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With the pressing in-time-market towards customized services, software product lines (SPL) are increasingly characterizing most of software landscape. SPL are mainly structured through offered features, where consistent composition and dynamic variability are the driving forces. We contribute to these two challenging problems when distribution and correctness are at stake. First, we soundly specify and validate any feature-oriented requirements using a componentbased Petri nets framework referred to as CO-NETS. For rapid-prototyping, we semantically interpret in true-concurrent rewriting logic. For consistently composing features, a flexible feature-algebra is proposed. Finally, for runtime adaptability and integration of features, we leverage CO-NETS with an explicit aspectual-level, where features can be dynamically (un)woven on running components. The approach is thoroughly explained using a feature-intensive multilift system.

Introduction

An SPL is a set of software-intensive systems sharing a common, managed set of features that satisfies the specific needs of a particular market segment or mission. SPL applications are thus developed from a common set of core assets in a prescribed way [START_REF] Kang | Feature-oriented product line engineering[END_REF][START_REF] Mezini | Variability Management with Feature-Oriented Programming and Aspects[END_REF][START_REF] Halmans | Communicating the Variability of a Software-product Family[END_REF]. A feature is an increment in program functionality. In the Feature Oriented Domain Analysis (FODA) [START_REF] Clements | Software Product Lines: Patterns and Practice[END_REF], a feature is defined as a prominent or distinctive uservisible aspect, quality or characteristic of a system. It defines a logical unit of behavior that is specified by a set of functional and quality requirements.

Several notations and formalisms such as Use Cases and scenarios are now very popular for single products development. In the SPL context, most works [START_REF] Clements | Software Product Lines: Patterns and Practice[END_REF][START_REF] Kang | Feature-oriented product line engineering[END_REF] extend UML Use Cases with variability mechanisms to document PL requirements. features interactions have been also tackled using using scenarios such as UML sequence diagrams [START_REF] Gomaa | Feature-driven dynamic customization of software product lines[END_REF]. Statecharts [START_REF] Harel | On Visual Formalisms[END_REF] are often used for a more detailed design, as they are closer to the implementation. Features Interaction [START_REF] Reiff-Marganiec | Feature Interactions in Telecommunications and Software Systems[END_REF] has been recently coined as a new research field in softwareengineering for tackling any conflict and contradiction occurring when putting features together.

Nevertheless, due to the increasing networking and volatility of applications such as the emerging servicedriven systems [START_REF] Papazoglou | Web Service: Principles and Technology[END_REF], existing approaches to features interaction are becoming transcended. Among the exhibited shortcomings, we aim tackling in this contribution we point out to the followings.

• The expressiveness of the modeling framework.

Indeed, most of proposals to Features Interac-tion are based on temporal and process languages [START_REF] Reiff-Marganiec | Feature Interactions in Telecommunications and Software Systems[END_REF], known for their limited structuring.

• The capabilities of exhibiting concurrent and distributed behavior require to be promoted, as premise for service-driven applications.

• The intrinsic ability of dynamically adapting features. Indeed, to stay competitive, applications are adapting quickly to market changes and to satisfying very demanding customers.

We propose thus to first rigorously specifying and validating service features. Complex features are to be combined from basic ones into strategies to reflect realistic behaviour. On the other hand, capitalizing on reflection capabilities, such features can be dynamically manipulated (i.e. added/removed/updated) without stoping non-concerned features or decreasing the degree of distribution of the whole running application. The conceptual model we are proposing, referred to as CO-NETS, is based on high-level Petri nets [START_REF] Reisig | Petri Nets and Abstract Data Types[END_REF], with three main distinguished capabilities:

• Inter-component interactions: Besides coping with intra-component computation, the model allows behaviorally interacting different components composing a complex application. The features are thus externalized, with make them very sensitive and adequate for changes.

• Prototyping and validation: The model is semantically governing by distributed rewritinglogic [START_REF] Meseguer | Conditional rewriting logic as a unified model for concurrency[END_REF] and its MAUDE language [START_REF] Clavel | All About Maude -A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic[END_REF]. Using current MAUDE implementation, prototypes can be derived using symbolic concurrent rewriting techniques. This with the usual graphical animation permit validating the system against its requirements.

• Runtime adaptability: As we demonstrate in the paper, recapitulating on reflection [START_REF] Cazzola | Reflection and Software Engineering[END_REF] and aspectoriented techniques [START_REF]An Overview of AspectJ[END_REF], we present how to leverage the model to cope with dynamic-adaptability in transparent and separate manner. In this manner, features are dynamically woven on running components.

The rest of this paper is organized as follows. The next section presents the informal running example using UML-class diagrams. In the third section, we present how to model, compose and validate features with CO-NETS. In the fourth section, we address the problem dynamically adapting features using an aspectual-level over CO-NETS components. We conclude this paper by some remarks.

The Multi-lift System: Informal Description

To illustrate our approach to features modelling, validation and dynamic evolution, we adopt a simplified version of a multi-lift system. This application has been used in several approaches to FI (e.g. [START_REF] Ryan | Features-oriented programming : A case study using the SMV language[END_REF][START_REF] Heissel | Detecting Features Interactions-A Heuristic[END_REF][START_REF] Reiff-Marganiec | Feature Interactions in Telecommunications and Software Systems[END_REF]). Nevertheless, they consider only a single lift and the interactions are checked only statically, that is at design-time. • The lift may be called from the outside (by a user) through Called(LiftId, Floor). This can be initiated through Call(LiftId).

• We denote a travel to a given floor by ToGo(LiftId, Floor, Direction).

It is initiated (by the user) through GoTo(LiftId, Floor).

• Internal features to any lift include: Opening/closing (using sensors) and weight-update.

Features Specification in CO-NETS

A service signature defines the structure of service states and the form of (received/invoked) messages which have to be accepted by such component states. In CO-NETS, we define them as follows.

• States are algebraic tuples of the form

Id |at 1 : vl 1 , .., at k : vl k , bs 1 : vl ′ 1 , ..., bs k ′ : vl ′ k ′
Id is an observed identity; at 1 , .., at k are the local attributes whereas bs 1 , ..., bs k ′ represent the observed ones.

• Similarly, we distinguish between imported / exported and internal messages.

Lift-services structure modelling

First, we precisely define the data required for expressed a given lift component. These data types include the lift-states (e.g. idle, up, dw), the floors, the door-date and the max. allowed for the weight. Algebraically, these basic required data takes this form: For the lift itself is to be precisely defined with respect to the CO-NETS structure as follows. First, its state is to be defined with its attributes. Then, the messages to be received as features are defined. 

Features behaviour modelling in CO-

NETS

The CO-NETS model is incrementally constructed from its structure as follows.. The net Places are constructed by associating with each message generator one 'message' place. With each state sort we also associate one 'state' place. The net transitions, which may include conditions, reflect the intended effect of each feature on service states. 

The Lift-service behaviour

ToGo F (L, K , -) True L|Cur F : K Called F (L, K ) True L|Cur F : K ∼ ToGo F (L, -, -) L|Cur F : K , St : S , Dr : cl Called F (L, K 1) L|Cur F : K -1, St : S .Stop, Dr : cl L|Cur F : K + 1, St : S .Stop, Dr : cl (K 1 > K ) (K 1 < K ) Called F (L, less(K , K 1 
((D = S = Up) ∨ (D = S = Up)) ∨ (K 1 = K + 1 ∨ K 1 = K -1) ToGo F (L, K 1, -) L|Cur F : K , St : idle, Dr : cl L|Cur F : K , St : Dw , Dr : cl L|Cur F : K , St : Up, Dr : cl Goto F (L, K 1, Up) Goto F (L, K 1, Dw ) (K 1 > K + 1) (K 1 < K -1)
Figure 2. The Multi-Lift-User Components observed specification corresponds to the case where a called order (from the outside lift) is directly served; That is, a called order is served when at that moment no goto order (from inside the lift) exists. For this purpose, the symbol ∼ reflects the inhibitor arc from the place GOTO. The transition Tgoint corresponds to the existence of intermediate requested goto orders (from inside) while performing the transition Tgofar.

That is, besides the token ToGo F (L, K 1, S ) there should be another token ToGo F (L, less(K , K 1), -) in the place TOGO. The transition Tcallint is probably the most complex one as it corresponds to the case where intermediate calls are being requested from outside while performing the transition Tgofar (i.e. at least a message token as ToGo F (L, K 1, S ) from the place TOGO exists 1 ). The lift will serves such intermediate stops, but with still the direction (S = Up or Dw ) as prefix (keeping track of the final destination). As several intermediate calls may be simultaneously requested, we must serve the nearest one first, that we denote by a function less(K , K 1) we assume defined at the data-level. For instance, when going Up, less(K , K 1) first tests whether K + 1 is requested, if not it then tests K + 2 and so on till K 1 -1. The transition Tgoint corresponds to the existence of intermediate requested GoTo orders (from inside) after performing the transition Tgofar.

Features validation with MAUDE

The main ideas of interpreting CO-NETS in rewrite-logic are as follows. We bind each place-marking mt with its place p using the pair (p, mt ). Tokens within mt are gathered as a multiset with the union operator . CO-NETS states are multisets over different the pairs (p i , mt i ), using a union operator denoted ⊗. To exhibit a maximum of concurrency, we allow distributing ⊗ over . That is, if mt 1 and mt 2 are two marking parts in a given place p as (p, mt 1 mt 2 ), then we can always split it to (p, mt 1 ) ⊗ (p, mt 2 ). To exhibit intra-state concurrency, we permit the splitting and recombining of such state tuple at a need. Example: By applying these guidelines, the CO-NETS lift transitions are governed with the following rules.

• [Tskipgo]: (TOGO, ToGo F (L, K , ))⊗ (Lift , L|Cur F : K ) ⇒ (Lift , L|Cur F : K ) • [Tskipcal]: (CALLED , Called F (L, K ))⊗ (Lift , L|Cur F : K ) ⇒ (Lift , L|Cur F : K ) • [Tgoint]: (TOGO, ToGo F (L, K 1, S ) ToGo F (L, less(K , K 1), -))⊗
1 Used here as read-arc with S be either Up or Dw . These transition rewrite rules governing the behaviour of lift CO-NETS component are concurrently applied to any given (initial) state marking. The corresponding inference rules of this CO-NETS rewrite theory and illustration on how to concurrently applied them can be found more in detail in [START_REF] Aoumeur | A Component-Based Petri Net Model for Specifying and Validating Cooperative Information Systems[END_REF].

Features Composition using Strategies

We argue that imposing careful-control strategies for firing transitions represents a crucial step towards decreasing undesirable interactions of service features. Further, it allows detecting and validating large cases of conflicting interactions (before completing such detection with some property-checking).

Considering our case study with the above rewrite rules, for instance, we have to impose that after firing the transition Tgofar, the transitions Tcallint and Tgoint have to be repeatedly and concurrently attempted before trying the transition Tgonxt. Otherwise, if we directly fire Tgonxt after Tgofar then all intermediate call or goto (from inside and outside) will be skipped.

We thus adopt operators like sequence (";"), choice ("+"), parallelism ("|") on transitions. We give below, for illustration, the corresponding inference rules for imposing a choice ('+') while performing transitions. Informally speaking, the choice strategy ('+') allows applying an eligible transition (i.e. with a matching to a part of the CO-NETS-marking or state) among at least two transition rules (in our case Trl 1 and Trl 2 ). 

Trl1 + Trl2 ⇔ (p1, sm1) ⊗ (p2, sm2) ⊗ S l ⇒ S r with Trl 1 : (p1, m1) ⊗ L1 ⇒ R1 Trl 2 : (p2, m2) ⊗ L2 ⇒ R2 ∃ σ1, σ2 : X → T s(p i ) s.t. (sm1 = σ1(m1) ∧ σ1(L1) ∈ S l ∧ (p1, sm1) ⊗ S l ⇒ S r ) ∨ (sm2 = σ2(m2) ∧ σ2(L2) ∈ S l ∧ (p2, sm2) ⊗ S l ⇒ S r ) endo.

Application to the multi-lift system.

One possible logical strategy consists of repeating the following: (1) eliminate any redundant request from outside and inside, that is, first each time perform the transitions Tskipgo and Tskipcal; (2) check for the farthest requested floor from inside, that is, try performing the transition Tgofar. When all requested floors are just next ones (i.e. Up or Down) perform the transition Tgonxt ; (3) serve any (intermediate) requested floors (both from inside and outside) while travelling to the farthest floor selected from 2. That is, perform the transitions Tintcall and Tgoint; and (4) serve this final destination by performing the transition Tgonxt. With the above notations, this strategy corresponds to the following algebra:

[(Tskipgo Tskipcall) ; ((Tgofar ; (Tintgo Tintcall) ; Tnxtgo) + (Tnxtgo))] * The notation [...] * perform this process repeatedly yet with the interference of any local behaviour (i.e. the application of local transitions at anytime and at need).

Features Runtime-Adaptability

As we emphasized, existing FI approaches lack runtime manipulation of features. This prevents adjusting such features to avoid undesirable interactions and/or to timely respond to requirements features change.

The main ideas for building a meta-level from a given CO-NETS component, may be intuitively summarized in the following: Meta-tokens as transition behavior: As any CO-NETS transition is composed of an label, input/output arc inscriptions with corresponding input/output places, and a condition inscription, we first propose to gather them as a tuple : (Mes q , IC q ), TC (t )

trans id: version | in-inscript

Aspectual-level for Meta-tokens:

To allow manipulating-namely modifying, adding and/or deleting-such tuples (i.e. transitions' behavior), we propose an appealing Petri-net-based proposal that consists in: [START_REF] Aoumeur | A Component-Based Petri Net Model for Specifying and Validating Cooperative Information Systems[END_REF] gathering such tuples into a corresponding place that we refer to as a meta-place; (2) associating with this meta-place three main message operations-namely addition of new behavior, modification of an existing behavior, and deletion of a given behavior; and (3) as for usual CO-NETS components conceive for each of these three message types three places and three respective meta-transitions for effectively and concurrently adapting any meta-transition as tuple.

Relating the two levels with read-arcs: Once building such aspectual-level, to dynamically manipulating any transition dynamics the next important steps are twofold. First, we slightly enrich (selected) CO-NETS component transitions by just adding (meta-) variables (we denote by IC , CT , TC ) using a disjunction operator (e.g ∨) to each of their input/output and condition inscriptions. In term of aspect-oriented concepts, these variables play the jointpoints for dynamically capturing the advices [?]. Transitions with these (meta-)variables are referred to as evolving ones. Secondly, in order to permit weaving any new behavior (as meta-token) on the component-level "hooked" transitions, we propose to relate through read-arcs the meta-place with such respective non-instantiated transition.

Weaving meta-tokens as usual transitions:

The dynamic weaving consists in selecting from the meta-place a given meta-token as advice and transforming it to a usual (instantiated) transition rule. Given such a non-instantiated metarewrite rule, we can then dynamically select any particular tuple-as-behavior from the meta-place and derive a usual transition rule. This process is captured by the following inference rule.

With the existence of the following substitutions:

∃σ i ∈ [T s(pi ) ] ⊕ , .., ∃σ j ∈ [T s(qj ) ] ⊕ , ∃σ ∈ [T bool ]
The following usual rewrite rule as the new (kth behavior for the transition t (-) is obtained.

t : k |[ k ⊗ i=1 (pi ,σi (IC i ))]|,|[ l ⊗ j =1 (qj ,σj (CT i ))]|,σ(TC i ) ∈M (P meta ) t ins (k ) : |[ k ⊗ i=1 (pi ,σi (IC i ))]| ⇒ [ l ⊗ j =1 (qj ,σj (CT i ))]| if σ(TC i )

Runtime adaptability of the multi-lift features

Different lift features can now be dynamically manipulated in an incremental way. As specific illustration of such dynamic adaptivity of different features, we restrict ourselves to the following cases:

• Stationary floors: We aim dynamically bringing some specific lifts to travel to a 'stationary' floor. For instance, at rush-time which may vary depending on the context. The transition-as-tuple that captures this is as follows.:

Reset : 1|(TOGO, ∼ ToGo F (L, -, -)) ⊗ (CALLED , ∼ Called F (L, -, -)) ⊗ (Lift , L|Cur F : K , Dr : cl , Wg : 0 ), (Lift , L|Cur F : 0, Dr : cl , Wg : 0 ), (K = 0) ∧ (L ∈ List (Lifts)
• Avoid unnecessary travel: In our original CO-NETS specification we allowed canceling any request from a same floor (see transitions Tskipgo and Tskipcal). Nevertheless, to completely protect the lift from (kids abuse!) unnecessary travel, we have to further consider the case of requesting (from inside) for floors without being in the lift-car (i.e. the weight in zero(0)). To do so, we have to consider the transition Tskipgo as an evolving one, and introduce its new behaviour when the weight is zero. This behaviour takes the following form: Tskipgo : 1|(TOGO, ToGo F (L, K 1, -)) ⊗ (Lift , L|Cur F : K , Wg : W ), (Lift , L|Cur F : K , Wg : W ), ((K 1 = K ) ∨ (W = 0))

• Serving "onboard" first: When a given lift is nearly full, for instance its weight is more than 2 / 3 Wmax, it is more practical to skip intermediate calls.

The transition Tcallint should then be adapted to. All these features are illustrated in Figure 3 with IC var , CT var and TC var as appropriate variables for capturing adaptive input inscriptions, output inscriptions and conditions respectively.

Conclusions

As product-line applications become largely dominating, challenging problems such as dynamic variability and features interaction require special emphasis. We proposed therefore an approach for formally specifying, validating, composing and dynamically evolving features in distributed dynamic service-driven environment. The proposed approach is based on a tailored integration of component concepts with high-level Petri nets, we endowed with an adaptive aspectual-level. The approach governed by trueconcurrency rewrite logic, which permits symbolic validation besides animation. A variant of a multi-lift system was taken as proof-of-concept. Software tools supporting are been implemented to automate the approach. For formal verification of features interaction, we are recapitulating on our previous [START_REF] Aoumeur | Modelling and Certifying Concurrent Systems: a MAUDE-TLA Driven Architectural Approach[END_REF], that allows for shifting from the MAUDE language to Lamport's temporal logic of actions TLA [START_REF] Lamport | The Temporal Logic of Actions[END_REF]. Such verification phase is crucial for logically detecting inconsistencies non-detected unwished interactions of different features.
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 2 Figure2depicts the corresponding user multi-lifts CO-NETS model. This behavior is incrementally conceived by first associating with the state sort Lift a place containing the different lifts states. Second, with the two message sorts TOGO and CALLED, we associated two corresponding places. The corresponding behaviour is captured in terms of transitions associated with these messages. For instance, the transitions Tskipgo and Tskipcal permit to skip (i.e. consume) any called/goto messages from/to the same floor where the lift car is stationing. The transition Tcalled

  )) L|Cur F : K , St : S , Dr : cl ToGo F (L, K 1, S ) Up ∨ S = Dw) ToGo F (L, K 1, S ) ToGo F (L, less(K 1, K ), -) L|Cur F : K , St : S , Dr : cl ToGo F (L, K 1, S ) ToGo F (L, K 1, S ) L|Cur F : K , St : D, Dr : cl L|Cur F : K 1, St : S .Stop, Dr : cl

(

  Lift , L|Cur F : K , St : S , Dr : cl ) ⇒ ((TOGO, ToGo F (L, K 1, S ))⊗ (Lift , L|Cur F : less(K , K 1), St : S .Stop, Dr : cl ) if (S = Up∨ = Dw ) • [Tgonext]: (TOGO, ToGo F (L, K 1, D ))⊗ (Lift , L|Cur F : K , St : S , Dr : cl ) ⇒ (Lift , L|Cur F : K 1, St : S .Stop, Dr : cl ) if (D = S = Up∨ = Dw ) ∨ ((K 1 = K ± 1))

Tcallint

  : 1|(CALLED , Called F (L, less(K , K 1))) (TOGO, ToGo F (L, K 1, S ))⊗ (Lift , L|Cur F : K , St : S , Wg : W ), (TOGO, ToGo F (L, K 1, S )) ⊗ (Lift , L|Cur F : less(K , K 1), St : S .Stop, Wg : W ), ((S = Up) ∨ (S = Dw )) ∧ (W < 2/3Wmx )

Attributes Features Call(Lift) Goto(Lift, Floor) Weight : Real+ <<service>> User of Lift Attributes Features <<service>> Lift State-Lift : [Idle, Up, Down] Door : [Open, Closed] Current-Floor : [1,2,...F_max] Current_Weight : Real+ Called_F(Lift, Floor) ToGo_F(Lift, Floor, Direction) Figure 1. The Lift and User services as profile UML Classes

  

	be either open (Open) or closed (Closed). Finally,
	Current weight (shortly Wg) is in kg for instance.
	The service operations or features acting on such at-
	tributes are the following:
	As depicted in Figure 1, each lift is characterized by:
	the Identity, Current floor (shortly Cur Floor) and
	Lift-state expressing whether the lift is idle, going up
	or going down. To keep track of directions while serv-
	ing intermediate floors, we add states such "Stop" as
	suffixes for other states. For instance, "Up.Stop"
	implies that the lift is going up and is intermediately
	stopping. The Door-state (shortly Door), that could

  Msg . vars S l , S r , S l 1 , S l 2 , S r 1 , S r 2 , S h : CO-NETS-State vars p1 , p2 : Places vars Trl 1 , Trl 2 : Transitions Rules

	obj TRANSITIONS Algebra is
	protecting CO-NETS-State .
	op +	;	; ;	| || : T labels T labels → T labels
	vars m1, m2, sm1, sm2 :

  Mes p , IC p ), (obj , CT obj )

	t	:	i |(obj , IC obj )
	.,		
	out-inscript., cond.		
	Where version as natural number captures different be-		
	havior 'versions'. With respect to the inter-component tran-		
	sition general pattern depicted in Figure ??, this tuple takes		
	a more precise form:		

ip ⊗ p=i1 (hr ⊗ q=h1