Supervised and Unsupervised Linear Methods for Functional Data

Gilbert Saporta Chaire de Statistique Appliquée & CEDRIC Conservatoire National des Arts et Métiers 292 rue Saint Martin F 75141 Paris Cedex 03 <u>Gilbert.saporta@cnam.fr</u> <u>http://cedric.cnam.fr/~saporta</u>

Outline

- 1. Introduction
- 2. PCA for functional data
- 3. Regression on functional data
 - OLS regression
 - PCR and PLS regression
 - Clusterwise regression
- 4. Classification with functional data
 - Fisher's LDA
 - Anticipated and adaptive prediction
- 5. Conclusion and perspectives

1. Introduction

 Functional data: curves or paths from a stochastic process X_t

ASMDA 2009, Vilnius

No response variable

- unsupervised or exploratory analysis
- Single response variable Y
 - Y numerical: regression
 - Y categorical: supervised classification, discrimination
- Common time interval [0;T], zero mean variables

Pioneering works:

R.A. Fisher – 1924 J. C. Deville – 1974 P. Besse – 1979 G. Saporta – 1981

Later:

Aguilera, Valderrama – 1993, 1995, 1998
 Ramsay, Silverman – 1995, 1997
 Van der Heijden – 1997
 Preda, Cohen – 1999

2. PCA for functional data

 Unique decomposition where f_i orthonormal functions, and ξ_i uncorrelated variables

$$X_{t} = \sum_{i=1}^{\infty} f_{i}(t)\xi_{i}$$

• factor loadings:
$$\int_{0}^{T} C(t,s)f_{i}(s)ds = \lambda_{i}f_{i}(t)$$

• principal components: $\xi_i =$

$$\xi_i = \int_0^T f_i(t) X_t dt$$

Sum of quasi-deterministic processes

All curves have the same shape except for a constant ξ_i relative to unit i

 $X_t(i) = \xi_i f(t)$

Principal plane: allows visualisation, clustering

Numerical solution:

- Integral equations cannot be solved in the general case
- For finite n , exact solution :
 - W matrix of all inner products between trajectories $w_{uv} = \int_{0}^{T} x_{u}(t) x_{v}(t) dt \quad u, v = 1, 2, ..., n$
 - principal components are eigenvectors of W
 - Factors are

$$f(t) = \frac{1}{n} \frac{1}{\lambda} \sum_{u=1}^{n} \xi_{u} X_{u}(t)$$

Other:

- for step functions: finite number of variables and of units: operators are matrices, but with a very high size
- Approximations by discretisation of time

3. Linear Regression on functional data

- Example : R.A.Fisher (1924)
 - Y= amount of crop
 - X_t = temperature curves

 $p = \infty$

- Infinite number of predictors
- Linear combination
 - « Integral regression »

$$\hat{Y} = \int_0^T \beta(t) X_t dt$$

instead of a finite sum

$$\hat{Y} = \sum_{j=1}^{p} \beta_{j} X_{j}$$

Disregarding, then, both the arithmetical and the statistical difficulties, which a direct attack on the problem would encounter, we may recognise that whereas with q subdivisions of the year, the linear regression equations of the wheat crop upon the rainfall would be of the form

$$ar{v}=c+a_1r_1+a_2r_2+\ldots+a_qr_q$$

where $r_1, r_2, ..., r_q$ are the quantities of rain in the several intervals of time, and $a_1, ..., a_q$ are the regression coefficients, so if infinitely small subdivisions of time were taken, we should replace the linear regression function by a *regression integral* of the form

$$\bar{w} = c + \int_0^{\mathrm{T}} ar \, dt, \quad \ldots \quad (\mathrm{III})$$

where r dt is the rain falling in the element of time dt; the integral is taken over the whole period concerned, and a is a *continuous* function of the time t, which it is our object to evaluate from the statistical data.

R.A.Fisher « The Influence of Rainfall on the Yield of Wheat at Rothamsted » Philosophical Transactions of the Royal Society, B: 213: 89-142 (1924)

3.1 The OLS problem

• Minimizing $E\left(Y-\int_{0}^{T}\beta(t)X_{t}dt\right)^{2}$ leads to normal, or Wiener-Hopf, equations:

 $\operatorname{cov}(X_t, Y) = \int_0^T C(t, s)\beta(s)ds$

where C(t,s)= $cov(X_t, X_s)=E(X_tX_s)$ Generalization of X'y=X'X β

Picard's theorem: β is unique if and only

: -

$$\sum_{i=1}^{\infty} \frac{c_i^2}{\lambda_i^2} < \infty$$

$$c_i = \operatorname{cov}(Y, \xi_i) = \operatorname{cov}(Y, \int_0^T f_i(t) X_t dt) = \int_0^T E(X_t Y) f_i(t) dt$$

• Generally not true...especially when n is finite since p >n. Perfect fit when minimizing: $\frac{1}{n} \sum_{i=1}^{n} \left(y_i - \int_0^T \beta(t) x_i(t) dt \right)^2$

- Even if β is unique, Wiener-Hopf equation is not an ordinary integral equation: the solution could be a distribution and not a function
- Constrained solutions are needed. (cf Green & Silverman 1994, Ramsay & Silverman 1997): "roughness penalty" bounds on the integral of (β")²

3.2 Regression on principal components

$$\hat{Y} = \sum_{i=1}^{\infty} \frac{\operatorname{cov}(Y,\xi_i)}{\lambda_i} \xi_i = \sum_{i=1}^{\infty} \frac{c_i}{\lambda_i} \xi_i$$
$$R^2 = r^2(Y,\hat{Y}) = \sum_{i=1}^{\infty} r^2(Y,\xi_i) = \sum_{i=1}^{\infty} \frac{c_i^2}{\lambda_i}$$

- Rank q approximation: $\hat{Y}^{(q)} = \sum_{i=1}^{q} \frac{\operatorname{cov}(Y;\xi_{i})}{\lambda_{i}} \xi_{i} \qquad \hat{\beta}^{(q)}(t) = \sum_{i=1}^{q} \frac{\operatorname{cov}(Y;\xi_{i})}{\lambda_{i}} f_{i}(t)$

- Which principal components?
 - First q?
 - q best correlated with Y?
- Principal components are computed irrespective of the response...

3.3 PLS regression

- Proposed by H. & S.Wold to solve multicollinearity problems while keeping all variables
- Close to Principal Components Regression:
 - projection on orthogonal linear combinations of the predictors
- Difference: PLS components t=Xw are optimised to be predictive of Y, while principal components explain the variability of X, not of Y

- Trade-off between the maximisation of r(Xw;Y) or OLS and maximisation of V(Xw) (PCA)
- First PLS component proportional to:

$$\sum_{j=1}^{p} \operatorname{cov}(Y; X_{j}) X_{j}$$

Further components by iteration on residuals

3.4 Functional PLS regression

- Use PLS components instead of principal components.
- first PLS component :

$$\max_{w} \operatorname{cov}^{2}(Y, \int_{0}^{\infty} w(t)X_{t}dt) \qquad \left\|w\right\|^{2} = 1$$
$$w(t) = \frac{\operatorname{cov}(X_{t}, Y)}{\sqrt{\int_{0}^{\infty} \operatorname{cov}^{2}(X_{t}, Y)dt}} \qquad t_{1} = \int_{0}^{\infty} w(t)X_{t}dt$$

Higher order PLS components as usual

ASMDA 2009, Vilnius

order q approximation of Y by X_t :

$$\hat{Y}_{PLS(q)} = c_1 t_1 + \dots + c_q t_q = \int_0^T \hat{\beta}_{PLS(q)}(t) X_t dt$$

Convergence theorem:

$$\lim_{q\to\infty} E(\left\|\hat{Y}_{PLS(q)} - \hat{Y}\right\|^2) = 0$$

- q have to be finite in order to get a formula!
- Usually q is selected by cross-validation (Preda & Saporta, 2005a)

- First PLS component easily interpretable: coefficients with the same sign as r(y;x_t)
- No integral equation
- PLS fits better than PCR:

$$R^2(Y; \hat{Y}_{PLS(q)}) \ge R^2(Y; \hat{Y}_{PCR(q)})$$

Same proof as in De Jong, 1993

3.5 Clusterwise regression

A mix between regression and classification

Model

• *G*, variable with K categories (sub-populations)

$$E(Y \mid \mathbf{X} = x, G = i) = \alpha^{i} + \beta^{i} x$$
$$V(Y \mid \mathbf{X} = x, G = i) = \sigma_{i}^{2}$$

ASMDA 2009, Vilnius

OLS and clusterwise regression

 \hat{Y} OLS global estimate versus \hat{Y}^L clusterwise "local" estimate

$$V(Y - \hat{Y}) = V(Y - \hat{Y}^L) + V(\hat{Y}^L - \hat{Y})$$

=
$$\sum_{i=1}^{s} \mathbf{P}(\{\mathcal{G} = i\})V(Y - \hat{Y}^i | \mathcal{G} = i) + V(\hat{Y}^L - \hat{Y}).$$

 Residual variance of global regression = within cluster residual variance + variance due to the difference between local (clusterwise) and global regression (OLS)

Estimation (Charles, 1977)

- number of clusters k needs to be known
- Alternated least squares (k-means)
 - For a given partition: estimate linear regressions for each cluster
 - Reallocate each point to the closest regression model

$$\hat{G}(j) = \arg \min_{j \in \{1,...,K\}} (y_j - (\hat{\alpha}^i + \hat{\beta}^i x_j))^2.$$

 Equivalent to ML for fixed regressors, fixed partition model (Hennig, 2000)

Optimal k

AIC, BIC, crossvalidation

Clusterwise functional PLS regression

- OLS functional regression not adequate to give estimations in each cluster
- Our proposal: estimate local models with functional PLS regression
- Is the clusterwise algorithm still consistent?

Proposition 1. For each step s of the clusterwise PLS regression algorithm there exists a pozitive integer q(s) such that $\hat{\mathcal{G}}_{PLS,s}$ and $\{\hat{\alpha}_{PLS,s}^{i}, \hat{\beta}_{PLS,s}^{i}\}_{i=1}^{K}$ given by the PLS regressions using q(s) PLS components preserve the decreasing monotonicity of the sequence $\{\mathcal{V}(\hat{\mathcal{G}}_{PLS,s}, \{\hat{\alpha}_{PLS,s}^{i}, \hat{\beta}_{PLS,s}^{i}\}_{i=1}^{K})\}_{s\geq 1}$

Proof in Preda & Saporta, 2005b

Prediction:

- Allocate a new observation to a cluster (nearest neighbor or other classification technique)
- Use the corresponding local model

Application to stock market data

 Growth index during 1 hour (between 10h and 11h) of 84 shares at Paris Stock Exchange

How to predict a new share between 10h55 and 11h using data between 10h and 10h55?

- Exact computations need 1366 variables (number of intervals where the 85 curves are constant)
 Discretisation in 60 intervals.
- Comparison between PCR and PLS:

	$\hat{m}_{56}(85)$	$\hat{m}_{57}(85)$	$\hat{m}_{58}(85)$	$\hat{m}_{59}(85)$	$\hat{m}_{60}(85)$	$SSE = \sum_{i=56}^{60} (\hat{m}_i - m_i)^2$
	0.700	0.678	0.659	0.516	-0.233	-
PLS(1)	-0.327	-0.335	-0.338	-0.325	-0.302	3.789
PLS(2)	0.312	0.355	0.377	0.456	0.534	0.928
PLS(3)	0.620	0.637	0.677	0.781	0.880	1.318
PCR(1)	-0.356	-0.365	-0.368	-0.355	-0.331	4.026
PCR(2)	-0.332	-0.333	-0.335	-0.332	-0.298	3.786
PCR(3)	0.613	0.638	0.669	0.825	0.963	1.538

Crash of share 85 not detected!

ASMDA 2009, Vilnius

Clusterwise PLS

Four clusters (17;32;10;25)

Number of PLS component for each cluster: 1; 3;

2;2 (cross-validation)

ASMDA 2009, Vilnius

Share 85 classified into cluster 1

	$\hat{m}_{56}(85)$	$\hat{m}_{57}(85)$	$\hat{m}_{58}(85)$	$\hat{m}_{59}(85)$	$\hat{m}_{60}(85)$	SSE
Observed	0.700	0.678	0.659	0.516	-0.233	-
PLS(2)	0.312	0.355	0.377	0.456	0.534	0.911
PLS(3)	0.620	0.637	0.677	0.781	0.880	1.295
PCR(3)	0.613	0.638	0.669	0.825	0.963	1.511
CW-PLS(3)	0.643	0.667	0.675	0.482	0.235	0.215
CW-PLS(4)	0.653	0.723	0.554	0.652	-0.324	0.044
CW-PLS(5)	0.723	0.685	0.687	0.431	-0.438	0.055

4. Linear methods for functional discrimination

 Example : Kneading curves for cookies (Danone)

bonne (black), mauvaise (red)

How to predict the quality of the cookies?

ASMDA 2009, Vilnius

4.1 Functional LDA

• LDA : linear combinations $\int_{0}^{t} \beta(t) X_{t} dt$ maximizing the ratio:

Between group variance /Within group variance

 For two groups Fisher's LDF via a regression between coded Y and X_t

$$\sqrt{\frac{p_1}{p_0}}$$
 and $-\sqrt{\frac{p_0}{p_1}}$

Same drawbacks as OLS regression

 PLS regression with q components gives an approximation of β(t) and of the score

$$\mathbf{d}_{\mathrm{T}} = \Phi_{PLS}(X) = \int_{0}^{T} \hat{\beta}_{PLS}(t) X_{t} dt$$

Kneading curves

- After T = 480s of kneading, one gets cookies where quality is Y
- 115 observations: 50 « good », 40 «bad » and 25 «unknown »
- 241 equally spaced measurements

Performance for Y = {good,bad}

- Repeat 100 times the split into learning and test samples of size (60, 30)
 - Average error rate
 - 0.142 with principal components
 - 0.112 with (3) PLS components

• Average AUC = 0.746

4.3 Functional logistic regression

$$\ln\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha + \int_0^T x_i(t)\beta(t)dt; \quad i = 1, \dots, n$$

 $\pi_i = P(Y = 1 | X = x_i(t); t \in T)$

1

1

Assumption: parameter function and sample paths are in the same finite space (Ramsay et al., 1997)

$$\beta(t) = \sum_{q=1}^{p} b_q \psi_q(t) = \mathbf{b}' \psi \qquad x_i(t) = \sum_{q=1}^{p} c_{iq} \psi_q(t) = \mathbf{c}'_i \psi$$

Comes down to standard logistic regression:

$$\ln\!\left(\frac{\pi}{1-\pi}\right) = \alpha \mathbf{1} + \mathbf{C} \Phi \mathbf{b}$$

where
$$\mathbf{C} = (c_{iq})$$
 $\Phi = (\phi_{kq} = \int_{T} \psi_k(t) \psi_q(t) dt)$

Principal components are used as a basis expansion by Aguilera *et al.* (2006)

4.4 Anticipated and adaptive prediction

Anticipated prediction (Costanzo et al, 2006)

- t*<T such that the analysis on [0;t*] give predictions almost as good as with [0;T]
- Solution:
 - When increasing s from 0 to T, look for the first value such that AUC(s) does not differ significantly from AUC(T)

A bootstrap procedure

- Stratified resampling of the data
- For each replication b, AUC_b(s) and AUC_b(T) are computed
- Student's T test or Wilcoxon on the B paired differences $\delta_b = AUC_b(s) AUC_b(T)$

Application to kneading curves

- Anticipated prediction
 - B=50
 - t*=186 minimum value for which the difference between AUC is not significant at .05
- The recording period of the resistance dough can be reduced to less than half of the current one!

Adaptive forecasting

- Instead of a common optimal time t*, adapt t* to each new trajectory ω given its incoming measurements: t*(ω)
- For some cases it could be necessary to observe the process during a longer period than [0, t*], while for others a shorter period could be enough.
- t* becomes a random variable

- Procedure close in spirit to sequential tests:
 - Discretization of [0, T]
 - At t, decide if we stop the observation of X(ω) (classification decision) then t*=t, or if we continue till t+h
- Decision depends on the similarity of X(ω) with some observations x_i with respect to the prediction of Y

Conservation rate

- d_t discriminant score using only [0,t]
- Ω_ω(t) set of observations having the same prediction as ω at time t.
- $p_0|\Omega_{\omega}(t)$ proportion classified in state 0 at time T . Same for $p_1|\Omega_{\omega}(t)$
- Max { $p_0 | \Omega_{\omega}(t)$; $p_1 | \Omega_{\omega}(t)$ } = Conservation rate = C $_{\Omega\omega(t)}$ for Ω . Same for $\overline{\Omega}$
- Global conservation rate

$$\min\left(C_{\Omega_{\omega}(t)};C_{\overline{\Omega}_{\omega}(t)}\right)$$

Adaptive rule

Given a confidence conservation threshold $\gamma \in (0, 1)$, e.g. $\gamma = 0.90$, we define the following rule :

Adaptive prediction rule for ω and t:

- (1) if $C_{\Omega}(\omega, t) \geq \gamma$ then the observation of X for ω on the time interval [0, t] is sufficient for the prediction of $Y(\omega)$. $\hat{Y}(\omega)$ is then the same as the prediction at time T of the subgroup of $\Omega_{\omega}(t)$ corresponding to $C_{\Omega_{\omega}(t)}$.
- (1) if $C_{\Omega}(\omega, t) < \gamma$ then the observation process of X for ω should continue after t. Put t = t + h and repeat the adaptive prediction procedure.

Then, $t^*(\omega)$ is the smallest t such that the condition (1) of the adaptive prediction rule is satisfied.

A new flour

Conservation rate

25 « new » flours

Empirical cumulative distribution function of t^* . 5 time points are earlier than the optimal time for anticipated prediction (t= 186). 10 flours are predicted in the "good" class.

5. Conclusions and perspectives

- Karhunen-Loeve decomposition: a powerful tool for exploratory analysis
- PLS regression: efficient and easy way to get linear prediction for functional data
- Anticipated prediction has been solved by means of a bootstrap procedure
- « on-line » forecasting: adapt t* to each new trajectory given its incoming measurements.
- Clusterwise discrimination when heterogeneity is present
- Mutiple predictors

References

- Aguilera A.M., Escabias, M. & Valderrama M.J. (2006) Using principal components for estimating logistic regression with high-dimensional multicollinear data, *Computational Statistics & Data Analysis*, 50, 1905-1924
- Barker M., Rayens W. (2003) Partial least squares for discrimination. J Chemometrics 17:166–173
- Costanzo D., Preda C., Saporta G. (2006). Anticipated prediction in discriminant analysis on functional data for binary response. In *COMPSTAT2006*, p. 821-828, Physica-Verlag
- Hennig, C., (2000). Identifiability of models for clusterwise linear regression. J. Classification 17, 273–296.
- Preda C., Saporta G. (2005a): PLS regression on a stochastic process, Computational Statistics and Data Analysis, 48, 149-158.
- Preda C. & Saporta G. (2005b) Clusterwise PLS regression on a stochastic process. *Computational Statistics & Data Analysis*, 49(1): 99-108, 2005.
- Preda C., Saporta G. & Lévéder C., (2007) PLS classification of functional data, *Computational Statistics*, 22(2), 223-235
- Saporta G., Preda C. Adaptive Forecasting on Functional Data (2008). In SIS, Univ.Calabria, 25-27 june
- Ramsay & Silverman (1997) Functional data analysis, Springer