Discriminant analysis on functional data
Résumé
Discriminant analysis or “supervised” classification for functional data occurs when for each curve or path of a stochastic process we have a single categorical response Y. Linear methods looks for predictors which may be expressed as an integral sum .Fisher’s linear discriminant function being equivalent to a multiple regression with a coded response, one can use techniques for the regression problem when Y is continuous.
When t takes continuously its values in an interval [0;T], multicollinearity leads to inconsistent estimation of the parameters.
Components derived from the Karhunen-Loeve decomposition are, for functional data, the equivalent of principal components regression (PCR). Partial least squares performs better than PCR, since principal components are obtained irrespective of the response (Preda & al., 2007). Functional logistic regression is another approach advocated by Aguilera & al , 2006. We determine an optimal time t*
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...
Laboratoire CEDRIC : Connectez-vous pour contacter le contributeur
https://hal.science/hal-01125374
Soumis le : mercredi 25 mars 2020-18:11:57
Dernière modification le : vendredi 19 juillet 2024-11:38:05
Dates et versions
Identifiants
- HAL Id : hal-01125374 , version 1
Citer
Gilbert Saporta. Discriminant analysis on functional data. XV Congresso Annual da Sociedade Portuguesa de Estadistica, Aug 2007, Lisbonne, Portugal. ⟨hal-01125374⟩
Collections
69
Consultations
42
Téléchargements