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Adaptive forecasting on functional data
Previsione adattiva per dati funzionali
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Riassunto:  Discrimination with a functional predictor is performed through PLS
regression. In addition to the definition of a global optimal observation time [0, ¢*], we
present adaptive methods giving a specific t* for each new data.

Keywords: functional data, discriminant analysis, classification, adaptive forecasting

1. Introduction

Statistical methods for data representing functions or curves have received much attention
in recent years. Such data, known in literature as functional data (Ramsay and Silverman,
1997), has received in the last years a large interest for research, especially due to the
difficulty to deal with infinite dimensional spaces in the context of classical multivariate
methods. Examples of functional data can be found in several application domains such
as medicine, economics, chemometrics and many others (for an overview, see Ramsay
and Silverman, 2002).

A well accepted model for functional data is to consider it as paths of a stochastic
process X = {X,}cr taking values in a Hilbert space of functions on some set T. For
example, for 7" € R, a second order stochastic process X = {Xt}te[o,T] Lo—continuous
with sample paths in Ly([0, 7']) can be used as model for describing the behavior of some
quantitative parameter associated to a process observed on a time interval of length 7.
Suppose that for each curve we have a single response variable Y. If Y is categorical we
have a classification (or discrimination) problem and a regression one if Y is numerical.
We assume here that all trajectories are observed continuously on a time interval [0; 7]
and that the variables X; have zero mean. The functional linear model considers that the
prediction may be expressed as an integral sum

T
Y = / X(t)dt (1)
0

This problem is not new and comes back to Fisher (1924) who used the expression

integral regression. It is well known that this regression model yields to an ill-posed
problem and it is necessary to use regularization techniques: Karhunen-Loeve expansion
and functional PLS regression have been compared in Preda and Saporta (2005).
In this paper we are interested to predict a binary response Y € {0, 1}, from a stochastic
process X = {X;}cjo,r) © the extension of functional regression to binary classification
is easy, since Fisher’s linear discriminant function is equivalent to a multiple regression
where the response variable Y is coded with two values a and 0.



In previous works (Costanzo et al. (2006) and Preda et al. (2007)) we have applied
PLS functional classification to predict the quality of cookies from curves representing
the resistance of dough observed during the kneading process (Lévéder et al., 2004) and
proposed to determine a optimal time ¢* < T such that the process X considered on [0, ¢*]
gives similar results, in terms of prediction of Y, as considered on [0, T').

We extend here the anticipated prediction problem by adapting the optimal time ¢*
to each new trajectory given its incoming measurements: for some cases it could be
necessary to observe the process during a longer period than [0, ¢*] while for others a
shorter period could be enough. We will present two sequential approaches for on-line or
adaptive forecasting.

2. Linear discriminant analysis on functional data and the PLS
approach

The aim of linear discriminant analysis (LDA) for functional data is to find linear
combinations ¢(X) = fOT X B(t)dt, 5 € Lo(]0,T]) such that the between class variance
1s maximized with respect to the total variance, i.e.

e VE@XY))
selofor)  V(®(X))

®(X) will be called the score function. This is the extension to functional data of the
formulation given in Fisher (1936) for LDA.

Due to the infinite dimension of the predictor, the estimation of (3 is an ill-posed
problem. For K = 2 it is well known that the optimization problem (2) is equivalent to
find the regression coefficients of the linear regression of Y (after a convenient encoding)
on the stochastic process X. Nonparametric approaches are proposed in Biau et al. (2003)
for analyzing spectrometric data. Solutions based on explicit regularization techniques
like ridge—regression have been developed as well as solutions based on a projection onto
a finite dimensional space. A functional linear discriminant analysis (FLDA) model is
developed by James and Hastie (2001) for irregularly sampled curves using natural cubic
spline basis to represent data and the corresponding coefficients for classification.

We propose to use the functional PLS regression approach developed in Preda and
Saporta (2005) in order to perform LDA on functional data.

2)

2.1. Functional linear discriminant analysis as a particular case of functional
regression

2
Minimizing F (Y — fOT X ﬁ(t)dt) leads to the Wiener—Hopf equation:

BY) = [ B, a(s)ds @)

Let us now consider the case of a binary response, Y € {0, 1} and recode Y by
0~ i—; and 1 ~» —, /i—‘;. The discriminant coefficient function, 3 € Ls[0, T, which

satisfies the criterion given in (2) is also solution of:

E(ZY) = /OTE (Z:Zs) B(s)ds @)



Equation (4) is equivalent to the least squares criterion for the linear regression of Y on the
process Z = {Z; }sco,r] Where Z, = V/AX,, t € [0,T)]. Thus, the discriminant coefficient
function [ is, up to a constant, the regression coefficient function of the linear regression
of Y on X.

2
But Picard’s theorem states that 3(¢) is unique if and only if )~ & < co where:
=1 "

T T
¢ =cov(Y, &) = COV(Y,/ fi(t) Xedt) = / E(XyY)fi(t)dt ®)
0 0

The f;(t) are the factors of the Karhunen-Loeve expansion

X, =Y fit)& (6)

associated to eigenvalues \; and the &; are the principal components of the process,

/0 B(X,X.) fi(s)ds = Mfi(t). ™

Picard’s condition is generally not satisfied, especially when n is finite since p > n.

The equivalence between LDA and linear regression shows that, in general, one
cannot write the discriminant score ®(X) as linear combination of variables X, ®(X) =
fo X B(t)dt, with 3 € Lo(]0,T]). The discriminant score is the orthogonal projection
of Y (after appropriate encoding) on the linear space spanned by {X;, t € [0,7]}.
Then, regularized techniques for linear regression can be used in order to derive an
approximation for the discriminant score.

2.2. PCR and PLS approach for linear discrimination

The functional version of principal component regression (PCR) consists in using the
components derived from the Karhunen-Loeve expansion as predictors. If we use all
principal components we have:

?ziﬁﬂgﬁ%=§:%& (8)

and -
RA(Y, V)= R(v,&)=> ©)

for finite n we have R? = 1. In practice we need to choose an approximation of order ¢:

v =30 8 oy -y 8 g (10

A
i=1 v i=1

But using principal components for prediction is heuristic because they are computed
irrespective of the response: the components corresponding to the g largest eigenvalues
are not necessarily the ¢ most predictive, but it is impossible to rank an infinite number of
components according to R2.



The basic idea of PLS approach is to construct a set of uncorrelated random variables
{t;};>1 (PLS components) in the linear space spanned by X, taking into account the
correlation between Y and X. Replacing the least squares criterion with that of maximal
covariance between X and Y,

w

max cov?(Y, /OO w(t) Xdt) (11)
0

the PLS regression offers a good alternative to PCR (Preda and Saporta (2005)). The first
PLS component is given by t; = fooo w(t) X, dt and further PLS components are obtained
by maximizing the covariance criterion between the residuals of both Y and X; with the
previous components. The PLS approximation is given by:

T
YPLS(q) = Cltl + ...+ thq = / 6PLS(q) (t)Xtdt (12)
0

For functional data the same property as in finite dimension holds: ”PLS fits closer than
PCR™: R R
R*(Y;Yprs(g) = R*(Y; Yrcr@) (13)

For a supervised classification (ie discrimination) in 2 classes, one has just to use the
encoding of Y defined earlier. Note that Barker and Rayens (2003) presented a connection
between PLS and LDA for the finite dimensional case, but their PLS approach is different
in that sense that they look for the orthogonality of coefficient functions giving the PLS
scores instead of looking for uncorrelated PLS components (scores).

If the response has more than two categories (K > 2) then LDA is equivalent to
canonical correlation analysis. However, as for the binary response case, the canonical
factor for X (which is also the discriminant coefficient function) cannot be obtained
directly. Considered as a penalized canonical correlation analysis, PLS approach provides
a regularization method for LDA by using the PLS components as predictors.

3. Anticipated prediction

Let d; be the approximation for the discriminant score given by PLS regression on the
process X considered on the interval time [0,¢], ¢ < T,

t
di = D({X,} ) = / Bprsa(s)Xods (14)
0

The purpose of the anticipate prediction is to find t* < 7" such that the discriminant
score d;« performs quite as well as dp. Costanzo et al. (2006) propose a solution based
on the area under the ROC curve, as quality measure for the discriminant score d;, and a
paired sign test based on a bootstrap resampling : ¢* is the smallest ¢ such that the AUC(t)
is not significantly different of AUC(T) for a fixed type I risk of error.

The prediction of Y on {X;}icpo,r is then of the same quality as that given by
{Xt}te[o,t*}~

We used the anticipated approach for kneading data from Danone. The quality (Y")
of cookies produced by a set of 90 flours for which one knows the dough resistance (X)
during the first 480 seconds of the kneading process is evaluated. One obtains 50 flours



yielding to good quality of cookies and 40 to a bad one. Because of large local variation,
the curves are smoothed using cubic B-spline basis. Figure 1 shows the set of the 90 flours
before and after smoothing.
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Figure 1: Good (red) and bad (black) flours. Left : original data. Right : smoothed data

We use for prediction the smoothed curves that we consider as sample paths of a
stochastic process {X;}icjo,450). Considering Y € {Bad, Good}, the PLS approach for
discrimination of Y from {Xt}te[0,480] (Preda et al., 2007) yields to a misclassification
rate of about 11.2%. For a signification level of 5% and using the AUC criterion, the
anticipated approach provides t* = 186. The evolution of the p-value of the sign test is
presented in Figure 2.
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Figure 2: p-value of the sign test according to time

Thus, the predictive power of the dough curves for the cookies quality is resumed by
the first 186 seconds of the kneading process. In the next section we extend the anticipated
prediction methodology by adapting the optimal time ¢* to each new trajectory given its
incoming measurements, in that sense that observation of the trajectory after the time ¢*
does not change the prediction of Y.

4. Adaptive prediction

Let Q@ = {wy,...,wy}, n > 1, be a training sample and {(x1,41),..., (z,, ys)} be the
observation of (X,Y) on €2, X being considered on [0, T]. Let also suppose that one has
a good discriminant score dr for the prediction of Y by {X },cjo,r) With respect to some
criterion (misclassified rate, AUC, 12, etc) which is known for each element of ).

Let now consider a new data w.



By adaptive prediction for w we understand to find the smallest time ¢* = ¢*(w) such
that the prediction of Y'(w) on [0, t*] is similar to that on [0, T']. Let observe that ¢* is here
a random variable, whereas in the anticipated approach ¢* is a constant.

Let h be the step of a convenient discretisation of [0, 7] and suppose that for w the
process X is observed until the time ¢, t < T'. It is clear that the decision to continue the
observation X (w) at t + h or to stop it (t* = t) depends on the similarity of X (w) with
x1,...,T, With respect to the prediction of Y. We define this similarity at the time ¢ in
the following way :

Let d; be a discriminant score for Y using only the observation interval [0, ¢] and denote
by Yt(w) and Yt,i, i =1,...,n the predictions for w, respectively 2, with respect to d;.

Denote by

Qu(t) = {w; € QYy(w) = V;;} and Q,(t) = Q — Q,(2)

the class of elements having the same prediction as w, respectively its complement with
respect to 2.
Let
o € Ql¥r(e) = 0} N (D)

e = ©2.0)

be the observed rate of elements in (2, () predicted in the class Y = 0 at the time T.
Similarly, let pija, ), Poa, (ryand pyja, - Obviously,

(15)

Poja.(t) T Praue =1 and  pog ) + Pra,e = 1-

Let define Co,, 1) = max{poja. @), P1ja.@} and Cg_ 4y = max{poa;a, P, ) the
conservation rate of prediction group at the time ¢ with respect to the time 7' for the
elements of (2,(t), respectively of €2,(¢). As a global measure of conservation we
consider

OQ(u), t) = min{C'Qw(t), Cﬁw(t)}' (16)

For each t € [0, 7], Cq(w,t) is such that 0.5 < Cq(w,t) < 1 and Cq(w,T) = 1.

Given a confidence conservation threshold v € (0, 1), e.g. 7 = 0.90, we define the
following rule :

Adaptive prediction rule for w and ¢ :

(1) if Cq(w,t) > ~ then the observation of X for w on the time interval [0,¢] is
sufficient for the prediction of Y (w). Y (w) is then the same as the prediction at
time T of the subgroup of €2,(¢) corresponding to Cq_ ).

(1) if Cq(w,t) < ~y then the observation process of X for w should continue after ¢. Put
t =t + h and repeat the adaptive prediction procedure.

Then, ¢*(w) is the smallest ¢ such that the condition (1) of the adaptive prediction rule is
satisfied.

An important role in the proposed adaptive prediction methodology is played by the
observation of the discriminant score process d;, ¢ > 0 for the new data w. We propose
two approaches to define d;(w).



(M1) by completion : Use a functional regression model with functional response (Preda
and Saporta (2005), Lian (2007)) and predict X (w) on [t, T|. Then, by completion
one obtains a trajectory X (w) on [0,7] for which the score dr(w) provides a
prediction for Y. Put d;(w) = dr(w).

(M2) sequential : Construct the discriminant score d; progressively for each time ¢, as in
Costanzo et al. (2006), and predict Y using d;.

The first approach uses two regression models : one for the completion step, which is
sequently performed for each ¢, and a second one for discrimination. The discrimination
model concerns the training sample €2 for which X is considered on the whole interval
[0, T']. The second approach, M2, involves the estimation of several discriminant models,
one for each considered time ¢t. However, our intuition is that the error associated to M1 is
greater than that given by M2 since the first approach cumulates errors from both models.
Moreover, even for ¢ close to 7', the prediction error given by the regression model used in
the completion step of the trajectories in the training sample (PRESS) could be important
and thus misleading for the discrimination step. For these reasons, we used the sequential
approach in our application on kneading data.

Adaptive prediction for kneading data. 25 new flours have been tested for adaptive
prediction. These flours were classified by Danone as being of quality “adjustable”,
somewhere between “good” and “bad”. 12 of these flours are predicted by the PLS
discriminant analysis using the interval time [0, 480] into the “good” class. Using
as training sample {2 the set of the 90 flours considered in the anticipated prediction
approach, we perform for each one the adaptive prediction starting from ¢ = 100.
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Figure 3: Left : new flour w. Right : Cq(w,t), t € [100,480], v = 0.90.

In Figure 3 (left), we present one of these flours (w) which was observed on the whole
interval [0, 480]. The conservation rate evolution Cq(w, t) is presented in Figure 3 (right)
t € [100,480]. For a conservation rate threshold v = 0.90, the adaptive prediction rule
provides t*(w) = 220 and predicts w in the ”good” class of flours.

The empirical cumulative distribution function of ¢* obtained with the 25 flours is
presented in Figure 4. Notice that there are 5 time points which are earlier than the
optimal time for anticipated prediction (f = 186). 10 flours are predicted in the ”good”
class.
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Figure 4: Empirical cumulative distribution function of t* (in red, the time point t=186).

5. Conclusion

Prediction of a binary response has been considered in the context of functional data
predictor. Under the hypothesis of existence of an acceptable prediction model, we
investigated the possibility of reducing the length of the observation period without loss of
the quality prediction. We provided methodologies for anticipated and adaptive prediction
for preserving the global quality model as well as the quality prediction of individual
curves. An example is provided on kneading data from Danone. Works in progress are
devoted to simulation studies and new applications on real data.
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