
Supervised and Unsupervised 
Linear Methods for Functional 
Data 

Gilbert Saporta
Chaire de Statistique Appliquée & CEDRIC
Conservatoire National des Arts et Métiers
292 rue Saint Martin 
F 75141 Paris Cedex 03
Gilbert.saporta@cnam.fr
http://cedric.cnam.fr/~saporta

mailto:Gilbert.saporta@cnam.fr
http://cedric.cnam.fr/~saporta


ASMDA 2009, Vilnius 2

Outline

1. Introduction
2. PCA for functional data
3. Regression on functional data

OLS regression
PCR and PLS regression
Clusterwise regression

4. Classification with functional data
Fisher’s LDA
Anticipated and adaptive prediction

5. Conclusion and perspectives



ASMDA 2009, Vilnius 3

1. Introduction

Functional data: curves or paths from a 
stochastic process Xt
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No response variable 
unsupervised or exploratory analysis

Single response variable Y
Y numerical: regression
Y categorical: supervised classification, 
discrimination

Common time interval [0;T], zero mean variables
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Pioneering works:
R.A. Fisher – 1924
J. C. Deville – 1974
P. Besse – 1979
G. Saporta – 1981

Later:
Aguilera, Valderrama – 1993, 1995, 1998
Ramsay, Silverman – 1995, 1997
Van der Heijden – 1997
Preda, Cohen – 1999
....
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2. PCA for functional data

Unique decomposition where fi orthonormal 
functions, and ξi uncorrelated variables

factor loadings:

principal components: 
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Sum of quasiSum of quasi––deterministicdeterministic processesprocesses

All curves have the same shape except for a 
constant ξi relative to unit i
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Numerical solution:
Integral equations cannot be solved in the 
general case

For finite n , exact solution :
W matrix of all inner products between 
trajectories 

principal components are eigenvectors of W
Factors are 
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Other: 
for step functions: finite number of 
variables and of units: operators are 
matrices, but with a very high size
Approximations by discretisation of time
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Example : 

Y= amount of crop
Xt = temperature curves

p=  ∞

R.A.Fisher (1924)

3. Linear Regression on functional 
data
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Infinite number of predictors
Linear combination

« Integral regression »

instead of a finite sum 
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R.A.Fisher « The Influence of Rainfall  on the Yield of Wheat at Rothamsted »
Philosophical Transactions of the Royal Society, B: 213: 89-142 (1924)
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3.1 The OLS problem

Minimizing 
leads to normal, or Wiener-Hopf, 
equations: 

where C(t,s)= cov(Xt, Xs)=E(XtXs)
Generalization of X’y=X’Xβ
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Picard’s theorem: β is unique if and only 
if:

Generally not true…especially when n is 
finite  since p >n. Perfect fit when 
minimizing: 
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Even if β is unique, Wiener-Hopf  
equation  is not an ordinary integral 
equation: the solution could be  a 
distribution and not a function
Constrained solutions are needed. (cf 
Green & Silverman 1994, Ramsay & Silverman 
1997): “roughness penalty” bounds on the 
integral of (β”)2
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3.2 Regression on principal 
components

Rank q approximation:
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Which principal components?
First q?
q best correlated with Y?

Principal components are computed 
irrespective of the response…
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3.3 PLS regression

Proposed by H. & S.Wold to solve 
multicollinearity problems while keeping all 
variables 
Close to Principal Components Regression:

projection on orthogonal linear combinations of the 
predictors

Difference: PLS components t=Xw are optimised 
to be predictive of Y, while principal components 
explain the variability of X, not of Y 
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Tucker’s criterium:
max cov2(y ;Xw)

cov2(y ;Xw)= r2(y ;Xw) V(Xw) V(y)

Trade-off between the maximisation of r(Xw;Y)  
or OLS and maximisation of V(Xw) (PCA )
First PLS component proportional to:

Further components by iteration on residuals

1
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3.4 Functional PLS regression

Use PLS components instead of principal 
components.
first PLS component :

Higher order PLS components as usual
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order q approximation of Y by Xt :

Convergence theorem:

q have to be finite in order to get a formula!
Usually q is selected by cross-validation
(Preda & Saporta, 2005a)
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First PLS component easily interpretable: 
coefficients with the same sign as r(y;xt)
No integral equation
PLS fits better than PCR:

Same proof as in De Jong, 1993
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3.5 Clusterwise regression

A mix between regression and classification
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Model
G , variable with K categories (sub-populations)
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OLS and clusterwise regression

Residual variance of global regression= within cluster 
residual variance + variance due to the difference 
between local (clusterwise) and global regression (OLS)

ˆ ˆ LY Y  OLS  global estimate  versus  clusterwise "local" estimate
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Estimation (Charles, 1977)

number of clusters k needs to be known
Alternated least squares (k-means)

For a given partition: estimate linear regressions for 
each cluster
Reallocate each point to the closest regression model

Equivalent to ML for fixed regressors, fixed 
partition model (Hennig, 2000)

Optimal k
AIC, BIC, crossvalidation
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Clusterwise functional PLS 
regression

OLS functional regression not adequate to give 
estimations in each cluster
Our proposal: estimate local models with 
functional PLS regression
Is the clusterwise algorithm still consistent?

Proof in Preda & Saporta, 2005b
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Prediction:
Allocate a new observation to a cluster 
(nearest neighbor or other classification 
technique)
Use the corresponding local model



ASMDA 2009, Vilnius 30

Application to stock market data

Growth index during 1 hour (between 10h and 
11h) of 84 shares at Paris Stock Exchange
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How to predict a new share between 
10h55 and 11h using data between 10h 
and 10h55?
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Exact computations need 1366 variables 
(number of intervals where the 85 curves are constant)

Discretisation in 60 intervals. 
Comparison between PCR and PLS:
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Crash of share 85 not detected! 
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Clusterwise PLS
Four clusters (17;32;10;25) 
Number of PLS component for each cluster: 1; 3; 
2 ; 2  (cross-validation)
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Share 85 classified into cluster 1
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Example : Kneading curves for cookies 
(Danone)

How to predict the quality of the cookies?

4. Linear methods for 
functional discrimination
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4.1 Functional LDA

LDA : linear combinations 
maximizing the ratio: 

Between group variance /Within group variance

For two groups Fisher’s LDF  via a 
regression between  coded Y and Xt 
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Same drawbacks as OLS regression

PLS regression with q components gives 
an approximation of β(t) and of the score

T 0
ˆd ( ) ( )
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PLS PLS tX t X dtβ= Φ = ∫



ASMDA 2009, Vilnius 39

Kneading curves

After T= 480s  of kneading, one gets cookies  where  
quality is Y
115 observations: 50 « good », 40 «bad » and 25 
«unknown »
241 equally spaced measurements
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Performance for Y={good,bad}
Repeat 100 times the split into learning and 
test samples of size  (60, 30)

Average error rate
0.142 with principal components
0.112 with (3) PLS components

Average AUC = 0.746
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4.3 Functional logistic regression
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Comes down to standard logistic 
regression:

where

Principal components are used as a basis 
expansion by Aguilera et al. (2006) 
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4.4 Anticipated and adaptive 
prediction

Anticipated prediction (Costanzo et al, 2006)

t*<T such that the analysis on [0;t*] give 
predictions almost as good as with [0;T]
Solution:

When increasing s from 0 to T, look for the 
first value such that  AUC(s) does not differ 
significantly from AUC(T)
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A bootstrap procedure
Stratified resampling of the data 
For each replication b,  AUCb(s) and AUCb(T) 
are computed
Student’s T test or Wilcoxon on the B paired 
differences        δb=AUCb(s)- AUCb(T)
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Anticipated prediction
B=50
t*=186 minimum value for 

which the difference 
between AUC is not 
significant at .05

The recording period of 
the resistance dough can 
be reduced to less than 
half of the current one! 

P value of the Wilcoxon test

Application to kneading curves
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Adaptive forecasting

Instead of a common optimal time t* , 
adapt t* to each new trajectory ω given 
its incoming measurements: t*(ω)
For some cases it could be necessary to 
observe the process during a longer 
period than [0, t*] , while for others a 
shorter period could be enough. 
t* becomes a random variable
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Procedure close in spirit to sequential 
tests:

Discretization of [0, T]
At t, decide if we stop the observation of X(ω) 
(classification decision) then t*=t , or if we 
continue till t+h

Decision depends on the similarity of X(ω) 
with some observations xi with respect to 
the prediction of Y
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Conservation rate

dt discriminant score using only [0,t]
Ωω(t) set of observations having the same 
prediction as ω at time t. 
p0|Ωω(t) proportion classified in state 0 at time 
T . Same for p1|Ωω(t) 
Max {p0|Ωω(t) ; p1|Ωω(t) } = Conservation 
rate= C Ωω(t) for Ω. Same for

Global conservation rate  

Ω

( )( ) ( )min ;t tC C
ω ωΩ Ω
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Adaptive rule
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Application
A new flour

Conservation rate
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25 « new » flours

Empirical cumulative 
distribution function of 
t* . 5 time points are 
earlier than the optimal 
time for anticipated 
prediction (t= 186). 10 
flours are predicted in 
the "good" class.
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5.Conclusions and perspectives

Karhunen-Loeve decomposition: a powerful tool for 
exploratory analysis
PLS regression: efficient and easy way to get linear 
prediction for functional data
Anticipated prediction has been solved by means of a 
bootstrap procedure
« on-line » forecasting:  adapt t*  to each new 
trajectory given its incoming measurements.
Clusterwise discrimination when heterogeneity is present
Mutiple predictors
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