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 . Functionallogistic regression is another approach advocated by Aguilera et al. , 2006. We determine an optimal time t* < T giving a prediction based on [0; t*] almost as good as the prediction based on [0; T] (Costanzo et al., 2006) by using a bootstrap test for AUC criterion.

Introduction

Functional data [START_REF] Ramsay | Functional data analysis[END_REF]) occur when we observe curves or trajectories from a stochastic process Xt. If for each curve we have a single categorical response Y, we have a classification problem and a regression one if Y is numerical. We assume here that all trajectories are observed continuously on a time interval [0; T] and that the variables Xt have zero mean. There are many recent works on this topic; using mainly nonparametric techniques. We focus here on the extension of the classicallinear model. [START_REF] Barker | Partial least squares for discrimination[END_REF] The functional linear model

The functionallinear model considers a predictor which may be expressed as an integral sum:

y= 1T X t{3(t)dt

The problem is not new and cornes back to [START_REF] Fisher | The Influence of Rainfall on the Yield of Wheat at Rothamsted[END_REF] who used the expression "integral regression" for solving a problem of predicting the amount of crop with temperature curves. It is well known that this regression model yields to an ill-posed problem: the least squares criterion leads to the Wiener-Hopf equation which in general has not an unique solution.

E(XtY) = 1T E (XtXs) {3(s)ds

and the problem is even worse when we try to estimate the regression coefficient function f3(t) with a finite number of observations. This is quite clear by using the Karhunen-Loeve decomposition.

Functional principal components analysis or Karhunen-Loeve expansion

The generalization of principal components analysis to functional data (Sa porta, 1985) relies on the Karhunen-Loeve decomposition. High dimensionality and multicollinearity also involves sorne smoothing. In the functionallinear approach, functional data (the predictor) and functional parameter can be modelled as linear combinations of a basis functions from a given functional family. Literature on that subject essentially differs in the choice of the basis and the way parameters are estimated. Basis functions should be chosen to reflect the characteristics of the data: for example, Fourier basis are usually used to model periodic data, while B-spline basis functions are chosen as they have the advantage of finite support. We will focus here on linear methods based on an orthogonal decomposition of the predictors.

Linear regression on principal components

Using components derived from the Karhunen-Loeve expansion is, for functional data, the equivalent of principal components regression (PCR).

If we use all principal components we have:

Y = f cov~Y,Çi) ~i = f f.~i and i=l ~ i=l 1. 00 00 2 R 2 (Y, Y)= 2:: R 2 (Y, ~i) = 2:: }:: i=1 i=1 but for finite n, R 2 = 1.
In practice we need to choose an approximation of order q :

' q ( y(q) = L cov Y;~i) ~i i=1 Ài ~(q)(t) = ~ cov(Y;~i) L__..

À fi(t)

•=1 ' But using principal components for prediction is heuristic because they are computed independently of the response: the components corresponding to the q largest eigenvalues are not necessarily the q most predictive, but it is impossible to rank an infinite number of components according to R The first PLS component is given by t 1 = J 0 00 w(t)Xtdt.

The PLS regression is iterative and further PLS components are obtained by maximizing the covariance criterion between the residuals of both Y and (Xt) with the previous components.

The PLS approximation is given by:

YPLS(q) = Clh + ... + Cqtq =loT /JPLS(q)(t)Xtdt
and for functional data the same property than in finite dimension holds: "PLS fits doser than PCR": 

}!..~ E<IIYPLS(q)-yll 2 ) = 0
In practice, the number of PLS components used for regression is determined by crossvalidation.

3 Supervised classification on functional data by linear methods Sorne of these flours could be adjusted to become Good. Therefore, we have considered the set of Adjustable flours as the test sample and predict for each one the group membership, Y = { Good, Bad}, using the discriminant coefficient function (Fig. 2) given by the PLS approach on the 90 flours. PLS functional discriminant analysis gave an average error rate of 11% which is better than discrimination based on principal components.

Functional logistic regression

Let Y be a binary random variable and y 1 , . . . , Yn the corresponding random sample associated to the sample paths xi(t), i = 1, ... , n.

A natural extension of the logistic regression [START_REF] Ramsay | Functional data analysis[END_REF] is to define the functionallogistic regression model by : ln c :i 7rJ = 0: + 1T Xi(t){3(t)dt;

where ni= P(Y = 1/X = Xi(t);t ET). Finally, in order to estimate the parameters a further approximation by truncating the basis expansion could be considered. Alternatively, regularization or smoothing may be get by sorne roughness penalties approach.

In a similar way as we defined earlier functional PCR, Leng and Müller (2006) use functionallogistic regression based on functional principal components with the aim of classifying gene expression curves into known gene groups.With the explicit aim to avoid multicollinarity and reduce dimensionality, [START_REF] Escabias | Principal Component Estimation of Functional Logistic Regression: discussion of two different approaches[END_REF] and [START_REF] Aguilera | Using principal components for estimating logistic regression with high-dimensional multicollinear data[END_REF] propose an estimation procedure of functional logistic regression, based on taking as covariates a reduced set of functional principal components of the predictor sample curves, whose approximation is get in a finite space of no necessarily orthonormal functions. Two different forms of functional principal components analysis are then considered, and two different criterion for including the covariates in the model are also considered. [START_REF] Müller | Generalized functional linear models[END_REF] considera functional quasi likelihood and an approximation of the predictor process with a truncated Karhunen-Loeve expansion. The latter also developed asymptotic distribution theory using functional principal scores.

Comparisons with functional LDA are in progress, but it is likely that the differences will be small.

Anticipated prediction

In many real time applications like industrial pro cess, it is of the highest interest to make anticipated predictions. Let denote dt the approximation for a discriminant score considered on the interval time [0, t], with t < T: dt = J; Xt/3(t)dt -----,--,----,---,---,-----,-_ PLS regression is an efficient and simple way to get linear prediction for functional data. Anticipated prediction could be solved by means of a bootstrap procedure Work in progress concern "on-line" forecasting: instead of using the same anticipated decision time t* for ali data, in a forthcoming paper we adapt t* to each new trajectory given its incoming measurements.
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 1 Figure 1: A scheme for prediction with functional data
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 4 Functional PLS regression (Preda & Saporta, 2005) PLS regression offers a good alternative to the PCR method by replacing the least squares criterion with that of maximal covariance between (Xt) and Y . maxw cov 2 (Y, J 0 00 w(t)Xtdt) with l l wll 2 = 1
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 22 (Y; YPLS(q)) ;?: R (Y; YPCR(q)) since PCR components are obtained irrespective of the response. Preda &[START_REF] Preda | PLS regression on a stochastic process[END_REF] showed the convergence of the PLS approximation to the approximation given by the classicallinear regression:
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 1231500 Figure 2: Smoothed kneading curves

  i = 1, ... ,n It may be assumed (Ramsay et al., 1997) that the parameter function and the sample paths xi ( t) are in the same fini te space: p {3(t) = L: bq~q(t) = b'~ q=l p xi(t) = L:ciq~q(t) = c;~ q=l where ~1 (t), ... , ~q(t) are the elements of a basis of the finite dimensional space. Such an approximation transform the functional model (1) in a similar form to standard multiple logistic regression model whose design matrix is the matrix which contains the coefficients of the expansion of sample paths in terms of the basis, C = (ciq), multiplied by the matrix <I> = (c/Jkq = J ~k(t) ~q(t)dt) , whose elements are the inner product of the basis functions ln (-71'-) = o:l + C<I>b 1-71' T with b = (b1 , ... ,bp) , 1r = (n 1 , ... np) and 1 being the p-dimensional unity vector.

  The aim is to find t* < T such that the discriminant score dt* performs qui te as well as dr . Costanzo et al. (2006) proposed a procedure for a binary target Y, based on the ROC curve and the AUC (Area Under Curve) criterion. Let dt(x) be the score value for sorne unit x. Given a threshold r, x is classified into Y = 1 if dt(x) > r. The true positive rate or "sensitivity" is P (dt > r/Y = 1) and the false positive rate or 1-"specificity", P(dt > r/Y = 0). ROC curve gives the true positive rate as a function of the false positive rate and is invariant under any monotonie increasing transformation of the score. Define t* as the fust value of s where AUC(s) is not significantly different from AUC(T) Since AUC(s) and AUC(T) are not independent variables, we use a bootstrap test for comparing areas under ROC curves: we resample M times the data, according to a stratified scheme in order to keep invariant the number of observations of each group. Let AUCm(s) and AUCm(T) be the resampled values of AUC for m = 1 toM, and 6m their difference. Testing if AUC(s) = AUC(T) is performed by using a paired t-test, or a Wilcoxon paired test, on the M values 6m.The previous methodology has been applied to the kneading data: the sampie of 90 flours is randomly split 50 times into a stratified learning sample of size 60 and a stratified test sample of size 30. Functional PLS discriminant analysis gave, with the whole interval [0, 480] , an average test error rate of 0.112, for an average AUC(T) = 0.746. We used here a Wilcoxon test and the first time where the p-value was greater than 0.05 was t* = 186 see figure4. Thus, one can reduce the recording period to less than half of the current one.
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 4 Figure 4: pvalue of the Wilcoxon test
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