,
D

r
:
c
l〉

(S = Up ∨ S = Dw)

ToGo F(L, K1, S) ToGo F(L, less(K1, K),−)

〈L|Cur F : K , St : S , Dr : cl〉

ToGo F(L, K1, S)

〈
L
|C

u
r

F
:
le
s
s
(K

1
,
K

),
S
t

:
S

.S
to

p
,
D

r
:
c
l〉

S = Up ∨ S = Dw

C
a
ll
(L

)
T
r
u
e

C
a
ll
e
d

F
(L

,
K

)

G
o
to

(L
,
K

)

T
r
u
e

T
o
G

o
F

(L
,
K

,
−

)

ToGo F(L, K1, S)
〈L|Cur F : K , St : D, Dr : cl〉

〈L|Cur F : K1, St : S .Stop, Dr : cl〉

((D = S = Up) ∨ (D = S = Up)) ∨ (K1 = K + 1 ∨ K1 = K − 1)

ToGo F(L, K1, −)
〈L|Cur F : K , St : idle, Dr : cl〉

〈
L
|C

u
r

F
:
K

,
S
t

:
D

w
,
D

r
:
c
l〉

〈
L
|C

u
r

F
:
K

,
S
t

:
U

p
,
D

r
:
c
l〉

Goto F(L, K1, Up)

Goto F(L, K1, Dw)

(K1 > K + 1) (K1 < K − 1)

Figure 2. The Multi-Lift-User Components observed specification

corresponds to the case where a called order (from the out-
side lift) is directly served; That is, a called order is served
when at that moment no goto order (from inside the lift) ex-
ists. For this purpose, the symbol∼ reflects the inhibitor
arc from the placeGOTO. The transitionTgoint corre-
sponds to the existence of intermediate requested goto or-
ders (from inside) while performing the transitionTgofar.
That is, besides the tokenToGo F (L,K1,S) there should
be another tokenToGo F (L, less(K ,K1),−) in the place
TOGO. The transitionTcallint is probably the most
complex one as it corresponds to the case where interme-
diate calls are being requested from outside while perform-
ing the transitionTgofar (i.e. at least a message token as
ToGo F (L,K1,S) from the placeTOGO exists1). The lift
will serves such intermediate stops, but with still the direc-
tion (S = Up or Dw) as prefix (keeping track of the final
destination). As several intermediate calls may be simulta-
neously requested, we must serve thenearestone first, that
we denote by a functionless(K ,K1) we assume defined at
the data-level. For instance, when goingUp, less(K ,K1)

first tests whetherK + 1 is requested, if not it then tests
K +2 and so on tillK1− 1. The transitionTgoint corre-
sponds to the existence of intermediate requested GoTo or-
ders (from inside) after performing the transitionTgofar.

3.3 Features validation with MAUDE

The main ideas of interpreting CO-NETS in rewrite-logic
are as follows. We bind each place-markingmt with its
placep using the pair(p,mt). Tokens withinmt are gath-
ered as a multiset with the union operator. CO-NETS

states are multisets over different the pairs(pi ,mt i), us-
ing a union operator denoted⊗. To exhibit a maximum of
concurrency, we allow distributing⊗ over . That is, if
mt1 andmt2 are two marking parts in a given placep as
(p,mt1 mt2), then we can always split it to(p,mt1) ⊗

(p,mt2). To exhibit intra-state concurrency, we permit the
splitting and recombining of such state tuple at a need.
Example: By applying these guidelines, the CO-NETS lift
transitions are governed with the following rules.

• [Tskipgo]: (TOGO ,ToGo F (L,K ,))⊗

(Lift , 〈L|Cur F : K 〉) ⇒ (Lift , 〈L|Cur F : K 〉)

• [Tskipcal] : (CALLED ,Called F (L,K))⊗

(Lift , 〈L|Cur F : K 〉) ⇒ (Lift , 〈L|Cur F : K 〉)

• [Tgoint] : (TOGO ,ToGo F (L,K1,S)

ToGo F (L, less(K ,K1),−))⊗

1Used here as read-arc withS be eitherUp or Dw .

(Lift , 〈L|Cur F : K ,St : S ,Dr : cl〉)

⇒ ((TOGO ,ToGo F (L,K1,S))⊗

(Lift , 〈L|Cur F : less(K ,K1),St : S .Stop,Dr :

cl〉)

if (S = Up∨ = Dw)

• [Tgonext]: (TOGO ,ToGo F (L,K1,D))⊗

(Lift , 〈L|Cur F : K ,St : S ,Dr : cl〉)

⇒ (Lift , 〈L|Cur F : K1,St : S .Stop,Dr : cl〉)

if (D = S = Up∨ = Dw) ∨ ((K1 = K ± 1))

These transition rewrite rules governing the behaviour
of lift C O-NETScomponent are concurrently applied to any
given (initial) statemarking. The corresponding inference
rules of this CO-NETSrewrite theory and illustration on how
to concurrently applied them can be found more in detail in
[1].

3.4 Features Composition using Strate-

gies

We argue that imposing careful-control strategies for fir-
ing transitions represents a crucial step towards decreas-
ing undesirable interactions of service features. Further,
it allows detecting and validating large cases of conflicting
interactions (before completing such detection with some
property-checking).

Considering our case study with the above rewrite rules,
for instance, we have to impose that after firing the tran-
sition Tgofar, the transitionsTcallint andTgoint
have to be repeatedly and concurrently attempted before try-
ing the transitionTgonxt. Otherwise, if we directly fire
Tgonxt after Tgofar then all intermediate call or goto
(from inside and outside) will beskipped.

We thus adopt operators likesequence (” ;”), choice
(”+”), parallelism (” |”) on transitions. We give below,
for illustration, the corresponding inference rules for impos-
ing a choice (’+’) while performing transitions. Informally
speaking, the choice strategy (’+’) allows applying an eli-
gible transition (i.e. with a matching to a part of the CO-
NETS-marking or state) among at least two transition rules
(in our caseTrl1 andTrl2).

obj TRANSITIONS Algebra is
protecting CO-NETS-State .

op + ; ; ; | || : T labels T labels → T labels

vars m1,m2, sm1, sm2 : Msg .

vars S l , S r , S l1 , S l2 , S r1 , S r2 , Sh : CO-NETS-State

vars p1 , p2 : Places

vars Trl1 , Trl2 : Transitions Rules

Trl1 + Trl2 ⇔ (p1, sm1) ⊗ (p2, sm2) ⊗ S l ⇒ S r

with

Trl1 : (p1,m1) ⊗ L1 ⇒ R1

Trl2 : (p2,m2) ⊗ L2 ⇒ R2

∃ σ1, σ2 : X → T s(pi) s.t.

(sm1 = σ1(m1) ∧ σ1(L1) ∈ S l ∧ (p1, sm1) ⊗ S l ⇒ S r) ∨

(sm2 = σ2(m2) ∧ σ2(L2) ∈ S l ∧ (p2, sm2) ⊗ S l ⇒ S r)

endo.

3.4.1 Application to the multi-lift system.

One possible logical strategy consists of repeating the fol-
lowing: (1) eliminate any redundant request from outside
and inside, that is, first each time perform the transitions
Tskipgo andTskipcal; (2) check for the farthest re-
quested floor from inside, that is, try performing the transi-
tion Tgofar. When all requested floors are just next ones
(i.e. Up or Down) perform the transitionTgonxt ; (3)
serve any (intermediate) requested floors (both from inside
and outside) while travelling to the farthest floor selected
from 2. That is, perform the transitionsTintcall and
Tgoint; and (4) serve this final destination by perform-
ing the transitionTgonxt. With the above notations, this
strategy corresponds to the following algebra:

[(Tskipgo ‖ Tskipcall) ; ((Tgofar ;

(Tintgo ‖ Tintcall) ; Tnxtgo) + (Tnxtgo))]∗

The notation[...]∗ perform this process repeatedly yet with
the interference of any local behaviour (i.e. the application
of local transitions at anytime and at need).

4 Features Runtime-Adaptability

As we emphasized, existing FI approaches lackruntime
manipulation of features. This prevents adjusting such fea-
tures to avoid undesirable interactions and/or to timely re-
spond to requirements features change.

The main ideas for building a meta-level from a given
CO-NETScomponent, may be intuitively summarized in the
following:
Meta-tokens as transition behavior: As any CO-NETS

transition is composed of an label, input/output arc inscrip-
tions with corresponding input/output places, and a condi-
tion inscription, we first propose togather them as a tuple
:

〈trans id: version | in-inscript.,
out-inscript., cond. 〉

Whereversion as natural number capturesdifferentbe-
havior ’versions’. With respect to the inter-component tran-
sition general pattern depicted in Figure??, this tuple takes
a more precise form:

〈t : i |(obj , IC obj)
ip
⊗

p=i1

(Mesp , IC p), (obj ,CT obj)
hr

⊗
q=h1

(Mesq , IC q),TC (t)〉

Aspectual-level for Meta-tokens: To allow
manipulating—namely modifying, adding and/or
deleting—such tuples (i.e. transitions’ behavior), we
propose an appealing Petri-net-based proposal that consists
in: (1) gathering such tuples into a corresponding place
that we refer to as ameta-place; (2) associating with
this meta-place three main message operations—namely
addition of new behavior, modification of an existing
behavior, and deletion of a given behavior; and (3) as for
usual CO-NETS components conceive for each of these
three message types three places and three respective
meta-transitions for effectively and concurrently
adapting any meta-transition as tuple.

Relating the two levels with read-arcs: Once building
such aspectual-level, to dynamically manipulating any tran-
sition dynamics the next important steps are twofold. First,
we slightly enrich (selected) CO-NETS component tran-
sitions by justadding (meta-) variables (we denote by
IC ,CT ,TC) using a disjunction operator (e.g∨) to
each of their input/output and condition inscriptions. In
term of aspect-oriented concepts, these variables play the
jointpointsfor dynamically capturing the advices [?]. Tran-
sitions with these (meta-)variables are referred to asevolv-
ing ones. Secondly, in order to permitweavingany new
behavior (as meta-token) on the component-level ”hooked”
transitions, we propose torelate through read-arcs the
meta-place with such respective non-instantiated transition.

Weaving meta-tokens as usual transitions: The dynamic
weaving consists inselectingfrom the meta-place a given
meta-token asadviceandtransformingit to a usual (instan-
tiated) transition rule. Given such a non-instantiated meta-
rewrite rule, we can thendynamically selectany particular
tuple-as-behavior from the meta-place and derive a usual
transition rule. This process is captured by the following
inference rule.

With the existence of the following substitutions:∃σi ∈

[T s(pi)]⊕, .., ∃σj ∈ [T s(q j)]⊕, ∃σ ∈ [T bool]

The following usual rewrite rule as the new
(kth behavior for the transitiont(−) is obtained.
〈t : k |[

k
⊗

i=1
(pi ,σi (IC i))]|,|[

l
⊗

j=1
(q j ,σj (CT i))]|,σ(TC i)〉∈M (Pmeta)

t ins (k) : |[
k
⊗

i=1
(pi ,σi(IC i))]| ⇒ [

l
⊗

j=1
(q j ,σj (CT i))]| if σ(TC i)

4.1 Runtime adaptability of the multi-lift

features

Different lift features can now be dynamically manip-
ulated in an incremental way. As specific illustration of
such dynamic adaptivity of different features, we restrict
ourselves to the following cases:

• Stationary floors: We aim dynamically bringing
some specific lifts to travel to a ’stationary’ floor. For
instance, at rush-time which may vary depending on
the context. The transition-as-tuple that captures this
is as follows.:
〈Reset : 1|(TOGO ,∼ ToGo F (L,−,−)) ⊗

(CALLED ,∼ Called F (L,−,−)) ⊗

(Lift , 〈L|Cur F : K ,Dr : cl ,Wg :

0〉), (Lift , 〈L|Cur F : 0,Dr : cl ,Wg : 0〉), (K 6=

0) ∧ (L ∈ List(Lifts)〉

• Avoid unnecessary travel: In our original CO-NETS

specification we allowed canceling any request
from a same floor (see transitionsTskipgo and
Tskipcal). Nevertheless, to completely protect
the lift from (kids abuse!) unnecessary travel, we
have to further consider the case of requesting (from
inside) for floors without being in the lift-car (i.e. the
weight in zero(0)). To do so, we have to consider
the transitionTskipgo as an evolving one, and
introduce its new behaviour when the weight is zero.
This behaviour takes the following form:
〈Tskipgo : 1|(TOGO ,ToGo F (L,K1,−)) ⊗

(Lift , 〈L|Cur F : K ,Wg :

W 〉), (Lift , 〈L|Cur F : K ,Wg : W 〉), ((K1 =

K) ∨ (W = 0))〉

• Serving ”onboard” first: When a given lift isnearly
full, for instance its weight is more than2 / 3

Wmax, it is more practical to skip intermediate calls.
The transitionTcallint should then be adapted to.

〈Tcallint : 1|(CALLED ,Called F (L, less(K ,K1)))

(TOGO ,ToGo F (L,K1,S))⊗

(Lift , 〈L|Cur F : K ,St : S ,Wg :

W 〉), (TOGO ,ToGo F (L,K1,S)) ⊗

(Lift , 〈L|Cur F : less(K ,K1),St : S .Stop,Wg :

W 〉), ((S = Up) ∨ (S = Dw)) ∧ (W < 2/3Wmx)〉

All these features are illustrated in Figure 3 withIC var ,
CT var andTC var as appropriate variables for capturing

adaptive input inscriptions, output inscriptions and condi-
tions respectively.

5 Conclusions

As product-line applications become largely dominating,
challenging problems such as dynamic variability and fea-
tures interaction require special emphasis. We proposed
therefore an approach for formally specifying, validating,
composing and dynamically evolving features in distributed
dynamic service-driven environment. The proposed ap-
proach is based on a tailored integration of component
concepts with high-level Petri nets, we endowed with an
adaptive aspectual-level. The approach governed by true-
concurrency rewrite logic, which permits symbolic valida-
tion besides animation. A variant of a multi-lift system was
taken as proof-of-concept. Software tools supporting are
been implemented to automate the approach. For formal
verification of features interaction, we are recapitulating on
our previous [2], that allows for shifting from the MAUDE

language to Lamport’s temporal logic of actions TLA [12].
Such verification phase is crucial for logically detecting in-
consistencies non-detected unwished interactions of differ-
ent features.

References

[1] N. Aoumeur and G. Saake. A Component-Based Petri
Net Model for Specifying and Validating Cooperative
Information Systems.Data and Knowledge Engineer-
ing, 42(2):143–187, August 2002.

[2] N. Aoumeur and G. Saake. Modelling and Certifying
Concurrent Systems: a MAUDE-TLA Driven Archi-
tectural Approach. InIn Proc. of of 5th International
Conference on Information Technology : New Gener-
ations (ITNG’08). IEEE CS, 2008.

[3] W. Cazzola, R. Stroud, and F. Tisato, editors.Re-
flection and Software Engineering. Lecture Notes in
Computer Science Vol. 1826, Springer, 1996.

[4] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-
Oliet, J. Meseguer, and C.L: Talcott. All About Maude
- A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting
Logic. Lecture Notes in Computer Science (springer),
4350, 2007.

. . . .
Del−Bh(T,..)

Chg−Bh(T,..)

. . . .

Called_F(lk, 10)
. . . .

Called_F(l1,5)

C
A

LL
E

D

. . . .

. . . .
ToGo_F(k, 1, Up)

ToGo_F(l,5, −−)

T
O

G
O

. . . .

LIFT

Add−Bh(T,..)

The Meta−Level Gouverning the Runtime Adaptivity of the Lift Compoment

Treset(k)

Tcallint(j)

Tskipgo(i)

The multi−lift adaptable Co−Nets specification

DEL−BhV CHG−BhV ADD−BhV

Meta−Place

〈lf1|Cur F : 4, St : idle, Dr : Op, Wg : 125〉

〈lfj |Cur F : 9, St : Up, Dr : Cl, Wg : 40〉

〈Treset : 1|(GOTO,∼ GoTo F(L, −,−)) ⊗ (CALLED,∼ Called F(L, −,−))⊗

(Lift, 〈L|Cur F : K , Dr : cl, Wg : 0〉), (Lift, 〈L|Cur F : 0, Dr : cl, Wg : 0〉), K 6= 0〉

〈Tskipgo : 1|(GOTO, GoTo F(L, K1, −)) ⊗ (Lift, 〈L|Cur F : K , Wg : W 〉), (Lift, 〈L|Cur F : K , Wg : W 〉), ((K1 = K) ∨ (W = 0)〉

〈Tcalled : 1|(GOTO, GoTo F(L, K1, S) (CALLED, Called (L, less(K , K1)) ⊗ (Lift, 〈L|Cur F : K , St : S , Wg : W 〉),

(GOTO, GoTo F(L, K1, S) ⊗ (Lift, 〈L|Cur F : less(K , K1), St : S , Wg : W 〉),

((S = Up) ∨ (S = Dw)) ∧ (W < 2/3Wmax〉

ToGo F(L, K ,−) ∨ ICsk1

True ∨ TCsk1

〈L|Cur F : K〉 ∨ ICsk2

〈Tskipgo : i|(GOTO, ICsk1
) ⊗ (LIFT , ICsk2

), (LIFT , ICsk2
), TCsk1

〉

Called F(L, less(K , K1)) ∨ ICcl1

〈L|Cur F : K , St : S , Dr : cl〉 ∨ ICcl2
ToGo F(L, K1, S) ∨ ICcl3

〈
L
|C

u
r

F
:
le
s
s
(K

1
,
K

),
S
t

:
S

.S
to

p
,
D

r
:
c
l〉

∨
C
T

c
l 1

(S = Up ∨ S = Dw) ∨ TCcl1

〈
T
c
a
ll
e
d

:
j
|(

G
O

T
O

,
I
C

c
l 2

)
⊗

(C
A

L
L
E
D

,
I
C

c
l 1

)
⊗

(L
I
F
T

,
I
C

c
l 3

),
(L

I
F
T

,
C
T

c
l 1

),
T
C

c
l 1
〉

ICrs1

ICrs2

C
T

r
s
1

TCrs1

〈Treset : k|(GOTO, ICrs1) ⊗ (CALLED, ICrs2) ⊗ (LIFT , ICrs3), (LIFT , CTrs1), TCrs1 〉

Figure 3. Dynamic manipulation of the lift system features

[5] P. Clements and L. Northrop.Software Product Lines:
Patterns and Practice. Reading, MA: Addison Wes-
ley, 2001.

[6] H. Gomaa and M Saleh. Feature-driven dynamic cus-
tomization of software product lines. InIn Proc.
Reuse of Off-the-Shelf Components, volume 4039 of
Lecture Notes in Computer Science, pages 58–72,
2006.

[7] G. Halmans and K. Pohl. Communicating the Vari-
ability of a Software-product Family.Software System
Modelling, 3:15–36, 2003.

[8] D. Harel. On Visual Formalisms.Communication of
the ACM, 31(5):514–530, 1988.

[9] M. Heissel. Detecting Features Interactions—A
Heuristic. InProc. of the 1st FIREworks Worshop,
pages 30–48, Magdeburg, Germany, 1998.

[10] K. Kang, J. Lee, and P. Donohoe. Feature-oriented
product line engineering.IEEE Software, 19(4):58–
65, 2002.

[11] G. et al. Kiczales. An Overview of AspectJ. In
Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’01), pages 327–353.
LNCS 2072, 2001.

[12] L. Lamport. The Temporal Logic of Actions.ACM
Transactions on Programming Languages and Sys-
tems, 16(3):872–923, May 1994.

[13] J. Meseguer. Conditional rewriting logic as a unified
model for concurrency.Theoretical Computer Sci-
ence, 96:73–155, 1992.

[14] M. Mezini and K. Ostermann. Variability Manage-
ment with Feature-Oriented Programming and As-
pects. InIn Proc. SIGSOFT04/FSE12, 2004.

[15] M.P. Papazoglou.Web Service: Principles and Tech-
nology. Prentice-Hall, Englewood Cliffs, 2007.

[16] S. Reiff-Marganiec and M.D. Ryan. Feature In-
teractions in Telecommunications and Software Sys-
tems (conference proceedings). IOS Press—ISBN 1-
58603-524-X, 2005.

[17] W. Reisig. Petri Nets and Abstract Data Types.Theo-
retical Computer Science, 80:1–30, 1991.

[18] M. Ryan. Features-oriented programming : A case
study using the SMV language. Technical report,
School of Computer Science, University of Birming-
ham, 1997.

View publication statsView publication stats

https://www.researchgate.net/publication/220882537

