Discriminant analysis on functional data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Discriminant analysis on functional data

Résumé

Discriminant analysis or “supervised” classification for functional data occurs when for each curve or path of a stochastic process we have a single categorical response Y. Linear methods looks for predictors which may be expressed as an integral sum .Fisher’s linear discriminant function being equivalent to a multiple regression with a coded response, one can use techniques for the regression problem when Y is continuous. When t takes continuously its values in an interval [0;T], multicollinearity leads to inconsistent estimation of the parameters. Components derived from the Karhunen-Loeve decomposition are, for functional data, the equivalent of principal components regression (PCR). Partial least squares performs better than PCR, since principal components are obtained irrespective of the response (Preda & al., 2007). Functional logistic regression is another approach advocated by Aguilera & al , 2006. We determine an optimal time t*
Fichier principal
Vignette du fichier
art_1290.pdf (245.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01125374 , version 1 (25-03-2020)

Identifiants

  • HAL Id : hal-01125374 , version 1

Citer

Gilbert Saporta. Discriminant analysis on functional data. XV Congresso Annual da Sociedade Portuguesa de Estadistica, Aug 2007, Lisbonne, Portugal. ⟨hal-01125374⟩

Collections

CNAM CEDRIC-CNAM
69 Consultations
42 Téléchargements

Partager

More