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Abstract. This paper describes the Integrated Development Environ-
ment Focal together with a brief proof of usability on the formal devel-
opment of access control policies. Focal is an IDE providing powerful
functional and object-oriented features that allow to formally express
specification and to go step by step (in an incremental approach) to
design and implement while proving that the implementation meets its
specification or design requirements. These features are particularly well-
suited to develop libraries for secure applications.

1 Introduction

Since at least forty years, an important area of software engineering is con-
cerned with safety of industrial systems as those critical systems use more and
more software components. Since twenty years, security problems of information
systems spread from military domain to all society activities. Some fifteen years
ago, safety and security of systems were usually considered of separated concern.
Now, although their concerns are different, it is recognized that, in most cases,
these two families of requirements must be considered together to receive satis-
factory solutions (see the new rules for SCADA systems for example). Moreover,
some methods to deal with safety requirements can be adapted to security re-
quirements and conversely. Whatever is the domain, their methods are evolving,
ad-hoc and empirical approaches being replaced by more formal methods. For
example, for high levels of safety, formal models of the requirement /specification



phase are more and more considered as they allow mechanized proofs, test or
static analysis of the required properties. In the same way, high level assurance
in system security asks for the use of true formal methods along the process of
software development and is often required for the specification level.

To ease developing high integrity systems with numerous software compo-
nents, an Integrated Development Environment (IDE) must provide tools to
formally express specifications, to describe design and coding and to ensure
that specification requirements are met by the corresponding code. This is not
enough. First, standards of critical systems ask for pertinent documentation
which has to be maintained along all the revisions during the system life cycle.
Second, the evaluation conformance process of software is by nature a sceptical
analysis. Thus, any proof of code correctness must be easily redone at request
and traceability must be eased. Third, design and coding are difficult tasks.
Research in software engineering has demonstrated the help provided by some
object-oriented features as inheritance, late binding and early research works on
programming languages have pointed out the importance of abstraction mecha-
nism such as modularity to help invariant maintaining. There are a lot of other
points which should also be considered when designing an IDE for safe and/or
secure systems to ensure conformance with high Evaluation Assurance or Safety
Integrity Levels (EAL-5,7 or SIL 3,4) and to ease the evaluation process accord-
ing to various standards (e.g. IEC61508, CC, ...): handling of non-functional
contents of specification, handling of dysfunctional behaviors and vulnerabilities
from the true beginning of development and fault avoidance, fault detection by
validation testing, vulnerability and safety analysis.

The main aim of this paper is to present an IDE, called Focal [24,9] (freely
distributed at http://focal.inria.fr), dedicated to the complete develop-
ment of high integrity software, which attempts to give a positive solution to
the three requirements identified above, the other items being currently under
consideration. It provides means for the developers to formally express their
specifications and to go step by step (in an incremental approach) to design and
implementation while proving that such an implementation meets its specifica-
tion or design requirements. It also provides some automation of documentation
production and management.

Focal has already been used to develop huge examples. First, a computer
algebra library was developed by Rioboo [27], it offers full specification and
implementation of usual algebraic structures up to multivariate polynomial rings
with complex algorithms. The point was to measure how Focal can help to render
mathematical specifications and also to measure efficiency of the produced code,
which is comparable (even little better) to the best general computer algebra
systems in existence. Such a library is very useful when formalising the algebra of
access control models, using implementations of orderings, lattices and boolean
algebras (presented below). Focal was also very successfully used to formalise
airport security regulations [7].



Focal semantics was initially specified in Coq, which brings a satisfactory
confidence in the language’s correctness. On the other side, the correction of the
compiler against Focal’s semantics is proved (by hand) [23].

In a second part, we will expose the usability of Focal through the formaliza-
tion and development of access control policies. We present how formal methods
can be used in practice to obtain trusted implementations of an access control
policy. The library of access control policies offers a generic specification of the
model and several developments based on it, giving implementations of classic
access control policies.

2 The Focal Philosophy

Since our aim is to have a unique framework from specification to implementa-
tion, from code to proofs of requirements, Focal provides a unique and manifold
language to express all theses aspects of software development.

Before really entering inside Focal, we briefly remind a few well-known con-
cepts in term of software engineering.

Specifications of a system describe its functionalities, without referring to
any particular practical solution. On the other side, the implementation gives
an explicit, algorithmic, solution making the system running.

The Statement of Work of critical systems require the holding of certain
properties (often called “requirements”) to ensure that the system will be in-
deed operational. All along the development cycle, such requirements must be
expressed and verified. Moreover, each development stage may introduce its own
requirements. For instance, at specification-time, a railway system may require
that doors of a train can’t be opened while running. At implementation-time,
this requirement must still hold, but some extra ones, due to implementation
constraints may arise. For instance, the fact that a square root function is only
called on positive numbers in the speed computation. This requirement was pre-
viously hidden since the speed comparison was not expressed finely enough to
make the square root function appearing.

Considering these concepts, Focal allows management of declarations (spec-
ification), algorithms (implementation), properties (requirements) and proofs
(demonstrations that requirements hold).

2.1 The Basic Brick

The primitive entity of a Focal development is the species. It can be viewed as
a record grouping “things” related to a same concept. Like in most modular
design systems (i.e. objected oriented, algebraic abstract types) the idea is to
group a data structure with the operations to process it. Since in Focal we don’t
only address data type and operations, among these “things” we also find the
specification of these operations, the representation of requirements (properties)
and their proofs.
We now describe each of these “things”, called methods.



— The method introduced by the keyword rep gives the data representation

(carrier) that the species embeds. It is a type called the carrier type and
defined by a type expression. The carrier may be not-yet-defined in a species,
meaning that the real structure of the datatype the species embeds does
not need to be known at this point. In this case, it is represented by a
type variable. However, to obtain an implementation, the carrier has to be
defined later either by setting rep = exp where exp is a type expression
or by inheritance (see below). Type expressions in Focal are roughly ML-
like types (variables, basic types, inductive types, record types) plus species
carrier types, denoted by keyword Self inside the species and by the name
of their species outside of them.
Each species has a unique method rep and thus, a unique carrier. This is not
a restriction compared to other object-oriented languages where an object
can own several private variables representing the internal state, hence the
data structure of the object. In such a case, the carrier type can simply be
the tuple grouping all these variables that were disseminated all along the
object.

— Declarations (signature) introducing a name and a type allows to announce
a method to be defined later, i.e. to only specify its type, without implemen-
tation yet. Such methods are especially dedicated for specification or design
purposes since it allows to use the name of the introduced method to define
others methods while delaying the choice of its implementation. The type
provided by the signature allows Focal to ensure via type-checking that the
method is used in contexts compatibles with this type. The late-binding and
the collection mechanisms, further introduced, ensure that the definition of
the method will be effectively known when needed.

— Definitions (1let) made of a name, a type and an expression introduce func-
tions, i.e. computational operations. The core language used to implement
them is roughly ML-like expressions (let-binding, pattern matching, condi-
tional, higher order functions, . ..) with the addition of a construction to call
a method from a given species. Mutually recursive definitions are introduced
by let rec.

— Statements (property) introduce a name and a first-order formula. A prop-
erty may serve to express requirements (i.e. facts that the system must hold
to conform to the Statement of Work delivered by the customer) and then
can be viewed as a specification purpose method, like signatures were for
let-methods. Tt will lead to a proof obligation later in the development.
A property may also be used to express some “quality” information of the
system (soundness, correctness, ..) also submitted to a proof obligation. For-
mulae are written with usual logical connectors, universal and existential
quantifications over a Focal type, and names of methods known within the
species’s context. For instance, a property telling that if a speed is non-null,
then doors can’t be opened could look like:

all v in Speed, v <> Speed!zero -> ~ doors_open



In the same way as signatures, even if no proof is yet given, the name of the
property can be used to express other ones and its statement can be used as
an hypothesis in proofs. Focal late binding and collection mechanisms ensure
that the proof of a property will be ultimately done.

— Theorems (theorem) made of a name, a statement and a proof are properties

together with the formal proof that their statement holds in the context of
the species. The proof accompanying the statement will be processed by
Focal and ultimately checked with the theorem prover Coq.
Like in any formal development, one severe difficulty before proving is obvi-
ously to enounce a true interesting and meaningful statement. For instance,
claiming that a piece of software is “formally proved” as respecting the safety
requirements system_ok “since its property is demonstrated” is a lie if this
property was, for instance, 1 = 1 -> system_ok. This is obviously a non-
sense since the text of the property is trivial and does not link system_ok
with the rest of the software (see [10] for less trivial examples).

We now make concrete these notions on an example we will incrementally
extend. We want to model some simple algebraic structures. Let’s start with the
description of a “setoid” representing the data structure of “things” belonging
to a set, which can be submitted to an equality test and exhibited (i.e. one can
get a witness of existence of one of these “things”).

species Setoid =
signature ( = ) : Self -> Self -> bool ;
signature element : Self ;

property refl : all x in Self, x = x ;
property symm : all x y in Self, x =y -> y = x ;
property trans: all x y z in Self, x=y and y=z -> x=z ;
let different (x, y) = basics#not_b (x = y) ;

end ;;

In this species, the carrier is not explicitely given (no rep) , since we don’t
need to set it to be able to express functions and properties our “setoid” requires.
However, we can refer to it via Self and it is in fact a type variable. In the same
way, we specify a signature for the equality (operator =). We introduce the three
properties that an equality (equivalence relation) must conform to.

We complete the example by the definition of the function different which
use the name = (here basics#not_b stands for the function not_b, the boolean
and coming from the Focal source file basics.foc). It is possible right now to
prove that different is irreflexive, under the hypothesis that = is an equiva-
lence relation (i.e. that each implementation of = given further will satisfy these
properties).

It is possible to use methods only declared before they get a real definition
thanks to the late-binding feature provided by Focal. In the same idea, redefining
a method is allowed in Focal and, it is always the last version which is kept as
the effective definition inside the species.




2.2 Type of Species, Interfaces and Collections

The type of a species is obtained by removing definitions and proofs. If rep is
still a type variable say «, then the species type is prefixed with an existential
binder Ja.. This binder will be eliminated as soon as the rep will be instantiated
(defined) and must be eliminated to obtain runnable code. The species types
remain implicit in the concrete syntax.

The interface of a species is obtained by abstracting the rep type in all the
method types of the species type and this abstraction is permanent (see the
paragraph Collections). No special construction is given to denote interfaces
in the concrete syntax, they are simply denoted by the name of the species
underlying them. Interfaces can be ordered by inclusion, a point providing a
very simple notion of subtyping.

A species is said to be complete if all declarations have received definitions
and all properties have received proofs.

When complete, a species can be submitted to an abstraction process of its
carrier to create a collection. Thus the interface of the collection is built out of the
type of its underlying species. A collection can hence be seen as an abstract data
type, only usable through the methods of its interface, but having the guarantee
that all methods/theorems are defined/proved.

2.3 Combining Bricks by Inheritance

A Focal development is organised as a hierarchy which may have several roots.
The upper levels of the hierarchy are built during the specification stage while the
lower ones correspond to implementations. Each node of the hierarchy, i.e. each
species, is a progress to a complete implementation. On the previous example,
forgetting different, we typically presented a kind of species for “specifica-
tion” since it expressed only signatures of functions to be later implemented and
properties to which, later, give proofs.

We can now create a new species, may be more complex, by inheritance
of a previously defined. We say here “may be more complex” because it can
add new operations and properties, but it can also only bring real definitions to
signatures and proofs to properties, adding no new method.

Hence, in Focal inheritance serves two kinds of evolutions. In the first case
the evolution aims making a species with more operations but keeping those of
its parents (or redefining some of them). In the second case, the species only
tends to be closer to a “run-able” implementation, providing explicit definitions
to methods that were previously only declared. A strong constraint in inheritance
is that the type of inherited, and/or redefined methods must not change. This
is required to ensure consistence of the Focal model, hence of the developed
software.

Continuing our example, we want to extend our model to represent “things”
with a multiplication and a neutral element for this operation.

species Monoid inherits Setoid =
signature ( * ) : Self -> Self -> Self ;



signature one : Self ;
let element = one * one ;
end ;;

We see here that we added new methods but also gave a definition to element,
saying it is the application of the method * to one twice, both of them being only
declared. Here, we used the inheritance in both the presented ways: making a
more complex entity by adding methods and getting closer to the implementation
by explicitly defining element.

Multiple inheritance is available in Focal. For sake of simplicity, the above
example uses simple inheritance. In case of inheriting a method from several
parents, the order of parents in the inherits clause serves to determine the
chosen method.

The type of a species built using inheritance is defined like for other species,
the methods types retained inside it being those of the methods present in the
species after inheritance is resolved.

2.4 Combining Bricks by Parameterisation

Until now we are only able to enrich species (may be “refine”, even if we do not
address the notion of “refinement” of the Atelier B [1]). However, we sometimes
need to use a species, not to take over its methods, but rather to use it as an
“ingredient” to build a new structure. For instance, a pair of setoids is a new
structure, using the previous species as the “ingredient” to create the structure
of the pair. Indeed, the structure of a pair is independent of the structure of
each component it is made of. A pair can be seen as parameterised by its two
components. Following this idea, Focal allows two flavors of parameterisation.

Parameterisation by Collection Parameters We first introduce the collec-
tion parameters. They are collections that the hosting species may use through
their methods to define its own ones.

A collection parameter is given a name C' and an interface I. The name C'
serves to call the methods of C which figure in I. C' can be instantiated by an
effective parameter C'E of interface IE. C'E is a collection and its interface IE
must contain I. Moreover, the collection and late-binding mechanisms ensure
that all methods appearing in I are indeed implemented (defined for functions,
proved for properties) in C'C. Thus, no runtime error, due to linkage of libraries,
can occur and any property stated in I can be safely used as an hypothesis.

Calling a species’s method is done via the “bang” notation: !'meth or
Self!meth for a method of the current species (and in this case, even simpler:
meth, since the Focal compiler will resolve scoping issues). To call collection pa-
rameters’s method, the same notation is used: A!element stands for the method
element of the collection parameter A.

To go on with our example, a pair of setoids has two components, hence
a species for pairs of setoids will have two collection parameters. It is itself a
setoid, a fact which is simply recorded via the inheritance mechanism: inherits
Setoid gives to Setoid_product all the methods of Setoid.



species Setoid_product (A is Setoid, B is Setoid) inherits Setoid =
rep = (A x B) ;

let ( =) (x, y) =
and_b
(A ( ) (first (x), first (y)),
B! ( ) (scnd (x), scnd (y))) ;
let create (x, y) in Self = basics#crp (x, y) ;
let element = Self!create (A'element, Bl!element) ;

proof of refl = by definition of ( =) ;
end ;;

We express the carrier of the product of two setoids as the Cartesian product
of the carriers of the two parameters. In A * B, * is the Focal type constructor
of pairs, A denotes indeed the carrier type of the first collection parameter, and
B the one of of the second collection parameter.

Next, we add a definition for = of Setoid_product, relying on the methods
=of A (A'( = )) and B (which are not yet defined). Similarly, we introduce a
definition for element by building a pair, using the function create (which calls
the predefined function basics#crp) and the methods element of respectively
A and B. And we can prove that = of Setoid_product is indeed reflexive, upon
the hypothesis made on A! ( = ) and B! ( = ). The part of Focal used to write
proofs will be shortly presented later, in section 2.6.

This way, the species Setoid_product builds its methods relying on those of
its collection parameters. Note the two different uses of Setoid in our species
Setoid_product, which inherits of Setoid and is parameterised by Setoid.

Why such collection parameters and not simply species parameters? There
are two reasons. First, effective parameters must provide definitions/proofs for
all the methods of the required interface: this is the contract. Thus, effective
parameters must be complete species. Then, we do not want the parameterisation
to introduce dependencies on the parameters’ carrier definitions. For example,
it is impossible to express “ if Alrep is int and B!rep is bool then A*B is a list
of boolean values”. This would dramatically restrict possibilities to instantiate
parameters since assumptions on the carrier’s structure, possibly used in the
parameterised species to write its own methods, could prevent collections having
the right set of methods but a different internal representation of the carrier to
be used as effective parameters. Such a behaviour would make parameterisation
too weak to be usable. We choose to always hide the carrier of a collection
parameter to the parameterised hosting species. Hence the introduction of the
notion of collection, obtained by abstracting the carrier from a complete species.

Parameterisation by Entity Parameters Let us imagine we want to make a
species working on natural numbers modulo a certain value. In 5 modulo 2 s 1,
both 5 and 2 are natural numbers. To be sure that the species will consistently
work with the same modulo, this last one must be embedded in the species.
However, the species itself doesn’t rely on a particular value of the modulo.
Hence this value is clearly a parameter of the species, but a parameter in




which we are interested by its value, not only by its carrier and the methods
acting on it. We call such parameters entity parameters, their introduction rests
upon the introduction of a collection parameter and they denote a value having
the type of the carrier of this collection parameter.

Let us first have a species representing natural numbers:

species IntModel =

signature one : Self ;
signature modulo : Self -> Self -> Self ;
end ;;

Note that IntModel can be later implemented in various ways, using Peano’s

integers, machine integers, arbitrary-precision arithmetic ...
We now build our species “working modulo . ..”, embedding the value of this
modulo like:

species Modulo_work (Naturals is IntModel, n in Naturals) =
let jobl (x in Naturals) in ... =
. Naturals'modulo (x, n) ... ;
let job2 (x in Naturals, ...) in ... =
. Naturals!modulo (x, n) ... ... ;
end ;;

Using the entity parameter n, we ensure that the species Modulo_work will
work for any value of the modulo, but will always use the same value n of the
modulo everywhere inside the species.

2.5 The Final Brick

As briefly introduced in 2.2, a species needs to be fully defined to lead to ex-
ecutable code for its functions and checkable proofs for its theorems. When a
species is fully defined, it can be turned into a collection, that can roughly be
seen as an instance of the species. Hence, a collection represents the final stage of
the inheritance tree of a species and leads to an effective structure of the carrier
with executable functions processing it.

For instance, providing that the previous species IntModel turned into a fully-
defined species MachineNativeInt through inheritances steps, with a method
from_string allowing to create the natural representation of a string, we could
get a related collection by:

collection MachineNativeIntColl implements MachineNativelInt ;;

Next, to get a collection implementing arithmetic modulo 8, we could extract
from the species Modulo_work the following collection:

collection Modulo_8_work implements Modulo_work
(MachineNativeIntColl, MachineNativeIntColl!from_string (€¢8°7’) ;;

As seen by this example, a species can be applied to effective parameters by
giving their values with the usual syntax of parameter passing.

As said before, to ensure modularity and abstraction, the carrier of a col-
lection turns hidden. This means that any software component dealing with a
collection will only be able to manipulate it through the operations (methods)
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it provides. This point is especially important since it prevents other software
components from possibly breaking invariants required by the internals of the
collection.

2.6 Properties, Theorems and Proofs

Focal aims not only to write programs, it intends to encompass both the exe-
cutable model (i.e. program) and properties this model must satisfy. For this
reason, “special” methods deal with logic instead of purely behavioral aspects of
the system: theorems, properties and proofs.

Stating a property expects that a proof that it holds will finally be given. For
theorems, the proof is directly embedded in the theorem. Such proofs must be
done by the developer and will finally be sent to the formal proof assistant Coq
who will automatically check that the demonstration of the property is consistent.
Writing a proof can be done in several ways.

It can be written in “Focal’s proof language”, a hierarchical proof language
that allows to give hints and directions for a proof. This language will be sent
to an external theorem prover, Zenon [5, 8] developed by D. Doligez. This prover
is a first order theorem prover based on the tableau method incorporating im-
plementation novelties such as sharing. Zenon will attempt, from these hints to
automatically generate the proof and exhibit a Coq term suitable for verification
by Coq. Basic hints given by the developer to Zenon are: “prove by definition of
a method’ (i.e. looking inside its body) and “prove by property” (i.e. using the
logical body of a theorem or property’. Surrounding this hints mechanism, the
language allows to build the proof by stating assumptions (that must obviously
be demonstrated next) that can be used to prove lemmas or parts for the whole
property.

The detailed presentation of Zenon, its internals and its language (the one
we called “Focal’s proof language”) is outside the scope of this presentation. We
however show below an example of such demonstration.

theorem order_inf_is_infimum: all x y i in Self,
lorder_inf(i, x) -> l!order_inf(i, y) ->
lorder_inf(i, !'inf(x, y))
proof:
<1>1 assume x in Self, assume y in Self,
assume i in Self, assume H1: !order_inf (i, x),
assume H2: !order_inf(i, y),
prove l!order_inf(i, !inf(x, y))
<2>1 prove l!equal(i, !'inf(!inf (i, x), y))
by hypothesis H1, H2
property inf_left_substitution_rule,
equal_symmetric, equal_transitive
definition of order_inf
<2>9 qed
by step <2>1
property inf_is_associative, equal_transitive
definition of order_inf
<1>2 qed.

H

The important point is that Zenon works for the developer: it searches the
proof itself, the developer does not have to elaborate it formally “from scratch”.
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Like any automatic theorem prover, Zenon may fail finding a demonstration.
In this case, Focal allows to write verbatim Coq proofs. In this case, the proof is
not anymore automated, but this leaves the full power of expression of Coq to
the developer.

Finally, the assumed keyword is the ultimate proof backdoor, telling that the
proof is not given but that the property must be admitted. Obviously, a really
safe development should not make usage of such “proofs” since they bypass the
formal verification of software’s model. However, such a functionality remains
needed since some of “well-known” properties can never be proved for a com-
puter. For instance, Vz € IN,x + 1 > n does not hold in a computer with native
integers: in this case arithmetic works modulo the number of bits of the machine
word ! However, in a mathematical framework, this property holds and is needed
to carry out other proofs ! On another side, a development may be linked with
external code, trusted or not, but for which properties can’t be proved inside the
Focal part since it does not belong to it. Expressing properties of the Focal part
may need to express properties on the imported code, that cannot be formally
proved, then must be “assumed”.

2.7 Around the Language

In the previous sections, we presented Focal through its programming model
and shortly its syntax. We especially investigated the various entities making a
Focal program. We now address what becomes a Focal program once compiled.
We recall that Focal supports the redefinition of functions, which permits for
example to specialize code to a specific representation of the carrier (for example,
there exists a generic implementation of integer addition modulo n but it can
be redefined in arithmetics modulo 2 if boolean values are used to represent the
two values). It is also a very convenient tool to maintain software.

Counsistency of the Software All along the development cycle of a Focal pro-
gram, the compiler keeps trace of dependencies between species, their methods,
the proofs, ...to ensure that modifications of an entity will be detected on any
of those depending of the former.

Focal considers two types of dependencies:

— The decl-dependency: a method A decl-depends on a method B, if the dec-
laration of B is required to write A.

— The def-dependency: a method (and more especially, a theorem) A def-
depends on a method B, if the definition of B is required to write A (and
more especially, to prove the property stated by the theorem A).

The redefinition of a function may invalidate the proofs that use properties
of the body of the redefined function. All the proofs which truly depend of the
definition are then erased by the compiler and must be done again in the context
updated with the new definition. Thus the main difficulty is to choose the best
level in the hierarchy to do a proof. In [25], Prevosto and Jaume propose a coding
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style to minimize the number of proofs to be redone in the case of a redefinition,
by a certain kind of modularisation of the proofs.

Code Generation Focal currently compiles programs toward two languages,
OCaml to get an executable piece of software, and Coq to have a formal model
of the program, with theorems and proofs.

In OCaml code generation, all the logical aspects are discarded since they do
not lead to executable code.

Conversely, in Coq, all the methods are compiled, i.e. “computational” meth-
ods and logical methods with their proofs. This allows Coq to check the entire
consistence of the system developed in Focal.

Since Focal’s compilation model is based on record types (i.e. struct d la
C) code generation toward most of the current programming languages can be
imagined. A C backend is currently under study, which should allow to manage
once for all the compilation of high-level constructs found in ML-like languages
and reused in Focal (pattern-matching, higher-order functions, variant types...).

Tests Focal incorporates a tool named FocalTest [20] for Integration/Validation
testing. It allows to confront automatically a property of the specification with
an implementation. It generates automatically test cases, executes them and
produces a test report as an XML document. The property under test is used
to generate the test cases, it also serves as an oracle. When a test case fails, it
means a counterexample of the property has been found: the implantation does
not match the property; it can also indicate an error in the specification.

The tool FocalTest automatically produces the test environment and the
drivers to conduct the tests. We benefit from the inheritance mechanism to
isolate the testing harness from the components written by the programmer.

The testable properties are required to be broken down into a precondition
and a conclusion, both executable. FocalTest proposes a pure random test cases
generation: it generates test cases until the precondition is satisfied, the verdict
of the test case is given by executing the postcondition. It can be an expensive
process for some kind of preconditions. To overcome this drawback, a constraint
based generation is under development: it allows to produce directly test cases
for which the precondition is satisfied.

Documentation The tool called FOocDOC [19] automatically generates doc-
umentation, thus the documentation of a component is always coherent with
respect to its implementation.

This tool uses its own XML format that contains information coming not
only from structured comments (that are parsed and kept in the program’s
abstract syntax tree) and Focal concrete syntax but also from type inference
and dependence analysis. From this XML representation and thanks to some
XSLT stylesheets, it is possible to generate HTML files or IATEX files. Although
this documentation is not the complete safety case, it can helpfully contribute
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to its elaboration. In the same way, it is possible to produce UML models [6]
as means to provide a graphical documentation for Focal specifications. The
use of graphical notations appears quite useful when interacting with end-users,
as these tend to be more intuitive and are easier to grasp than their formal
(or textual) counterparts. This transformation is based on a formal schema and
captures every aspect of the Focal language, so that it has been possible to prove
the soundness of this transformation (semantic preservation).

Focal’s architecture is designed to easily plug third-parties analyses that can
use the internal structures elaborated by the compiler from the source code. This
allows, for example, to make dedicated documentation tools for custom purposes,
just exploiting information stored in the Focal program’s abstract syntax tree,
or extra information possibly added by extra processes, analyses.

3 Access control : a Case Study within Focal

Access control is any mechanism by which a system grants or revokes the rights
for active entities, the subjects, to access some passive entities, the objects, or
perform some action. In this section we present a brief survey of the library of
access control models developed within Focal.

Several approaches have been followed in order to build a formal library of
access control models. First, in [11], we have formalised within Coq [26] the Bell
& LaPadula (BLP) model by following the original paper [18] : definition of the
policy, of the transition function between states of the system and formal proof of
the “Basic Security Theorem” [18] stating that the transition function preserves
the policy. Then, by using the program extraction (from a proof) mechanism of
Coq, we have obtained a certified implementation of this access control policy.
Such development formally ensures that the program we have obtained satisfies
the desired security properties, thus providing a greater level of confidence. How-
ever, it is rather technical and time-consuming and requires some backgrounds
within Coq. Furthermore, this formalisation cannot be easily reused if we want
to implement another policy. Indeed many policies share some definitions and
properties and, as it is widely recognised, it seems desirable to deal with an ab-
stract generic framework in order to ease and speed implementations by reusing.
Indeed, having an abstract formalism would allow to obtain an implementation
which is well-suited for a given context just by instantiating parameters. Hence,
in a second time, we have used Focal to implement the algebra of security model
introduced by J.McLean in [21]. Such algebra provides a generic framework to
specify policies. From this implementation, we have instantiated the framework
in order to obtain a formal development of the BLP model [13,14]. In order to
illustrate the practical applicability of the previous development, we have refined
this system to manage accesses into a relational database. To achieve this goal,
we do not want to define the complete database in Focal, but rather to define a
reference monitor and to plug it into an existing database, such as MySQL. So
we have to catch every SQL query sent to the server and translate it in terms of
access, thus providing requests for the access control system. Then these requests
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are executed by our Focal program, which returns an answer. If this answer is
yes, then the SQL query is executed by the SQL server, else an error message is
returned to the user (see figure 1). Of course, more sophisticated security models

Focal Program
SQL)

BLP queries

l

BLP Transition

Function <>

Fig. 1. Access control into a database

Private

exist for databases, but our aim was to show that our “formal program” can be
used in concrete contexts. All this work is described in [3, 4].

Unfortunately, the framework of the “algebra of security” is not enough ex-
pressive for some access control models and we have defined and implemented
within Focal a specification of access control policies at a deeper level. Hence, we
have addressed the question of “what is an access control model ?” regardless
of any specific context, by defining a general semantical framework allowing to
specify and to define access control models. Such a framework provides several
levels of specification. First, the considered information system can be described
by specifying the security parameters and by defining how to represent states
of this system (what is the security information describing a state of the sys-
tem). Then an access control policy is defined as a means to permit or deny a
subject (users, processes, ...) the use of an object (files, processes, ...). This can
be done by introducing a predicate allowing to characterise secure states of the
system (which are the states satisfying the policy). The next step consists in
specifying the syntax and the semantics of a language of requests allowing the
system to move from one state to another state. The specification of a policy
and a language of requests leads to the notion of access control model. Lastly,
our framework allows to describe what are the transition functions (definitions
of reference monitors) of a model and what security properties these transition
functions have to satisfy (the main properties are concerned with the policy and
the semantics of requests). Furthermore, since several transition functions can
be defined for an access control model, we introduce a way to compare such
transition functions.

As a usage of Focal, we are developing an access control library based on the
framework previously described. The architecture of the framework’s implemen-
tation within Focal is shown in figure 2. As we consider the systems on which
we apply access control as state transition systems (reference monitors are tran-
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sition functions), we see that the species states is the central species of the
implementation. Indeed, it is parameterised by the basic components of an ac-
cess control system (subjects, objects, security parameter, ... ), and is inherited
by the species defining the access control policy (policies), the semantics of re-
quests (semantics.requests) and the transition function (models). We also see
how we use the framework’s implementation in order to implement a particular
access control model, this is done by refining the framework’s species thanks to
inheritance. Those species defining an access control model are the ones ending
with a *, where * can be replaced by the name of the access control model imple-
mented. For instance, the library currently offers the Bell & LaPadula, RBAC,
HRU, Unix-like and Unforgeable Tickets (capabilities based) models. Hence, this
architecture shows some of the strength of Focal which are parameterisation and
refinement through inheritance that allow us to follow a quite complex formalisa-
tion and to implement access control models by first considering what is common
to every models and then focusing on what is particular to a specific one (this
way of developing also ease code reusing).

Another major feature of Focal is to allow to write properties and to prove
them in order to show the correctness of an implementation. This has currently
be done in the access control library for the RBAC and HRU models (our aim
is to certify all the implemented models), and we show here an example of such
a theorem concerning the correctness of the RBAC transition function. Indeed,
the following theorem tau_rbac_acc_secure states the correctness of the RBAC
transition function according to the RBAC security predicate (omega). For the
sake of simplicity, we only consider here the requests allowing to ask to get or to
release an access (the correctness proof taking into account the administrative
requests of the RBAC model has also be done).

theorem tau_rbac_acc_secure :
all stl st2 in Self, all rl in Req, all dl1 in Dec,
tau_rbac_acc(rl, st1) = (di1, st2) ->
omega(stl) ->
omega (st2)

We now show the architecture of its proof. The first step consists to consider
the hypothesis needed to do the proof and to express what we want to prove, as
we would do in any mathematical proof.

proof:

<1>1 assume stl in Self,
assume st2 in Self,
assume rl in Req,
assume dl1 in Dec,
assume H1: tau_rbac_acc(rl, stil) = (di, st2),
assume H2: omega(stl),
prove omega(st2)

Then, mainly, we need to consider two cases corresponding to the two possible
requests, ”get an access” (is_get) or "release an access” (is_rel) and prove
our goal. Finally, we are able to conclude this proof thanks to the property
get_or_rel stating that the requests we consider are either "get an access” or
“release an access” requests.
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<2>2 assume H3: Req!is_get(rl),
prove omega(st2)

<2>3 assume H4: Req!is_rel(ril)
prove omega(st2)

<2>f ged by step <2>2, <2>3
property Req!get_or_rel
<1>f qged. ;

To summerize, our framework, described in [15-17,22], has been used to
formalise, to implement within Focal and to compare the BLP model [22], the
Chinese Wall model [22], the RBAC (role based access control) model [12], and
discretionary policies (HRU model, trust management model, unforgeable tickets
model) [2].

4 Conclusion

This paper is mostly devoted to Focal which was conceived from the beginning
to help constructions of systems highly concerned with safety and security. Its
development is based on strong theories such as type theories, denotational and
operational semantics, rewriting. But, our methodology for Focal development is
to incorporate only parts of these theories which are mandatory for our purposes.
For example, the Focal language is indeed a dependent type language but some
dependencies available for example in the proof assistant Coq are not offered: for
instance, a function cannot depend of a proof. If such a possibility is retained,
then treatment of partiality of functions can perhaps be improved but we would
have to manage possible logical clashes when redefining a function. It seems to
us that this management would be too difficult for engineers and we reject this
possibility.

The claim behind Focal is that formal developments tend to increase the con-
fidence in the final code. One of the main characteristics of critical software is
that it is subject to the approval of a safety/security authority before its com-
missioning. These authorities have defined requirements explaining what should
be an acceptable software and its related life cycle process for their own do-
main. For this reason, getting a high confidence in produced code, and making
possible for the safety/security authority to acquire this confidence is an impor-
tant task, for which Focal brings solutions. Very important is the possibility in
Focal to have one unique language for specification, implementation and proofs,
since it eliminates the errors introduced between each layer, each switch between
languages, during the development cycle.

Other frameworks like Atelier B [1] also aims to implement tools for mak-
ing formal development a reality. Focal doesn’t follow the same path, trying to
keep the mean of expression close to what engineers usually know: something
close to a programming language. Moreover, instead of having its own system for
proofs validation, Focal makes use of external tools, leaving the task of handling
proof automation and verification outside its scope and keeping benefits from




18

researches performed aside in these specific domains.
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