"Zero" option in conjoint analysis:
A new specification of the indecision and the refusal.

Application to the Video on Demand market

La scelta "nulla" nella conjoint analysis Una nuova specificazione per l'indecisione e il rifiuto. Applicazione al mercato della video on Demand

Silva Ohannessian & Gilbert Saporta

XLIV Riunione Scientifica Società Italiana di Statistica (SIS)

27 Giugno 2008

CONTENTS

- Introduction
- Definition of the "zero" option in the psychological literature
- A new specification of the "zero" option
- Application to the Video on Demand (VoD)
- Conclusion and perspectives

INTRODUCTION CONJOINT ANALYSIS & "ZERO" OPTION

- Conjoint analysis: analysis of the preference with data collection
 - Rating and ranking
 - \bullet Choice \Rightarrow possibility to add the "zero" option =non choice of the products
- "Zero" option rarely specified in the literature
- "Zero" option in the literature of the conjoint analysis :
 - Refusal = inappreciation of the products
- Models in the literature are based on the utilities comparison models
 - \Rightarrow They associate the utilities with the products and the non choice
- They suppose null values for the explanatory variable of the no choice that are in reality the attributes of the analyzed product

Defects:

- Null explanatory variables have a significance
- Non choice only due to the refusal ⇒ Psychological literature

DEFINITION OF THE "ZERO" OPTION IN THE PSYCHOLOGICAL LITERATURE

Définition

Two concepts associate with the no choice

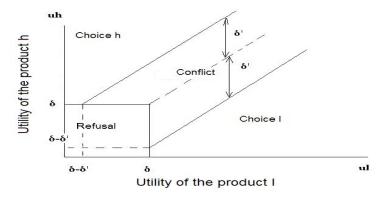
- The refusal = inappreciation of the products
- ullet The conflict = similarity of the products \Rightarrow uncertainty in the choice

Tversky and Shafir (1992): Study (pair comparison with an additional option \Rightarrow delay his/her choice):

- % of individuals who select the additional option / with the conflict
- This situation is reversed with the utilities maximisation
- Introduction of the conflict ⇒ the utilities comparison model inappropriate

CONTENTS

- Introduction
- Definition of the "zero" option in the psychological literature
- New specification of "zero" option
 - The individual model : content
 - Graphical illustration
 - The probabilities of the choice and the no choice
 - Aggregate model
- Application to the Video on Demand (VoD)
- Conclusion et perspectives


NEW SPECIFICATION OF THE "ZERO" OPTION INDIVIDUAL MODEL

Indeed, our model of the "zero" option :

- Introduction of the conflict
- No utility associated with the no choice (refusal, conflict), only utilities for the products
 - \Longrightarrow The no choices are not function of the attributes of the products
- ullet Follows the censored model (Tobit models) : Threshold (δ and δ') associated with each type of no choice
- ⇒ Avoid the allocation of null values to the attributes
- ⇒ Takes into account the unsuitability of the utilities maximisation with the no choice
 - Data collection :
 - Pair comparison (product h and product l) + refusal and conflict
 - ⇒ 4 possibilities (to simplify the model)

NEW SPECIFICATION OF THE "ZERO" OPTION

Graphical illustration of our "zero" option model

Definition : β parameter vector associated with the attributes & x_h matrix of the products attributes

Hypothesis: Linearity of the utility functions, Normality of the errors & ioint errors

NEW SPECIFICATION OF THE "ZÉRO" OPTION

•
$$P(\mathsf{Choice\ h}) = P(y=1) = P_1 = 1 - \Phi(\frac{\delta - \beta' x_h}{\sigma}) - \Phi(\frac{\beta'(x_l - x_h) + \delta'}{\sqrt{2}\sigma}) + \Phi(\frac{\beta'(x_l - x_h) + \delta'}{\sqrt{2}\sigma}, \frac{\delta - \beta' x_h}{\sigma}; \frac{1}{\sqrt{2}})$$

- $P(\mathsf{Choice\ l}) = P(y=2) = P_2 = \Phi(\frac{\beta'(x_l x_h) \delta'}{\sqrt{2}\sigma}) \Phi(\frac{\delta \beta' x_l}{\sigma}, \frac{\beta'(x_l x_h) \delta'}{\sqrt{2}\sigma}; -\frac{1}{\sqrt{2}})$
- $P(\mathsf{Refusal}) = P(y = 3) = P_3 = \Phi(\frac{\delta \beta' x_h}{\sigma}) \Phi(\frac{\delta \beta' x_l}{\sigma})$
- $P(\mathsf{Conflict}) = P(y = 4) = P_4 =$ $\begin{cases} \Phi(\frac{\delta \beta' x_h}{\sigma}) + \Phi(\frac{\beta'(x_l x_h) + \delta'}{\sqrt{2}\sigma}) \Phi(\frac{\beta'(x_l x_h) \delta'}{\sqrt{2}\sigma}) \\ \Phi(\frac{\beta'(x_l x_h) + \delta'}{\sqrt{2}\sigma}, \frac{\delta \beta' x_h}{\sigma}; \frac{1}{\sqrt{2}}) \Phi(\frac{\delta \beta' x_h}{\sigma}) \Phi(\frac{\delta \beta' x_l}{\sigma}) \\ + \Phi(\frac{\delta \beta' x_l}{\sigma}, \frac{\beta'(x_l x_h) \delta'}{\sqrt{2}\sigma}; -\frac{1}{\sqrt{2}}) \end{cases}$
- Individual model estimation : Maximum likelihood (ML)
- ullet With separation data \Rightarrow no convergence of model \Rightarrow solutions : Exact inference, penalized likelihood, bayesian approach
- Aggregate model : ⇒ suppose common estimates (ML)

CONTENTS

- Introduction
- Definition of the "zero" option in the psychological literature
- New specification of "zero" option
- Application to the Video on Demand (VoD)
 - Definition of the VoD
 - Determination of the attributes
 - Experiments design used & sample
 - Estimation method
 - Results and comments
 - Market share calculation
- Conclusion and perspectives

APPLICATION TO THE VIDEO ON DEMAND (VOD)

Definition of the VoD: a website or a television platform that allows the consumers to watch paying movies, series, etc. when they want.

```
Selected attributes (Beginning of our study: July-November 2006):
 Attribute A: The programmes quantity
```

1000 (1), 600 (2)

Attribute B: The composition of the website in terms of movies-series

100% Movies (1)

75% Movies 25% Series (2)

50% Movies 50% Series (3)

100% Series (4)

Attribute C: The composition of the website in terms of new-old programmes

Maximum of new movies-series (1) (140 Movies 96 Series)

The half of the maximum novelties and the rest in old programmes (2)

Only old programmes (3)

Attribute D : Tariff

Paying per movies-series (1), Free with advert (2)(except novelties), Subscription (3)

Attribute E: Video hire length at launch

24 hours (1), 48 hours (2)

Attribut F: Availability of the trailer or the extract:

Trailer available (1), Not available (2)

EXPERIMENT DESIGN USED

- ullet 25 878 pairs \Rightarrow reduced to 791 (Benammou, Saporta and Swissi 2007)
- Experiment design used : reduce 791 pairs to 20 : D-optimal design
- $\bullet \ \, \mathsf{Experiment} \ \, \mathsf{design} \ \, \mathsf{results} : \mathsf{questionnaire} \ \, \mathsf{construction} \, \Rightarrow \mathsf{interviewees} \\$
- ullet Reliable responses : 74 individuals with 20 choices = 1480 observations
- Responses selected : y = 1, 2, 3, 4; y = 1, 2, 3; y = 1, 2, 4; y = 1, 2; y = 1, 3Estimation of the model
- Aggregate model : Maximum likelihood ML
- Individual model : $ML \Rightarrow$ separation problem
- Maximum penalized likelihood : dichotomous dependent variable
 - Comparison with bayesian approach: clearly better results with bayesian approach than with penalized likelihood
- Therefore, bayesian approach for individual model
 - A priori distribution of β : normal
 - Mean vector and variance-covariance matrice are derived from the aggregate model results (ML)
 - Results : estimates = mode = $f(\beta|Y)$ maximum \Rightarrow the vector β associated with $f(\beta|Y)$ maximum

RESULTS: MODEL y = 1, 2, 3, 4 (INDIVIDUAL 2)

Variable	Utility	Standard Error	Importance (% Utility Range)
Refusal : δ	1.271	0.083	
Conflict $:\delta'$	0.476	0.036	
Catalogue :1000	0.210	0.056	5.55%
Catalogue :600	-0.210	0.056	
Composition :100% Movies	0.240	0.084	31.63%
Composition :75% Movies 25% Series	0.751	0.097	
Composition :50% Movies 50% Series	0.654	0.078	
Composition :100% Series	-1.645	0.260	
Novelty :max	0.658	0.067	25.05%
Novelty :half	0.581	0.073	
Old :max	-1.240	0.140	
Tariff :paying	-0.224	0.054	33.39%
Tariff :free advert	1.377	0.060	
Tariff :subscription	-1.153	0.114	
Hire length :24h	-0.094	0.056	2.48%
Hire length: 48h	0.094	0.056	
Availability : Trailer	-0.071	0.058	1.88%
Availability: None	0.071	0.058	

COMMENTS

(VALID FOR ALL INDIVIDUALS OF THE MODEL)

- ratio refusal = $\frac{1.271}{0.083}$ = 15.299 ratio conflict = $\frac{0.476}{0.036}$ = 12.929 \Rightarrow Confirmation of the uncertain consumer behavior in view of similar products
- Coefficients sign and magnitude reflect the VoD reality :
 Ordered attributes sign and magnitude correct
- As a whole, the estimates of our "zero" option model with the bayesian approach are satisfactory in case of data separation
- Introduction of the conflict :
 - Additional information in the consumer preferences and refusal notion
 - Conflict significant and selected by the interviewees
 - Offers individuals one aspect of the decision making process that exists in the reality
 - Improvement of the estimates accuracy

MARKET SHARE CALCULATION

Definition of 3 VoD websites

	ldeal	Canalplay	TF1Vision
Catalogue	1000 programmes	1000 programmes	600 programmes
Composition	75% Movies 25% Series	100% Movies	75% Movies 25% Series
Novelty	maximum	half	half
Tariff	free advert	paying	paying
Hire length	48h	24h	24h
Availability	none	none	trailer

- Market shares from aggregate model include refusal & conflict
- Market shares: 100% for the Ideal website

Market shares with only Canalplay and TF1Vision websites

		Canalplay	T	F1Vision	Refusal	Conflict	
Probabil	ities	0.18672	(0.29146	0.43619	0.085626	
Probability with conflict		Sum of the probabilities with conflict					
Canalplay	•	TF1Vision			0.56	381	
0.18672 + 0.042813	0.29	146+0.04281	L3	Market shares			
=0.22954		=0.33427		Cana	lplay	TF1Vision	
				$\frac{0.229}{0.563} =$	0.407	$\frac{0.334}{0.563} = 0.592$	

CONCLUSION AND PERSPECTIVES

- New specification of the "zero" option
 - Introduces the conflict to the no choice only due to refusal in literature
 - Mixes the utilities comparison model and the ordered response model
- Application to the Video on Demand market
 - Conclusive results
 - Conflict and refusal : significants
 - Bayesian approach give better results than penalized likelihood
 - Market shares of 100% for the Ideal website
 - In a market with Canalplay and TF1Vision, a preference to TF1Vision
- Perspectives
 - Comparison of our model with :
 - Model with (i) only products, (ii) only products and refusal or (iii) only products and conflict
 - Extend our model to three products, refusal and conflict
 - ⇒ Five possibilities
 - ⇒ Graphical illustration and calculation of the probabilities

THANK YOU FOR YOUR ATTENTION