N
N

N

HAL

open science

Petri nets based proofs of Ada 95 solution for preference
control

Kamel Barkaoui, Claude Kaiser, Jean-Francois Pradat-Peyre

» To cite this version:

Kamel Barkaoui, Claude Kaiser, Jean-Francois Pradat-Peyre.
solution for preference control. 4th Asia-Pacific Software Engineering Conference APSEC’97, Dec

1997, Hong Kong, China. pp.238-248. hal-01125435

HAL Id: hal-01125435
https://hal.science/hal-01125435
Submitted on 3 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Petri nets based proofs of Ada 95

https://hal.science/hal-01125435
https://hal.archives-ouvertes.fr

Petri Nets Based Proofs of ADA 95 solution for Preference Control

K.Barkaoui, C.Kaiser and J.F. Pradat-Peyre
Conservatoire National des Arts et Métiers
Laboratoire CEDRIC

barkaoui@cnam.fr, kaiser@cnam.fr, peyre@cnam.fr

Abstract

This paper presents correctness proofs of Ada 95
preference control solution for the dining philosophers
paradigm. Preference control is the ability to satisfy a
request depending on the parameters passed in by the
calling task and often also on the internal state of the
server. In Ada 95, this schema is implemented with
protected objects, entry families and requeue statements
within the protected object.. The aim of our presen-
tation is to show that the preference control can be
described in terms of states and transitions, similar
to reactive automaton descriptions. This description,
which can be done in terms of colored Petri nets, can
lead jointly to validate the chosen implementation and
to program it with protected objects and requeue state-
ments of Ada95. The paper is issued from an exam-
ination exercise for our students that have followed a
course on Programming and Validation of Concurrent
Applications and is presented in form of progressive
steps for which the students were expected to give an-
swer. This is why the paradigm of dining philosophers
was chosen. The paper contains three programmed so-
lutions and proofs of absence of deadlock and of star-
vation.

1. Introduction
1.1. Preference control and Ada95

Preference control is the ability to satisfy a request
depending on the parameters passed in by the calling
task and often also on the internal state of the server.
The paradigm of the dining philosophers is a good ex-
ample where a client task requests a particular num-
ber of different resources, where some resources might
be available, while others are in use, where a parame-
ter indicates the client specific request, and where the
server is controlling the allocation in order to guarantee

some correctness properties (absence of deadlock and
absence of starvation).

Many papers discussing preference control have ap-
peared in the literature and have shown that there
was no good way to implement it in Ada 83([Elr88],
[WKT84], [BLW87]). One way required exporting sev-
eral entries that had to be called in a particular order;
this violated information-hiding principles, and caused
race conditions, because events could occur between
the multiple calls. Another way required an extra agent
task which was created dynamically in order to handle
the request. Other solutions required the requesting
task to poll the server.

In Ada95 [Int95a, Int95b], the tasking of Ada 83 has
been enhanced with additions such as protected types
and the requeue statement. The requeue statement has
been added to provide preference control and thereby
overcome race conditions which could arise in Ada 83.
In Ada 83, all solutions had to share preference control
decisions amongst, the client and the server and thus
required some form of distributed control. In Ada 95,
all the decisions rely on information stored or accessible
in the server context. This locality of information and
of decision allows both much simpler implementations
and much simpler proofs.

1.2. Colored Petri nets

The technique used for proving correctness is based
on Petri nets theory.

When the solution is modeled by a colored Petri
net, several methods can be used to prove some prop-
erties on the model: the reduction theory that allows
us to define an equivalent model on which properties
are more easy to prove [Had91, Ber86], the places in-
variants of the net that define some invariant prop-
erties on reachable marking [CHP91], necessary and
sufficient conditions of liveness based on the notion of
controlled siphons [BPP96b] and the construction of
the symbolic reachable marking graph that provides a

compact description of all possible states of the model
[CDFH90]. All these methods have been implemented
in tools, such as GreatSPN, CPN-AMI or DesignCPN
which allow us to make automatic symbolic and/or pa-
rameterized proofs.

1.3. Progressive design of a reliable solution to the
dining philosophers problem

The aim of our presentation is to show that the con-
current programming construct which is called pref-
erence control, and which is necessary to implement
complex servers, can be described in terms of states
and transitions, similar to reactive automaton descrip-
tions. This description, which can be done in terms of
Petri nets, can lead jointly to validate the chosen im-
plementation and to program it with protected objects
and requeue statements. This could be the basis of a
systematic method of reliable concurrent programming
with Ada 95 when implementing preference control.

We present some well known solutions to the din-
ing philosophers problem and give Petri nets proofs of
their implementation in Ada 95. This was the core of
an examination exercise for students that have followed
a course on Programming and Validation of Concur-
rent Applications [Kai96, BPP96a, F1o96]. The aim of
this presentation is to introduce a systematic method
of programming and validation, which gracefully leads
to a reliable implementation with protected types and
requeue.

In section 2, we give a first approach where the client
requests the resources all at once (i.e. the two specific
chopsticks) and waits for them since it cannot pro-
ceed with a subset of the requested resources (i.e. the
philosopher cannot eat with only one chopstick, or can-
not do another activity when he is hungry); the server
allocates the request resources globally when they are
available. This is a well-known solution for deadlock
prevention; however it does not prevent starvation.

The implementation in Ada95 uses a protected ob-
ject with an entry family [Bro96]. The reduction theory
of Petri nets is used to prove that this implementation
is deadlock-free.

This solution was chosen to show a style of concur-
rency respecting a strong separation of resource man-
agement and control between client and server; this
respects the information-hiding principle. The client
has no idea of how the server proceeds and has not to
know it to call the service.

In section 3, another well known solution is pre-
sented. An additional constraint (the dining philoso-
phers must be seated before they are allowed to request
their first chopstick and all philosophers cannot have

chairs) is introduced to prevent the resource allocation
method to reach a state where a deadlock situation
holds. In this implementation, the client has to know
the solution chosen by the server (this remains true if
the sequence of call is embedded in a procedure or in
an agent task). This solution prevents deadlock and
starvation. This is proven by using places invariants of
the net (positive flows and siphons).

In section 4, we present a solution which combines
both advantages : it respects the information-hiding
principle and it provides a clever and safe solution (the
safety does not rely on a specific queuing policy as in
[Bro96]). The safety of the corresponding Petri net is
proven using reduction theory, places invariants of the
net and a new construction of the symbolic reachabil-
ity graph. This method can be extended to other solu-
tions of the dining philosophers problem which can be
implemented in a server with the same client interface.
Another method of deadlock prevention, called linear
ordering classes of resources and servicing the resources
according to this order, can be used and provides two
other known solutions. In one solution, chopsticks are
ordered according to the increasing value of their index
and fork X is requested first only when (X+ 1) mod N
is greater than X, otherwise fork (X + 1) mod N is re-
quired first. In another solution, one class of resources
contains odd numbered chopsticks while the other class
contains the even numbered ones.

The continuation part of the paper is now presented
in form of progressive steps for which the students were
expected to give answer.

2. Approach with information hiding and
deadlock prevention

We have studied during the course different solutions
to the dining philosophers problem regarding resources
allocation [Kai96, BPP96a]. As recall B.Brosgol in
[Bro96] ”The Dining Philosophers example is a clas-
sical exercise for concurrent programming. Originally
posed by Dijkstra [Dij71], the problem may be stated
as follows, generalized to allow an arbitrary number of
philosophers: For an arbitrary integer N greater than
1, there are N philosophers seated around a circular ta-
ble. In front of each philosopher is a plate of food, and
between each pair of philosophers is a chopstick. The
?processing” performed by each philosopher is an end-
less iteration of the two actions Eat and Think. In or-
der to perform the Eat action, a philosopher needs two
chopsticks: in particular the one immediately to the
left and the one immediately to the right. (Thus only
N/2 philosophers can eat simultaneously). Design a so-
lution so that for an arbitrary integer M, each philoso-

pher is guaranteed to perform Eat-Think sequence (at
least) M times.”

2.1. Defining briefly Petri nets

A Petri net [Rei83] is a 4-tuple (P,T,W*,W ")
where P is the set of places, T is the set of transitions,
W= (resp. WT) is the the backward (resp. forward)
incidence application from P x T to IN.

A Petri net can be viewed as a state transition sys-
tem where the places denote some kind of tokens and
the transitions the actions that produce and/or con-
sume tokens. A marking of a net is an application
from P to IN that defines for any place p the number
of tokens of kind p. The backward incidence applica-
tion (W ™) reflects for a kind of token (a place p) and an
action (a transition ¢) how many instances (W~ (p,t))
of this token are needed to do this action (to fire the
transition ¢). In the same way, the forward incidence
application (W) defines how many instances of a kind
of token p are produced by an action ¢ (W™ (p,t)). A
transition ¢ is fireable at a marking M if and only if
M(p) > W—(p,t) for all place p. The marking M’
reached by the firing of ¢t at marking M is defined by
Vp e P,M'(p) = M(p) — W~ (p,t) + Wt(p,t). The set
of all accessible markings from the initial marking M,
is denoted by Acc(N, My).

A Petri net is commonly represented by a bipar-
tite valuated graph where nodes are items of P U T,
and arcs are defined by W+ and W~ in the follow-
ing way: an arc valued by n > 0 exists from a place
p to a transition ¢ (resp. from t to p) if and only if
W=(p,t) = n (resp. WT(p,t) = n). One notes *p
(resp. p®) the set of transitions such that there ex-
ists an arc from these transitions to p (resp. from p
to these transitions): *p = {t € T|W*(p,t) > 0} and
p* ={t e T\W~(p,t) > 0}.

2.2. Recalling basic properties of Petri nets

Three properties are fundamental in Petri nets
theory: the liveness, the deadlock-freeness and the
deadlock-ability.

A net is said to be live when, whatever the
state reached by the net, all transitions remain fire-
able in future: Vm € Ace(N,My),Vt € T,3Im' €
Acc(N,m) |m/[t >.

A net is said to be deadlockable when it can reach
a marking at which no transition is fireable. This mark-
ing is called a dead marking and one says that the net
has a deadlock: Im € Acc(N, My) |Vt € T, m|[t 4.

A non deadlockable net is said to be deadlock
free. At each reachable marking, we insure that at

least one transition is fireable: Vm € Acc(N, My), 3t €
T |m[t >.

2.3. Explaining differences between Petri nets and
colored nets

Colored nets allow the modeling of more complex
systems than ordinary ones because of the abbreviation
provided by this model. In a colored net, a place con-
tains typed (or colored) tokens instead of anonymous
tokens in Petri nets, and a transition may be fired in
multiple ways (i.e. instantiated). To each place and
each transition is attached a type (or a color) domain.
An arc from a transition to a place (resp. from a place
to a transition) is labeled by a linear function called a
color function. This function determines the number
and the type (or the color) of tokens that have to be
added or removed to or from the place upon firing the
transition with respect to a color instantiation. These
different concepts can be formalized by the following
definitions.

Definition 2.1 A colored Petri net (or colored net) is
a 6-tuple CN =< P, T,C,W~, W+, My > where:

e P is the set of places, T is the set of transitions
with (PNT =0,PUT #0)

o C is the color function from PUT to), where)
is a set of finite non empty sets. An item of C(s)
is called a color of s and C(s) is called the color
domain of s.

e W+ (reps. W~) is the forward (resp. back-
ward) incidence matriz defined on P x T where
W+(p,t) and W (p,t) are linear applications
from Bag(C(t)) to Bag((C(p)). * The incidence
matriz of the net is defined by W = W+ —W~—.

o My is the initial marking of the net and is an ap-
plication defined on P with My(p) € Bag(C(p)).

Definition 2.2 Let CN = (P,T,WT,W~, M) be a
colored net. A marking of CN is a vector indexed by
P with ¥p € P,M(p) € Bag(C(p)). A transition t
is fireable for a color ¢; € C(t) and for a marking M
if and only if: Vp € P,M(p) > W~ (p,t)(c;). The
reached marking M' is defined by Vp € P,M'(p) =
M(p)—W~(p,t)(ct) + W*(p,t)(ct). One note, M[t >,
M'.

lif A is a finite and non empty set, then Bag(A) denotes the
set of multi-sets (i.e. sets that may include multiple occurrences
of the same item)over A

Generally, color domains are compositions of basic
ones, called classes, and color functions are tuple of ba-
sic functions defined on these classes. A class is a finite
and non empty set and its size may be parameterized
by an integer. The particular class € contains the only
item o: € = {e}.

The most usual color functions for a class C' are the
identity (or selection) denoted X¢ (or Y¢, Z¢, .. .), the
diffusion or the global synchronization over the class
C, denoted Allc, and the successor mapping denoted
Xc++.

2.4. Algorithm and colored net model of the first
solution

The client requests the resources all at once (i.e. its
chopstick and that of its right-hand side neighbor) and
waits for them since it cannot proceed with a subset of
the requested resources (i.e. the philosopher cannot eat
with only one chopstick, or cannot do another activity
when he is hungry); the server allocates them globally
when they are available.

In Ada 95, a protected object encapsulates and pro-
vides synchronized shared access to the private data
of that object. Access is provided by calling entries,
functions and procedures, but only one of these can
be executed at a time in mutual exclusion. The en-
tries have barrier conditions which must be true before
the corresponding entry body can be executed. If the
barrier condition is false, then the call is queued and
the mutual exclusion is released. At the end of the
execution of an entry or a procedure body of the pro-
tected object, all barriers which have queued tasks are
re-evaluated and one waiting call which barrier condi-
tion is now true is executed. The mutual exclusion is
released only when there is no more waiting task with
a true barrier condition. Thus existing waiting calls
with true barrier condition take precedence over new
calls. Entry families specify a name for an entry family
index which can be used in the entry body allowing
to describe the entry bodies of the whole family in a
unique text.

Using Ada95 protected object and entry families,
the first solution is implemented as follow (Ada pro-
gram 1).

procedure le_premier_repas is
N : constant integer := 5;
type id is mod N;
type tab is array(id) of boolean;

protected repas is
entry demander(id); -- entry family
procedure conclure(X : in id);
private —- the chopsticks
Baguettes : tab := (others => true);
end repas;

protected numero is
procedure unique(resultat: out id);
private compte : id := id’first;
end numero;
task type philo;
philosophe: array (id) of philo;
task body philo is ego : id;

begin
numero.unique (ego) ;
loop
pense(ego); —— think
repas.demander (ego) ;
mange (ego); -- eat
repas.conclure (ego) ;
end loop;
end philo;

protected body repas is separate;
protected body numero is separate;
begin null;
end le_premier_repas;

separate(le_premier_repas)
protected body numero is

procedure unique(resultat : out id) is

begin
resultat := compte;
compte := compte+l; -- addition modulo N

end unique;
end numero;

separate(le_premier_repas)
protected body repas is
entry demander(for i in id)
when Baguettes(i) and Baguettes(i+l) is
begin
Baguettes(i):= false;
Baguettes(i+1) :=false;
end demander;

procedure conclure(X: in id) is
begin
Baguettes(X) := true;
Baguettes (X+1) :=true;
end conclure;
end repas;

Ada program 1 : approach with information
hiding and deadlock prevention

This implementation is modeled by the following col-
ored net (fig. 1).

Thinking: D
D.All

Domai n D=1..N

<X >H<X++>

<X >
Eating: D Chopsticks: D

D.All

<X >4 <X++>

Figure 1. Colored net of the Ada program 1

2.5. Interpreting this colored net

This net is composed of three places (Thinking,
Eating and Chopsticks) and of two transitions (take
and giveback). Places Thinking and Eating model
the two different visible states of the N philosophers.
For instance, a philosopher z is in the state eating
when a token of color z is in the place FEating. Place
Chopsticks models the available chopsticks.

Initially, all philosophers are in state thinking and
all chopsticks are free. This is modeled by the
definition of the initial marking My(Thinking) =
D.All, My(Eating) = 0, Mo(Chopsticks) = D.All.

Transition take can be fired for a color x when place
Thinking contains at least one token of color z and
when place Chopsticks contains at least one token of
color z and one token of color z+1 mod N. Upon firing,
the needed tokens are removed and a token of color z
is added to place Eating This transition models the
entry demander.

Transition give back models the procedure conclure
and is fireable when place Eating contains at least one
token of color z (the philosopher z is in state eating).
This firing produces the two tokens z and z + + in
place Chopsticks (the chopsticks z and = + 1mod N
become free again) and one token z in place Thinking
(the philosopher z is now in state thinking).

2.6. Using the reductions theory of Petri nets to
prove that this solution is deadlock free

Petri net (or colored net) reductions allow one to
simplify a model while preserving some properties of
the initial model [Ber86, Had91] A reduction is charac-
terized by three definitions: the application conditions,
the reduced net, and the properties that are equivalent
to check either in the original net or in the reduced one.

In this net one can apply the agglomeration of tran-
sition take with transition give back. By definitions of
these reductions, proving that the reduced net is dead-
lock free proves that the original one is also deadlock
free.

The reduced net is obviously live since the only tran-
sition is a ”test” transition (its firing preserves the
number and the color of tokens contains in each place)
and is initially fireable for each instance of D by defi-
nition of the initial marking. 2

2the two places of the net can be suppressed by an other
reduction : suppression of implicit place [Had91]

Thinking: D
D.All

<X > Domain D=1..N

< >+ ++ >
<X > X <X

take.give back
Chopsticks: D

D.All
<X >+ < X++

Figure 2. The equivalent net after the agglom-
eration of transition take with giveback

3. Approach with deadlock and starva-
tion prevention

3.1. Algorithm and colored model of the second so-
lution

The second solution to our problem is based on a
step by step allocation of the resources. A philosopher
z that wants to eat begins by taking a seat, then he
takes the chopstick numbered x and then the chopstick
numbered x + 1. At each resource request, he has to
wait until this resource becomes free.

procedure le_deuxieme_repas is
N : constant integer := 5;
type id is mod N;

protected chaise is

entry prendre;

procedure rendre;

private libre : integer := N-1;
end chaise;

protected type ressource is
entry prendre;
entry rendre;
private pris
end ressource;

boolean:=false;

protected numero is
procedure unique(resultat: out id);
private compte : id := id’first;
end numero;

task type philo;
philosophe: array(id) of philo;
baguettes : array(id) of ressource;

task body philo is
ego : id;
begin
numero.unique (ego) ;
loop
pense(ego) ;
chaise.prendre;
baguette(ego) .prendre;
baguette(ego + 1).prendre;
mange (ego) ;
baguette(ego) .rendre;
baguette(ego + 1).rendre;
chaise.rendre;

end loop;
end philo;
protected body chaise is
protected body ressource
protected body numero is

separate;
is separate;
separate;

begin null;
end le_deuxieme_repas

separate(le_deuxieme_repas)
protected body chaise is
entry prendre when libre > 0 is

begin libre := libre - 1; end prendre;
procedure rendre is
begin libre := libre + 1; end rendre;

end chaise;

separate(le_deuxieme_repas)
protected body ressource is
entry prendre when not pris is

begin pris := true; end prendre;
entry rendre when pris is
begin pris := false; end rendre;

end ressource;

separate(le_deuxieme_repas)
protected body numero is

procedure unique(resultat : out id) is

begin
resultat := compte;
compte := compte+l; —- addition modulo N

end unique;
end numero;

Ada program 2 : Ada95 program for safe
allocation

The following net (fig. 3) models this behavior.

Thinking: D Waitl: D Donmin D=1..N

DAl (‘\ <X > H <X>

<x > Seas: {} N1 takelLeft ———
<X
Wait2: D
Chopsticks: D
<X> DA

givebackSeat —

givebackRight ———

Finish2: D

<X> <X > <X++>

Figure 3. Colored net for the Ada program
with safe allocation

One can remark that seats are not distinguishable
and that a philosopher asks for a seat and not for a
particular seat as he does for the chopsticks. This is
modeled on the net by the color domain of place Seat =

€ and by non valuated arcs around this place. Initially
there is only N — 1 free seats.

3.2. Simplifying this model

As previously, we apply some transitions ag-
glomeration on this net: an agglomeration of
transitions give backRight and givebackSeat, then
an agglomeration of transitions givebackLeft and
give backRight.give backSeat. We obtain the follow-
ing net that is equivalent to the original for checking
the liveness.

takeSeat

Waitl: D

Donain D=1..N
Thinking : D
D.All

<X>

Chopsticks: D

<X > D.All
takeRight

Eating: D <X >H+< X++>

give backL eft give backRight.give back Seat

Figure 4. Reduced colored net for the safe
allocation

3.3. Explaining the notion of controlled siphon

A siphon is a subset of places characterized by a par-
ticular structure: each transition that produces tokens
in a siphon must also consume tokens from the siphon.
Theoretically, a subset of places S is a siphon if and
only if *S C S°®. A siphon is minimal when it contains
no other siphon as proper subset.

Siphons are also called ”structural deadlock” be-
cause deadlock freeness of the net depends strongly on
siphons marking: a siphon that becomes empty of to-
kens will never get again tokens since the transitions
that produce token also consume tokens in the siphon.
So, if this happen, all transitions of S*® will never be
fireable again: the net is not live.

A siphon is said to be controlled [BPP96b] when it
can never become empty of tokens, It has be proven in
[BPP96b]that when all minimal siphons are controlled,
the net is deadlock free: this is a necessary condition
for liveness. Furthermore, for some sub classes of Petri
nets (asymmetric choice or free choice nets, ...), it is

proved that this is also a sufficient condition for live-
ness: if all minimal siphons are controlled then the net
is live [BPP96D)].

In the net of figure 4 there are the minimal siphons:

® Sl1; = {Thinking(z), Waitl(x), Wait2(z), Eating(z)}
o 52 = {seat} Uyep {Waitl(z), Wait2(z), Eating(z)}

® S3 = Ugep {Chopsticks(z), Eating(z)}
3.4. Defining places invariants

A place invariant defines a subset of places such
that the global number of tokens in these places
remains constant. Theoretically, a mapping f €
PZ i a place invariant if and only if VM €
Ace(N,Mo), 3, p F(0)-M(p) = 3 p f(p)-Mo(p) = cst.
Such a mapping is generally represented by a formal
sum of places : f = EPEP f(p)-p.

In this net (fig. 4), we can compute the three sets
of places invariants:

e Yz € D, F1, = Thinking(z)+Waitl(z)+ Wait2(z)+
Eating(x) = cstly(Mo) =1

e Vr € D,F2, = Chopsticks(z) + Wait2(z) +
Eating(z) + Eating(x — —)) = cst2,(Mo) =1

e F3 = Seat +) p[Waitl(z) + Wait2(z) +
Eating(z)] = cst3(Mo) =N —1

The first family of invariant F'1, expresses that a
philosopher z is either thinking, or waiting for the first
chopstick, or waiting for the second chopstick or eats.
These invariants characterize the process structure of
philosophers.

The second family of invariants, F'2,, is related to
the use of chopsticks: a chopstick z is either free, or
is taken by the philosopher z which is waiting for its
second chopstick, or is taken by the philosopher z or
z — 1 which is eating. These invariants prove that a
chopstick can not be taken by two philosophers.

The last invariant counts the number of free seats:
a seat is either free or used by a philosopher which is
waiting for the first or the second chopstick or which is
eating. This invariant proves that there is at least one
philosopher that is thinking.

3.5. Proving the liveness of the net

This net is an asymmetric choice net [BPP96b]
since, if we consider every pair of places (p,q) then
p* N ¢* # p=—=p* C ¢* or ¢* C p*. For this class
of net a necessary and sufficient condition of liveness is

that the minimal siphons are controlled, i.e. they never
become empty of tokens.

Invariant F'1, ensures that siphon S1, can not be-
come empty of tokens since there is either a token in
place Thinking(x) or in place Waitl(z) or in place
Wait2(z) or in place Eating(z). So for any value of
z, S1; is a controlled siphon. In the same way, S2 is
controlled by the places invariants F'3.

The non trivial point is to prove that the siphon S3
is controlled.

If we compose the invariants F'2 and F3 we ob-
tain a new places invariant F4 =) _ F2, — F3;
F4 = %, Chopsticks(z) +) _, Eating(z) = 1+
Seat +) ., Waitl(z)

This invariant tells us that the number of free chop-
sticks plus the number of eating philosophers is always
equal to the number of free seats plus the number of
philosophers waiting for their own chopstick plus 1.
So, there is always at least either a free chopstick or a
philosopher that is eating. This implies that the dead-
lock condition can not occur: the siphon S3 cannot
become empty of token. We can then conclude that
the net is live.

3.6. About starvation

The model of the solution does not take into account
the scheduling policy of Ada95 regarding protected ob-
jects access. In particular, Ada95 ensures that at the
end of the execution of an entry body (or a procedure
body) of a protected object all barriers which have
queued tasks are reevaluated thus possibly permitting
the processing of an entry call which had been queued
on a false barrier.

As we did not model this behavior, we cannot make
an automatic proof of the starvation prevention of the
solution. We will see in the next section how such a
proof can be done.

However, suppose that a philosopher z, can never
reach the state eating. This implies that either it can
not obtain a seat or it can not obtain one of the two
chopsticks.

Using places invariants computed previously and
liveness of the net, we can ensure that in the first case
(z is waiting for a seat) all other philosophers are ei-
ther eating or waiting for one chopstick. As soon as a
philosopher y # z will return in state thinking, then
all the barriers of the protected object Chaise will be
reevaluated and thus permitting the philosopher x to
get a seat before y can try to get again a seat. So, a
philosopher x can not wait infinitely for a seat.

In the same way, suppose that a philosopher x can
never obtain the first chopstick and waits in place

Waitl. Place invariant F'2, implies that the chopstick
x is owned by the philosopher 2 — 1 which is eating. As
philosopher — 1 must first give back its two chopsticks
before trying to take again the chopstick z, entry bar-
riers are reevaluated when philosopher = —1 releases its
chopsticks, and then philosopher x gets its first chop-
stick.

Suppose at last that z is waiting for its second chop-
stick (thus Wait2(z) = 1 and Chopstick(z + 1) = 0)
can never obtain it. Using again invariant F2,, (instan-
tiated for and z+1), we obtain that philosopher z+1
is either waiting for chopstick z + 2 (in state Wait2) or
is eating. If x + 1 is eating, using the same argumenta-
tion as previously, when it releases its resources, entry
barriers are reevaluated and philosopher x obtain its
second chopstick. If z +1 is waiting for chopstick x + 2
in state Wait2, there two cases: either x + 1 will get
in a future this chopstick or it may never get it. In the
first case, as soon as z + 1 gets chopstick = + 2 it goes
in state Eating and we have already studied this case.
In the other case, using same argumentation, chopstick
z + 2 is owned by philosopher x + 2 that is infinitely
waiting for chopstick x + 3 which is owned by philoso-
pher z + 3 that is infinitely waiting for chopstick z + 4
and so on. Nevertheless, such a case is not possible
since siphon S3 is controlled (there is no deadlock in
the net). So, necessarily, there exists a k > 0 such that
chopstick = + k is owned by philosopher x + k which is
eating and when it will release its chopsticks, philoso-
pher z + k — 1 will access state Eating and so on until
z access state Fating.

So, the reevaluation of entry barriers used in Ada95
and the deadlock freeness of the net ensure that this
solution preserves of the starvation.

4. A solution with deadlock and starva-
tion prevention and with information
hiding

One drawback of the second solution is that philoso-
phers have to know the way resources are man-
aged. Changing the resources allocation policy leads to
rewrite the code of the philosopher task. Ada95 allows
the construction of an unique allocator that combines
advantageously the first and second approach.

This allocator would be called by the philosophers
according the scheme of the first solution and would
process requests using the algorithm proposed in the
second solution.

In Ada 95 the requeue statement enables a request
to be processed in two or more steps. The effect is to
return the current caller back to an entry queue. The

caller is neither aware of the number of steps nor of the
requeuing of its call.

Entries visible from the philosophers
are demander (X) (- i.e. ask(X)) and conclure(X) (-
i.e. conclure(X)). Internally, the allocator has a family
of N private entries P_ask(X). The allocator processes
only N — 1 concurrent requests from demander entry
point. A request is processed in several steps. At the
end of each step, the processing may be postponed by
putting the request in an entry queue. When the al-
locator accepts a request demander (x), it first tries to
allocate the two chopsticks needed. In case of success,
the processing ends here. Else, the allocator tries to
give one of the chopsticks and put the philosopher in
the entry queue of the other chopstick (requeued on
entry B). When it cannot allocate anything, it puts the
philosopher X in the entry queue of the chopstick X.

To implement the algorithm, one needs to: count
the number of request in the module (variable seat),
know and update the status of the chopsticks (array
chopsticks), store each request state (array step) where
state can take the following values : init, nochopsticks,
onechopstick, twochopsticks.

procedure le_bon_repas is
N : constant integer := 5;
type id is mod N;
type tab_b is array(id) of boolean;
type INOT is
(Init, NoChopstick,
OneChopstick, TwoChopsticks);
type tab_INOT is array(id) of INOT;

protected repas is

entry demander(X : in id);

procedure conclure(X : in id);
private
chaise : integer := N - 1;

baguette : tab_b := (others => true);

etape : tab_INOT := (others => Init);

entry B(id) (X: in id); -- entry family
end repas;

protected numero is
procedure unique(resultat: out id);
private compte : id := id’first;
end numero;

task type philo;
philosophe: array (id) of philo;

task body philo is ego : id;
begin
numero.unique (ego) ;
loop
repas.demander (ego) ;
mange (ego) ;
repas.conclure (ego) ;
end loop;
end philo;
protected body repas is separate;
protected body numero is separate;
begin null;
end le_bon_repas;

separate(le_bon_repas)

protected body numero is

procedure unique(resultat : out id) is

begin
resultat := compte;
compte := compte+l; —- addition modulo N

end unique;
end numero;

separate(le_bon_repas)
protected body repas is
entry demander(X :in id) when chaise > 0 is
begin
chaise := chaise - 1;
if baguette(X) and baguette(X+1) then
baguette(X) := false; baguette(X+1) := false;
etape (X) := TwoChopsticks;
elsif baguette(X) then
baguette(X) :=false; etape(X):=0neChopstick;
requeue B(X+1);
elsif baguette(X+1) then
baguette (X+1) :=false; etape(X):=OneChopstick;
requeue B(X);
else
etape(X) := NoChopstick;
requeue B(X);
end if;
end demander;

procedure conclure(X: in id) is

begin
chaise := chaise + 1;
baguette(X) := true; baguette(X+1l) := true;
etape(X) := Init;

end conclure;

entry B(for i in id) (X: in id) when baguette(i) is
begin
baguette(i) := false;
if etape(X) = NoChopstick then
etape (X) :=OneChopstick; requeue B(X+1);
else
etape (X) := TwoChopsticks;
end if;
end B;
end repas;

Ada program 3 : program for safe allocation
and information hiding

The following colored net (fig. 5) models this solu-
tion.

Thinking: D ask geseat
Wit : D
<x>[]<x> <x nit: D

Seats: {1}
N-L ifXandX++

<x 3|
<X>| <X NoChopstick : D,

<x>

Chopsticks: D ‘ oAl exxet fxxs

<x3]

. ifNo

<X>+<XH> ifone
<X>|
TwoChopsticks: D <X>

<X Y > <X, X+ >

OneChopstick : DXD

== Priority =HIGH
—= Priority=Low

Domain D=1..N

endAsk
Eating: D
<x> <X>

Figure 5. Colored net of Ada program 3

One can note that in this model a priority is associ-
ated to each transition (priority high or low). A transi-

tion of low priority can only be fired when no transition
of high priority is fireable. We use this semantic in or-
der to take into account the Ada95 processing policy
of protected objects: at the end of a protected call,
already queued entries (whose barriers are true) take
precedence over new calls.

4.1. Proving deadlock prevention of this solution

Using same tools as previously (reductions theory,
places invariants and controlled siphon property) we
can prove that the model associated to this solution is
a live net.

Applying reductions on this net, we obtain the fol-
lowing reduced net (fig. 6).

Thinking: D Dormai n D=1.. N
DAI C\ <X>

Seats: {}

N1 ifXandx++

<x>|
NoChopstick : D

ifNo

<X>+eXt> ifone =

OneChopstick : DXD

=== Priority =HIGH

—= Priority =Low

Eating: D
>

Figure 6. Reduced net of the Ada program 3

If we compute the places invariants and the siphons
of the net, we obtain that only one siphon is not a
place invariant (and may be not controlled): S =
Uzep {Eating(z), Chopsticks(z)} This siphon identi-
fies a deadlock possibility : all philosophers take their
first chopstick and then there is no available chopstick
(no one can eat) and there is no philosopher that can

give back a chopstick.
However, the places invariant F'

E Chopsticks(z)+ E Eating(z) = 14+ Seat+ E NoChopstick(z)

z€D zE€D z€D

ensures that the siphon S contains at least one token.

As the net is an asymmetric choice net (place Seats
”controls” transitions i f XandX ++, elsi f X, elsi f X +
+ and else) and as all siphons of the net are controlled
we can conclude that the net is live.

4.2. Proving starvation prevention of this solution
In order to prove that the model does not en-

able infinite sequences for which a particular philoso-
pher can not success to eat, as the system is finite,

the easiest way is to use methods based on tempo-
ral model checking. Many algorithms have been de-
veloped depending on property representation [Wol89,
Flo96]. For instance, checking the absence of star-
vation of the model is equivalent to check (for zy €
D) the CTL* [EPS93] formula * VG(M (Wait(xo)) =
1=VFM (Eating(zo)) = 1) which means that all
path issued from a state at which the philosopher zg is
waiting for a seat includes a state in which the philoso-
pher z is eating.

The major problem limiting the use of these meth-
ods is the state space explosion. Different approaches
are generally used to combat this problem. One can
cite the methods based on Binary Decision Diagram
[PRCBY6], unfolding [ERV96] or the symbolic reacha-
bility graph [CDFH90] that permit to define a concise
graph representation.

5. Conclusion

Programming preference control in ADA 95 leads
very naturally to implement the resource management
as an automaton with state transitions. This descrip-
tion can be directly modeled in Petri nets or colored
nets, allowing to prove the correctness of the implemen-
tation. This method has been shown for the paradigm
of the dining philosophers and different examples of
proofs with Petri nets have been given.

It can be generalized to any client-server relation-
ship where a server receives requests of different size
and from different clients, and where all service deci-
sions are taken by the server. The decisions may rely
on the history of individual clients, or on the global
history of the group of clients, or on the history of re-
source allocation; they may rely on individual requests
or on the concomitance of requests of several users (for
example a communication channel may need to be re-
quested by both end users; another example is resource
allocation for a client presenting a request which has to
be authentified by a third party); they may still rely on
claims of the behavior of future resource requests (as
in the banker’s algorithm for deadlock avoidance). The
server can control the resource allocation by postpon-
ing the client request until some state of its automaton
is reached.

References

[Ber86] G. Berthelot. Transformations and decom-

positions of nets. In Advances in Petri

3CTL* is a language of expression of temporal logic properties
and can be viewed as an unification of the Linear Time Logic
(LTL) and the Computational Tree Logic (CTL)

[BLWS8T]

[BPPY6a

[BPPY6D)

[Bro96]

[CDFHY0]

[CHP91]

[Dij71]

[E1r88]

[EPS93]

[ERV96]

Nets, number 254 in LNCS, pages 359-376.
Springer-Verlag, 1986.

A. Burns, M. Lister, and A. Wellings. A
review of Ada tasking. In LNCS. Springer-
Verlag, 1987.

K. Barkaoui and J.F. Pradat-Peyre. Intro-
duction auzr Reseaux de Petri. Cours Pro-
grammation et validation des applications
concurrentes. Polycopie CNAM, 1996.

K. Barkaoui and J.F. Pradat-Peyre. On
liveness on controlled siphons in Petri
nets. In Reisig, editor, Petri Nets, The-
ory and Application, number 1091 in LNCS.
Springer-Verlag, 1996.

B. Brosgol. The dining philosophers in
Ada95. In Reliable Software Technologies-
Ada-Furope’96, number 1088 in LNCS,
pages 247-261. Springer-Verlag, 1996.

C. Chiloa, C. Dutheillet, G. Franceschinis,
and S. Haddad. On well-formed colored
nets and their symbolic reachability graph.
In proc. of the 11th International Confer-
ence on Application and Theory of Petri
Nets, Paris-France, June 1990.

J.M. Couvreur, S. Haddad, and J.F. Peyre.
Computation of generative families of semi-
flows in two types of colored net. In proc of
the 12th International Conference on Ap-
plication and Theory of Petri-Nets, Aarhus,
Denmark, June 1991.

E.W. Dijkstra. Hierarchical ordering of se-
quential processes. In Acta Informatica,
number 1, pages 115-138, 1971.

T. Elrad. Comprehensive scheduling con-
trol for Ada tasking. In Proceedings of the
Second International Workshop on Real-
Time Ada Issues, pages 12-19, 1988.

A E. Emerson and A. Prasad Sistl. Symme-
try and model checking. In proc. of the 5th
conference on Computer Aided Verification,
June 1993.

J. Esparza, S. Romer, and W. Vogler. An
improvement of McMillan’s unfolding algo-
rithm. In Proc. of the 2nd Int. Workshop
TACA’96, number 1055 in LNCS, pages 87—
106. Springer-Verlag, 1996.

[Flo96]

[Had91]

[Int95a]
[Int95b]

[Kai96]

[PRCBY6]

[Rei83]

[WKT84]

[Wol89]

G. Florin. Introduction a la logique tem-
porelle. Cours Programmation et validation
des applications concurrentes. Polycopie
CNAM, 1996.

S. Haddad. A reduction theory for col-
ored nets. In Jensen and Rozenberg, edi-
tors, High-level Petri Nets, Theory and Ap-
plication, LNCS, pages 399-425. Springer-
Verlag, 1991.

Intermetrics Inc. Ada 95 Rationale, 1995.

Intermetrics Inc. Ada 95 Reference Manual,
1995.

C. Kaiser. Cours Programmation et vali-
dation des applications concurrentes. Poly-
copie CNAM, 1996.

E. Pastor, O. Roig, J. Cortadella, and R.M.
Badia. Petri nets analysis using boolean
manipulation. In Valette R., editor, Petri
Nets, Theory and Application, number 815
in LNCS, pages 416-453. Springer-Verlag,
1996.

W. Reisig. EATCS-An Introduction to
Petri Nets. Springer-Verlag, 1983.

A. Wellings, D. Keeffe, and G. Tomlinson.
A Problem with Ada and Resource Alloca-
tion. ACM SIGAda Ada Letters II1(4), pp.
112-123, 1984.

P.. Wolper. On the relation of programs and
computation to models of temporal logic. In
Proc. of Temporal Logic in Specifications,
89, number 398 in LNCS, pages 87-106.
Springer-Verlag, 1989.

