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1.Introduction

 Statistical modelling aims at:

 Providing some understanding of data and of 
its underlying mechanism through a 
parsimonious representation of a random 
phenomenon. Usually needs both a 
statistician and an expert of the application 
field. 

 Predicting new observations with a high 
accuracy.
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 Understanding vs Prediction does not 
overlap with Unsupervised vs Supervised

 « Understanding » could mean either a 
parametric distribution model for a random 
vector or an explanatory or a regression 
model involving a response y= f(x;)+

 A model should be simple, and parameters 
should be interpretable in terms of the 
application field : elasticity, odds-ratio, etc. 

 Hence the preference for logistic regression 
instead of discriminant analysis.
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 Paradox 1
 A « good » statistical model should give 

insights in the nature of a stochastic 
phenomenon, not necessarily gives accurate 
predictions. In epidemiology eg, it is more 
important to find risk factors than having a 
prediction of getting some disease at an 
individual level.

 Different from physics where a good model 
must give good predictions, otherwise it is 
replaced by an other one. 

 Is statistics a science or only technology? (cf 
C.R.Rao)
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 Paradox 2
Data Mining and KDD prove daily that 
automatic prediction is possible without 
understanding.
 In Customer Relationship Management or 

pattern recognition, understanding is often a 
vain task: a banker does not need a theory 
for predicting if a loan will at risk or not, but 
only a good score function

 Here models are just algorithms, even black-
boxes, and the quality of a model is assessed 
by its performance for predicting new 
observations.
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 Classical framework

 Underlying theory

 Narrow set of models

 Focus on parameter 
estimation and 
goodness of fit

 Error: white noise

 Predictive modelling

 Models come from 
data

 Algorithmic models

 Focus on control of 
generalization error

 Error: minimal

Same formula: y= f(x;)+
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2. Models for understanding: 

a few problems

 The statistician and the scientist

 A naive view: the scientist (economist, 
biologist, etc.) first specifies a model, then 
the statistician estimates the parameters, and 
(or) refutes the model according to some 
goodness of fit test. If the model is rejected, 
the scientist should think of an other one . 
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 Estimation is not that easy:

 Needs a general technique

 Maximum likelihood won over the method of 
moments and the minimum chi-squared but only 
recently (see Berkson, 1980 for logistic regression)

 Least squares still popular since: often more 
robust, needs less assumptions (eg PLS)

 Needs data!

 In order to apply asymptotic results

 To have unique and good estimates 
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 If few data:

 Use constrained estimators: eg ridge 
regularization

 Become a Bayesian! 

 Using ridge makes you a non-conscious bayesian

 Both solutions lead to difficulties in goodness 
of fit tests:

 Which degree of freedom?

 Overparametrized models cannot be rejected
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3. Model choice

 When the "expert" hesitates between 
several formulations

 Inside a common family

 The major use is for variable selection

 Parsimony

 Ockham’s* razor: a scientific principle against 
unnecessary hypotheses

* Or Occam
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An English Franciscan friar and scholastic philosopher. He 
was summoned before the Papal court of Avignon in 1324 
under charges of heresy and was excommunicated for 
leaving Avignon, but his philosophy was never officially 
condemned.
William of Ockham has inspired in U.Eco’s The Name of 
the Rose, the monastic detective William of Baskerville, 
who uses logic in a similar manner.

lex parsimoniae:
entia non sunt multiplicanda praeter necessitatem

entities should not be multiplied beyond necessity

Ockham's razor states that the explanation of any 
phenomenon should make as few assumptions as possible, 
eliminating, or "shaving off", those that make no 
difference in the observable predictions of the explanatory 
hypothesis or theory. 

?

William of Ockham
(1285–1348)

from wikipedia
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 Many criteria for model selection :

 Minimum description length

 Mallow’s Cp

 Penalized likelihood: trade-off between the fit 
(measured by the likelihood) and the 
complexity (measured by the number of 
parameters)
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penalized likelihood

Akaike :  AIC = -2 ln(L) + 2k
Schwartz :  BIC = -2 ln(L) + k ln(n)

 Rule: choose the model which minimizes AIC 
or BIC

 BIC favourises more parsimonious models 
than AIC due to its penalization
 Generalizations such as AIC3= -2 ln(L) + 3k or 

ICOMP (Bozdogan)

 AIC and BIC have similar formulas but 
originates from different theories: there is no 
rationale to use simultaneously AIC and BIC
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 AIC : approximation of Kullback-Leibler 
divergence between the true model and the 
best choice inside the family 
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( ; ) ( ) ln (ln( ( )) (ln( ( ))

( )
f f

f t
I f g f t dt E f t E g t

g t
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 BIC : bayesian choice between m models Mi . 
For each model P(i / Mi). The posterior 
probability of Mi knowing the data x is 
proportional to  P(Mi) P(x/Mi). With equal 
priors P(Mi):

 The model with the highest posterior 
probability is the one with minimal BIC

ˆln( ( / ) ln( ( / , ) ln( )
2

i i i

k
P M P M n x x
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Penalized likelihood: some limitations (1)

The likelihood or (and) the number of

parameters could be hard to define

Cannot be simply applied to constrained

estimation like ridge or PLS regression:

 Right number of parameters?

 p parameters constrained by

 Should be much less than p if c is low but the 
exact formula is unknown.

c 
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Penalized likelihood: some limitations (2)

 What is the AIC of a decision tree or a 
neural network? How to choose between 
them?

 However may be not relevant in a classical 
modelling framework: different from the data 
generating process.

 Is it realistic to assume an uniform prior 
on all potential models for BIC ?
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4. Looking for the « true » 

model

 AIC is biased : if the true model Mi belongs to 
the family,  the probability that AIC chooses Mi

does not tend to 1 when the number of 
observations goes to infinity. However BIC 
converges.

 When n is finite everything is possible!

 A parsimonious model may not be the true one: 
statistical variable selection may discard truly 
influential variables. But is it the question? 
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"The Truth Is Out There" (X-Files, 1993)

 No simple parsimonious model can fit to large data 
sets and tests are in general useless.

 For millions of observations,  a correlation of 0.01 is 
significantly different from zero. Is it useful?

 Most standard models are wrong for real data like the 
multinormal one often used in PCA to make inference in
contradiction with the goal of exploratory data analysis, of 
revealing the underlying structure of heterogenous data.                                                                     

“Essentially, all models are wrong, but some are 
useful ” G.Box (1987)

 Fortunately for categorical data the multinomial distribution 
applies provided that the sampling scheme is simply random
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5. Models for prediction

 In Data Mining applications (CRM, credit 
scoring etc.) models are used to make 
predictions. 

 Model efficiency: capacity to make good 
predictions (predicting the future) and not 
only to fit to the data (predicting the past)
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5.1 The black-box problem and supervised 

learning (N.Wiener, V.Vapnik)

 Given an input x, a non-deterministic system 
gives a response variable y = f(x)+e. From n 
pairs (xi,yi) one looks for a function      which 
approximates the unknown function f.

 Two conceptions:

 A good approximation is a function    close 
to the true f (model of data)

 A good approximation is a function     
which has an error rate close to the black 
box, ie which performs as well as f (model 
for prediction)

f̂

f̂

f̂
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5.2 Model complexity and the 

error of prediction

   
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Model complexity (cont.)

 The more complex a model, the better the fit 
but with a high prediction variance.

 Optimal choice: trade-off 

 But how can we measure the complexity of a 
model?
 Not by the number of parameters

 For binary classification Vapnik’s SLT proposes the VC 
dimension. VC is connected to the maximum number 
of points which can be separated by the family of 
functions (the model) whatever are their labels 1
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Vapnik-Cervonenkis dimension for 

binary supervised classification 

 A measure of complexity related to the 
separating capacity of a family of 
classifiers. 

 Maximum number of points which can be 
separated by the family of functions 
whatever are their labels 1
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Example

 In 2-D, the VC dimension of “free” linear 
classifiers is 3
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 But VC dimension is NOT equal to the 
number of free parameters: can be 
more or less

 The VC dimension of    f(x,w) = sign (sin (w.x) )

c < x < 1, c>0,

with only one parameter w is infinite.

Hastie et al. 2001
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5.3 Empirical risk and generalization

 Loss function L(y;f(x,w))

 Regression    L(y;f(x,w))=(y-f(x))2

 Discrimination : misclassification rate (or cost)

 y and    belong to {-1 ;+1}

 Risk or expected loss on new data z = (X, y)

 
21 1

ˆ ˆ ˆ( ; )
2 4

L y y y y y y   ŷ
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 An impossible task: minimize R on w

 P(z) unknown probability distribution

 Given n learning observations (z1, .. , zn)

sampled from P(z), empirical risk 

minimization:

 Example: OLS in regression

1

1
( ; ( ; ))

n

emp i i

i

R L y f x w
n 

 

 
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 Central problem in learning theory:

Which is the relationship between R and 
empirical risk Remp ? Is there 

convergence?

 What is the generalization capacity of 
this kind of model? 
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 Consistent learning  Non consistent 
learning

Generalization error

Learning error

n

Learning error

Generalization error

h must be finite

  
emp

ln 2 1 ln ( 4)h n h
R R

n

 
 Vapnik’s inequality
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Consequences of Vapnik’s inequality

 The complexity of a family of models may 
increase  when n increases: main difference 
with BIC

 Small values of h gives a small  difference 
between R and Remp . Regularization including 
dimension reduction techniques, provides 
better results in generalization than ordinary 
least squares.
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5.4 Model choice by Structural 

Risk Minimization (SRM)

 For a family of embedded 
models with increasing VC 
dimension: instead of 
minimizing R, one minimizes 
the upper bound: Remp + 
confidence interval 

 For instance: polynomials of 
increasing degrees; ridge 
with decreasing C; neural 
networks with increasing 
number of nodes, etc.
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Model choice by Structural Risk 

Minimization (SRM)

 For any distribution , SRM provides the best 
solution with probability 1 (universally strong 
consistency) Devroye (1996) Vapnik (2006). 

 SRM theory proved that the complexity differs 
from the number of parameters, and gives  a 
way to handle methods where penalized 
likelihood is not applicable.

 Since it is an universal inequality, the upper 
bound may be too large. 

 Exact VC-dimension are very difficult to obtain, 
and in the best case,  one only knows upper 
bounds .
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Performance measures for supervised binary 

classification

 Misclassification rate or score 
performance?
 Error rate implies a strict decision rule.

 Scores
 A score is a rating: the threshold is chosen by 

the end-user

 Usual scores: linear classifiers (Fisher’s LDA, 
logistic regression) 

 probability P(G1/x): also a score ranging from 
0 to 1. Almost any technique gives a score.
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ROC curve and AUC

 A synthesis  of score performance for any 

threshold s . x is classified in group 1 if S(x) > s 

 Using s as a parameter, the ROC curve links the 
true positive rate 1-β to the false positive rate 
.
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5.5 Empirical model choice

 The 3 samples procedure (Hastie & al., 
2001) 
 Learning set: estimates model parameters

 Test : selection of the best model

 Validation : estimates the performance for future data

 Resample (eg: ‘bootstrap, 10-fold CV, …)

 Final model : with all available data

 Estimating model performance is different 
from estimating the model



MSDM 2009, Hammamet 38

prediction error in regression

 Recent results (Borra and Di Ciaccio, 
2007) showed by simulation that a 
resampled 10-fold cross-validation 
technique outperformed other estimators 
including bootstrap and .632 bootstrap
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Model choice through AUC

 As long as there is no crossing: the best 
model is the one with the largest AUC or 
G.

 No need of nested models

 Comparison should be done on hold-out 
data to prevent overfitting
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Variability

Training set 70%, validation set 30%, 30 times
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 Large variability in subset selection (Niang, Saporta, 
2006)
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6 . Concluding remarks

 Partial view: more sould be said about eg nonparametric 
inference

 Two very different conceptions correspond to the same 
name of «model»: models of data  models for 
prediction

 Models for understanding data correspond to the part of 
statistics considered as an auxiliary of science. Models 
for prediction belong to the other face of statistics as a 
decision making methodology.

 Are science and action opposed? a technique which 
gives good predictions, improves also our knowledge. 
Predictive modelling belongs to empiricism (a theory of 
knowledge not to be confounded with pragmatism).
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