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Discriminant analysis on functional data

Gilbert Saporta
Chaire de Statique Appliquée & CEDRIC, CNAM, Paris - saportaQcnan.fr

Abstract: Discriminant analysis or "supervised” classification for functional data
occurs when for each curve or path of a stochastic process we have a single categorical
response Y. Linear methods looks for predictors which may be expressed as an integral
sum. Fisher’s linear discriminant function being equivalent to a multiple regression
with a coded response, one can use techniques for the regression problem when Y is
continuous. When t takes continuously its values in an interval [0; T, multicollinearity
leads to inconsistent estimation of the parameters. Components derived from the
Karhunen-Loeve decomposition are, for functional data, the equivalent of principal
components regression (PCR). Partial least squares performs better than PCR, since
principal components are obtained irrespective of the response (Preda et al., 2007).
Functional logistic regression is another approach advocated by Aguilera et al. , 2006.
We determine an optimal time ¢t* < T giving a prediction based on [0;t*] almost as
good as the prediction based on [0;T] (Costanzo et al., 2006) by using a bootstrap
test for AUC criterion.

Keywords: functional data, regression, discriminant analysis, classification

1 Introduction

Functional data (Ramsay, Silverman 1997) occur when we observe curves or
trajectories from a stochastic process X;. If for each curve we have a single
categorical response Y, we have a classification problem and a regression one if
Y is numerical. We assume here that all trajectories are observed continuously
on a time interval [0; 7] and that the variables X, have zero mean.

0 t CT time

Figure 1: A scheme for prediction with functional data
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Tl'lere are many recent works on this topic; using mainly nonparametric
techniques. We focus here on the extension of the classical linear model.

2 The functional linear model

.The functional linear model considers a predictor which may be expressed as an
integral sum:

T
P -
/O X, 8(t)dt

The. problem is not new and comes back to Fisher (1924) who used the
expression “integral regression” for solving a problem of predicting the amount
of crop with temperature curves. It is well known that this regression model
yields to an ill-posed problem: the least squares criterion leads to the Wiener-
Hopf equation which in general has not an unique solution.

T
B(X,Y) = /O E (X,X,) B(s)ds

and t.he problen} is even worse when we try to estimate the regression coefficient
function B(t) with a finite number of observations. This is quite clear by using
the Karhunen-Loeve decomposition.

2.1 Functional principal components analysis or Karhunen-Loeve
expansion

The gene.ralization of principal components analysis to functional data (Saporta,
1985) .rehes on the Karhunen-Loeve decomposition. The principal component
analysis (PCA) of the stochastic process (X;) consists in representing X, as:

Xo =Y fiv)&
=1

. T
Where the‘prlnc1pal components & = [ fi(t)X.dt are obtained through the
eigenfunctions of the covariance operator:

T
/O C'(t,s)fi(s)ds = )\ifi(t)

This integral equa.tions cannot be solved analytically for empirical data.
However for. a finite number of observations, there exists an exact solu-
tion: If W is the matrix of all inner products between trajectories wy, =

T
! z, (t)z, (£)dt  w,v = 1,2,..,n, then the principal components are its eigen-

vectors and we have f (t) = 1 1 Zn: £u X0 (t)
u=1

Otherwise one has to discretize the trajectories.
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2.2 Linear functional regression
For an integral linear predictor Y = fQT X,B(t)dt Picard’s theorem states that

oo 2
the regression function 3(t) is unique if and only if > % < oo where
i=1""

T T
¢ =cov(Y,§) = cov(Y,/0 fi{t) Xedt) = /0 E(X,Y)fi(t)dt.

Picard’s condition is generally not satisfied especially when n is finite: since
p > n. We have a perfect fit when minimizing:

n T 2
Iy (yi - [ atye, <t)dt>

Many techniques have been applied to solve this kind of problem, mostly by us-
ing explicit regularization techniques. High dimensionality and multicollinearity
also involves some smoothing. In the functional linear approach, functional data
(the predictor) and functional parameter can be modelled as linear combinations
of a basis functions from a given functional family. Literature on that subject
essentially differs in the choice of the basis and the way parameters are esti-
mated. Basis functions should be chosen to reflect the characteristics of the
data: for example, Fourier basis are usually used to model periodic data, while
B-spline basis functions are chosen as they have the advantage of finite support.
We will focus here on linear methods based on an orthogonal decomposition of

the predictors.

2.3 Linear regression on principal components

Using components derived from the Karhunen-Loeve expansion is, for functional
data, the equivalent of principal components regression (PCR).
If we use all principal components we have:

8

- X cov(Y,£i) = ¢ 2 Y S~ R2 o

i=1""

1l

=1

but for finite n, R?=1.
In practice we need to choose an approximation of order ¢ : .

; I cov(Y€:) : L cov(Y; &)

Y = Z —T‘—& BOt) = Z Tfi(t)
i=1 i=1

But using principal components for prediction is heuristic because they are

computed independently of the response: the components corresponding to the ¢

largest eigenvalues are not necessarily the ¢ most predictive, but it is impossible

to rank an infinite number of components according to R2...












