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Discriminant analysis on functional data 

Gilbert Saporta 
Chaire de Statique Appliquée €3 CEDRIC, CNAM, Paris- saporta<Dcnam.fr 

Abstract: Discriminant analysis or "supervised" classification for functional data 
occurs when for each curve or path of a stochastic process we have a single categorical 
response Y. Linear methods looks for predictors which may be expressed as an integral 
sum. Fisher's linear discriminant function being equivalent to a multiple regression 
with a coded response, one can use techniques for the regression problem when Y is 
continuous. When t takes continuously its values in an interval [0; T], multicollinearity 
leads to inconsistent estimation of the parameters. Components derived from the 
Karhunen-Loeve decomposition are, for functional data, the equivalent of principal 
components regression (PCR). Partialleast squares performs better than PCR, since 
principal components are obtained irrespective of the response (Preda et al., 2007) . 
Functionallogistic regression is another approach advocated by Aguilera et al. , 2006. 
We determine an optimal time t* < T giving a prediction based on [0; t*] almost as 
good as the prediction based on [0; T] (Costanzo et al., 2006) by using a bootstrap 
test for AUC criterion. 

Keywords: functional data, regression, discriminant analysis, classification 

1 Introduction 

Functional data (Ramsay, Silverman 1997) occur when we observe curves or 
trajectories from a stochastic process Xt. If for each curve we have a single 
categorical response Y, we have a classification problem and a regression one if 
Y is numerical. We assume here that all trajectories are observed continuously 
on a time interval [0; T] and that the variables Xt have zero mean. 
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Figure 1: A scheme for prediction with functional data 
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There are many recent works on this topic; using mainly nonparametric 
techniques. We focus here on the extension of the classicallinear model. 

2 The functional linear model 

The functionallinear model considers a predictor which may be expressed as an 
integral sum: 

y= 1T X t{3(t)dt 

The problem is not new and cornes back to Fisher (1924) who used the 
expression "integral regression" for solving a problem of predicting the amount 
of crop with temperature curves. It is well known that this regression model 
yields to an ill-posed problem: the least squares criterion leads to the Wiener­
Hopf equation which in general has not an unique solution. 

E(XtY) = 1T E (XtXs) {3(s)ds 

and the problem is even worse when we try to estimate the regression coefficient 
function f3(t) with a finite number of observations. This is quite clear by using 
the Karhunen-Loeve decomposition. 

2.1 Functional principal components analysis or Karhunen-Loeve 
expansion 

The generalization of principal components analysis to functional data (Sa porta, 
1985) relies on the Karhunen-Loeve decomposition. The principal component 
analysis (PCA) of the stochastic process (Xt) consists in representing Xt as: 

00 

Xt = L fi(t)~i 
i=1 

where the principal components ~i = faT fi(t)Xtdt are obtained through the 
eigenfunctions of the covariance operator: 

1T C(t, s)fi(s)ds = Àifi(t) 

This integral equations cannot be solved analytically for empirical data. 
However for a finite number of observations, there exists an exact solu­
tion: If W is the matrix of all inner products between trajectories Wuv = 
T 
J Xu (t) Xv (t)dt u, v= 1, 2, .. , n , then the principal components are its eigen-
a 

n 
vectors and we have f (t) = ~ t L: ~uXu (t) 

u=1 
Otherwise one has to discretize the trajectories. 
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2.2 Linear functional regression 

For an integrallinear predictor Y = J: Xtf3(t)dt Picard's theorem states that 
00 2 

the regression function {3(t) is unique if and only if L: n < 00 where 
i =l 1. 

c.; = cov(Y, ~i) = cov(Y, 1T fi(t)Xtdt) = 1T E(XtY)fi(t)dt. 

Picard's condition is generally not satisfied especially when n is finite: since 
p > n. We have a perfect fit when minimizing: 

1 n ( T )2 :;:;, L Yi - r {3(t)xi(t)dt 
•=1 la 

Many techniques have been applied to solve this kind of problem, mostly by us­
ing explicit regularization techniques. High dimensionality and multicollinearity 
also involves sorne smoothing. In the functionallinear approach, functional data 
(the predictor) and functional parameter can be modelled as linear combinations 
of a basis functions from a given functional family. Literature on that subject 
essentially differs in the choice of the basis and the way parameters are esti­
mated. Basis functions should be chosen to reflect the characteristics of the 
data: for example, Fourier basis are usually used to model periodic data, while 
B-spline basis functions are chosen as they have the advantage of finite support. 
We will focus here on linear methods based on an orthogonal decomposition of 

the predictors. 

2.3 Linear regression on principal components 

Using components derived from the Karhunen-Loeve expansion is, for functional 
data, the equivalent of principal components regression (PCR). 

If we use all principal components we have: 

Y = f cov~Y,Çi) ~i = f f.~i and 
i=l ~ i=l 1. 

00 00 2 

R2 (Y, Y)= 2:: R2 (Y, ~i) = 2:: }:: 
i=1 i=1 

but for finite n, R2 = 1. 
In practice we need to choose an approximation of order q : 

' q ( 
y(q) = L cov Y;~i) ~i 

i=1 Ài 

~(q)(t) = ~ cov(Y;~i) 
L__.. À fi(t) 
•=1 ' 

But using principal components for prediction is heuristic because they are 
computed independently of the response: the components corresponding to the q 
largest eigenvalues are not necessarily the q most predictive, but it is impossible 
to rank an infinite number of components according to R

2 
... 



22 Saporta/Discriminant analysis on functional data 

2.4 Functional PLS regression (Preda & Saporta, 2005) 

PLS regression offers a good alternative to the PCR method by replacing the 
least squares criterion with that of maximal covariance between (Xt) and Y . 

maxw cov2 (Y, J0
00 

w(t)Xtdt) with ll wll 2 
= 1 

The first PLS component is given by t 1 = J0
00 

w(t)Xtdt. 
The PLS regression is iterative and further PLS components are obtained by 

maximizing the covariance criterion between the residuals of both Y and (Xt) 
with the previous components. 

The PLS approximation is given by: 

YPLS(q) = Clh + ... + Cqtq =loT /JPLS(q)(t)Xtdt 

and for functional data the same property than in finite dimension holds: "PLS 
fits doser than PCR": 

2 A 2 A 

R (Y; YPLS(q)) ;?: R (Y; YPCR(q)) 

since PCR components are obtained irrespective of the response. Preda & 
Saporta (2005) showed the convergence of the PLS approximation to the ap­
proximation given by the classicallinear regression: 

}!..~ E<IIYPLS(q)- yll 2

) = 0 

In practice, the number of PLS components used for regression is determined 
by crossvalidation. 

3 Supervised classification on functional data by linear 
methods 

3.1 Functional linear discrimination 

Regression methods for functional data are easily generalized to binary classi­
fication, since Fisher's linear discriminant function is equivalent to a multiple 
regression where the response variable Y is coded with 2 values a and b : most 

frequently ±1, but also conveniently fi.i and - !Pi with (po,p1 ) the prob-V Po V Pt 

ability distribution of Y. 
Costanzo et al. (2006) and Preda et al. (2007) have applied PLS functional 

classification to predict the quality of cookies from curves representing the re­
sistance (density) of dough observed during the kneading process. For a given 
flour, the resistance of dough is recorded during the fust 480 s of the kneading 
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process. We have 115 curves which can be considered as sample paths of a L
2

-

continuous stochastic process. Each curve is observed in 240 equispaced time 
points of the interval time [0, 480]. After kneading, the dough is processed to 
obtain cookies. For each flour we have the quality Yof cookies which can be 
Good, Adjustable and Bad. Our sample contains 50 observations for Y= Good, 
25 for Y= Adjustable and 40 for Y= Bad. Due to measuring errors, each curve 
is smoothed using cubic B-spline functions with 16 knots. 
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Figure 2: Smoothed kneading curves 
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Figure 3: Discriminant coefficient function 
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Sorne of these flours could be adjusted to become Good. Therefore, we have 
considered the set of Adjustable flours as the test sample and predict for each 
one the group membership, Y = { Good, Bad}, using the discriminant coefficient 
function (Fig. 2) given by the PLS approach on the 90 flours. PLS functional 
discriminant analysis gave an average error rate of 11% which is better than 
discrimination based on principal components. 

3.2 Functional logistic regression 

Let Y be a binary random variable and y1 , . . . , Yn the corresponding random 
sample associated to the sample paths xi(t), i = 1, ... , n. 

A natural extension of the logistic regression (Ramsay et al. , 1997) is to 
define the functionallogistic regression model by : 

ln c :i7rJ = 0: + 1T Xi(t){3(t)dt; 

where ni= P(Y = 1/X = Xi(t);t ET). 

i = 1, ... ,n 

It may be assumed (Ramsay et al., 1997) that the parameter function and 
the sample paths xi ( t) are in the same fini te space: 

p 

{3(t) = L: bq~q(t) = b'~ 
q=l 

p 

xi(t) = L:ciq~q(t) = c;~ 
q=l 

where ~1 (t), ... , ~q(t) are the elements of a basis of the finite dimensional space. 
Such an approximation transform the functional model (1) in a similar form to 
standard multiple logistic regression model whose design matrix is the matrix 
which contains the coefficients of the expansion of sample paths in terms of the 
basis, C = (ciq), multiplied by the matrix <I> = (c/Jkq = J ~k(t)~q(t)dt) , whose 

elements are the inner product of the basis functions 

ln (-71'-) = o:l + C<I>b 
1-71' 

T 

with b = (b1 , ... ,bp) , 1r = (n1, ... np) and 1 being the p-dimensional unity 
vector. 

Finally, in order to estimate the parameters a further approximation by 
truncating the basis expansion could be considered. Alternatively, regularization 
or smoothing may be get by sorne roughness penalties approach. 

In a similar way as we defined earlier functional PCR, Leng and Müller (2006) 
use functionallogistic regression based on functional principal components with 
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the aim of classifying gene expression curves into known gene groups.With the 
explicit aim to avoid multicollinarity and reduce dimensionality, Escabias et al. 
(2004) and Aguilera et al. (2006) propose an estimation procedure of functional 
logistic regression, based on taking as covariates a reduced set of functional prin­
cipal components of the predictor sample curves, whose approximation is get in 
a finite space of no necessarily orthonormal functions. Two different forms of 
functional principal components analysis are then considered, and two different 
criterion for including the covariates in the model are also considered. Müller 
and Stadtmüller (2005) considera functional quasi likelihood and an approxima­
tion of the predictor process with a truncated Karhunen-Loeve expansion. The 
latter also developed asymptotic distribution theory using functional principal 
scores. 

Comparisons with functional LDA are in progress, but it is likely that the 
differences will be small. 

4 Anticipated prediction 

In many real time applications like industrial pro cess, it is of the highest interest 
to make anticipated predictions. Let denote dt the approximation for a discrim­
inant score considered on the interval time [0, t], with t < T: dt = J; Xt/3(t)dt 

The aim is to find t* < T such that the discriminant score dt* performs qui te 
as well as dr . 

Costanzo et al. (2006) proposed a procedure for a binary target Y, based 
on the ROC curve and the AUC (Area Under Curve) criterion. Let dt(x) be 
the score value for sorne unit x. Given a threshold r, x is classified into Y = 1 
if dt(x) > r. The true positive rate or "sensitivity" is P (dt > r/Y = 1) and the 
false positive rate or 1-"specificity", P(dt > r/Y = 0). ROC curve gives the true 
positive rate as a function of the false positive rate and is invariant under any 
monotonie increasing transformation of the score. 

Define t* as the fust value of s where AUC(s) is not significantly different 
from AUC(T) Since AUC(s) and AUC(T) are not independent variables, we use 
a bootstrap test for comparing areas under ROC curves: we resample M times 
the data, according to a stratified scheme in order to keep invariant the number 
of observations of each group. Let AUCm(s) and AUCm(T) be the resampled 
values of AUC for m = 1 toM, and 6m their difference. Testing if AUC(s) = 
AUC(T) is performed by using a paired t-test, or a Wilcoxon paired test, on the 
M values 6m. 

The previous methodology has been applied to the kneading data: the sam­
pie of 90 flours is randomly split 50 times into a stratified learning sample of size 
60 and a stratified test sample of size 30. Functional PLS discriminant analysis 
gave, with the whole interval [0, 480] , an average test error rate of 0.112, for 
an average AUC(T) = 0.746. We used here a Wilcoxon test and the first time 
where the p-value was greater than 0.05 was t* = 186 see figure 4. Thus, one 
can reduce the recording period to less than half of the current one. 
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Figure 4: p- value of the Wilcoxon test 

5 Conclusions and perspectives 

PLS regression is an efficient and simple way to get linear prediction for func­
tional data. Anticipated prediction could be solved by means of a bootstrap 
procedure 

Work in progress concern "on-line" forecasting: instead of using the same 
anticipated decision time t* for ali data, in a forthcoming paper we adapt t* to 
each new trajectory given its incoming measurements. 
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