Models for Understanding versus Models for Prediction - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Models for Understanding versus Models for Prediction

Résumé

According to a standard point of view, statistical modelling consists in establishing a parsimonious representation of a random phenomenon, generally based upon the knowledge of an expert of the application field: the aim of a model is to provide a better understanding of data and of the underlying mechanism which have produced it. On the other hand, Data Mining and KDD deal with predictive modelling: models are merely algorithms and the quality of a model is assessed by its performance for predicting new observations. In this communication, we develop some general considerations about both aspects of modelling.
Fichier principal
Vignette du fichier
Models_compstat2008.pdf (125.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01125563 , version 1 (24-03-2020)

Identifiants

Citer

Gilbert Saporta. Models for Understanding versus Models for Prediction. Compstat 2008, Aug 2008, Porto, Portugal. pp.315-322, ⟨10.1007/978-3-7908-2084-3_26⟩. ⟨hal-01125563⟩

Collections

CNAM CEDRIC-CNAM
122 Consultations
95 Téléchargements

Altmetric

Partager

More