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 Functional data occurs when we observe curves or paths from a stochastic process Xt . 
If for each curve or path we have a single response variable Y, we have a regression problem 
when Y is numerical, a classification problem when Y is categorical. We assume here that all 
trajectories are observed continuously on a time interval [0;T] and that the variables Y (when 
numerical) and Xt have zero mean.  
 

1. Regression with a functional predictor 
 
 The functional linear model considers a predictor which may be expressed as an 
integral sum:  
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 The problem is not new and comes back to Fisher (1924) who used the expression 
“integral regression”. It is well known that this regression model yields to an ill-posed 
problem: the least squares criterion leads to the Wiener-Hopf equation which in general has 
not an unique solution. 
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and the problem is even worse when we try to estimate the regression coefficient function 
( )tβ with a finite number of observations.  

 Since the works of Ramsay & Silverman (1997), many techniques have been applied 
to solve these kind of problem, mostly by using explicit regularization techniques. High 
dimensionality and multicollinearity also involves some smoothing. In the functional linear 
approach, functional data (the predictor) and functional parameter can be modelled as linear 
combinations of a basis functions from a given functional family. Literature on that subject 
essentially differs in the choice of the basis and the way parameters are estimated. Basis 
functions should be chosen to reflect the characteristics of the data: for example, Fourier basis 
are usually used to model periodic data, while B-spline basis functions are chosen as they 
have the advantage of finite support. We will focus here on linear methods based on an 
orthogonal decomposition of the predictors.  
 



1.1 Linear regression on principal components (Preda & Saporta, 2005a) 
 
 The use of components derived from the Karhunen-Loeve expansion is, for functional 
data, the equivalent of principal components regression (PCR). The principal component 
analysis (PCA) of the stochastic process (Xt ) consists in representing Xt as: 
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where the principal components 
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the covariance operator:  
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In practice we need to choose an approximation of order q :  
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 But the use of principal components for prediction is heuristic because they are 
computed independently of the response: the components corresponding to the q largest 
eigenvalues are not necessarily the q most predictive, but it is difficult to rank an infinite 
number of components according to R2... 
 

1.2 Functional PLS regression 
 
 PLS regression offers a good alternative to the PCR method by replacing the least 
squares criterion with that of maximal covariance between (Xt ) and Y .  
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The first PLS component is given by . 1 0
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The PLS regression is iterative and further PLS components are obtained by maximizing the 
covariance criterion between the residuals of both Y and (Xt) with the previous components. 
The PLS approximation is given by: 
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and for functional data the same property than in finite dimension holds: “PLS fits closer than 
PCR” 2 2

( ) ( )
ˆ( ; ) ( ; )PLS q PCR qR Y Y R Y Y≥  since PCR  components are obtained irrespective of the 

response. In Preda & Saporta (2002) we show the convergence of the PLS approximation to 

the approximation given by the classical linear regression: 
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In practice, the number of PLS components used for regression is determined by 
crossvalidation. 
 
2. Clusterwise PLS regression  
 
 Clusterwise regression may be used when heterogeneity in the data is present. This 
corresponds to a mixture of several regression models, that is, there exists latent categorical 
variable G with k categories defining the clusters such that: 
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k is supposed to be known, but not the clusters.  
 Let us remind of the classical case  for a finite number of predictors : for n 
observations, the cluster linear algorithm finds an optimal partition of the n points, and the 
regression models for each cluster (element of partition) which minimize the criterion: 

( )2'ˆ( )i g g i
g i
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 The minimization is achieved by an alternated least squares algortihm of the k-means 
family alternating an OLS for each group (supposed known) and an allocation of each unit to 
the closest regression surface ie the model where the residual is minimal. Under the 
hypothesis that residuals within each cluster are independent and normally distributed, this 
criterion is equivalent to maximization of the likelihood function (Hennig, 2000). 
 
 For functional regression the previous model is not adequate and we have proposed to 
estimate the local models in each cluster by PLS regression in order to overcome this 
problem.  The convergence of this algorithm has been discussed in (Preda & Saporta, 2005b) 
and clusterwise PLS functional regression has been applied to predict the behavior of shares 
of the Paris stock market on a certain lapse of time. 
 
3. Binary classification with a functional predictor 
 

3.1 Fisher’s linear discriminant analysis  
 
 Previous methods are easily generalized to binary classification, since Fisher’s linear 
discriminant function is equivalent to a multiple regression where the response variable Y is 

coded with 2 values a and b : most frequently ±1, but also conveniently 01

0 1

  and -  pp
p p

with 

(p0, p1) the probability distribution of Y. 
 Costanzo D. et al. (2006) and Preda C. et al. (2007) have applied PLS functional 
classification to predict the quality of cookies from curves representing the resistance 
(density) of dough observed during the kneading process. For a given flour, the resistance of 
dough is recorded during the first 480 s of the kneading process. We have 115 curves which 
can be considered as sample paths of a L2-continuous stochastic process. Each curve is 
observed in 240 equispaced time points of the interval time [0, 480]. After kneading, the 
dough is processed to obtain cookies. For each flour we have the quality Y of cookies which 
can be Good, Adjustable and Bad. Our sample contains 50 observations for Y = Good, 25 for 
Y = Adjustable and 40 for Y = Bad . Due to measuring errors, each curve is smoothed using 
cubic B-spline functions with 16 knots. 
 

 
Figure 1 : Smoothed kneading curves 

 
Figure 2 : Discriminant coefficient function 
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 Some of these flours could be adjusted to become Good. Therefore, we have 
considered  the set of Adjustable flours as the test sample and predict for each one the group 
membership, Y = {Good, Bad}, using the discriminant coefficient function (Fig. 2) given by 
the PLS approach on the 90 flours. PLS functional discriminant analysis gave an average error 
rate of 11% which is better than discrimination based on principal components. 
 
  3.2 Functional logistic regression  
 
 Let Y be a binary random variable and  the corresponding random sample 
associated to the sample paths , 

nyy  , ,1 …
)(txi ni  , ,1…= .  

A natural extension of the logistic regression (Ramsay et al., 1997) is to define the functional 
logistic regression model by : 
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 It may be assumed (Ramsay et al., 1997) that the parameter function and the sample 
paths are in the same finite space: )(txi
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where )( , ),(1 tt qψψ … are the elements of a basis of the finite dimensional space. Such an 
approximation transform the functional model (1) in a similar form to standard multiple 
logistic regression model whose design matrix is the matrix which contains the coefficients of 
the expansion of sample paths in terms of the basis, )( iqc=C , multiplied by the matrix 

, whose elements are the inner product of the basis functions  )d)()(( ∫==Φ
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with , ),,( 1 pbb …=b ),( 1 pπππ …= and 1 being the p-dimensional unity vector.  
 Finally, in order to estimate the parameters a further approximation by truncating the 
basis expansion could be considered. Alternatively, regularization or smoothing may be get 
by some roughness penalties approach.  
 
 In a similar way as we defined earlier functional PCR, Leng and Müller (2006) use 
functional logistic regression based on functional principal components with the aim of 
classifying gene expression curves into known gene groups.With the explicit aim to avoid 
multicollinarity and reduce dimensionality, Escabias et al. (2004) and Aguilera et al. (2006) 
propose an estimation procedure of functional logistic regression, based on taking as 
covariates a reduced set of functional principal components of the predictor sample curves, 
whose approximation is get in a finite space of no necessarily orthonormal functions. Two 
different forms of functional principal components analysis are then considered, and two 

 4



different criterion for including the covariates in the model are also considered. Müller and 
Stadtmüller (2005) consider a functional quasi likelihood and an approximation of the 
predictor process with a truncated Karhunen-Loeve expansion. The latter also developed 
asymptotic distribution theory using functional principal scores. 
Comparisons with functional LDA are in progress, but it is likely that the differences will be 
small. 
  
 

3.3 Anticipated prediction  
 

 In many real time applications like industrial process, it is of the highest interest to 
make anticipated predictions. Let denote dt the approximation for a discriminant score 
considered on the interval time [0, t], with t < T. For functional PLS or logistic regression the 
score is  but any method leading to an estimation of the posterior probability 

of belonging to one group gives a score. The objective here is to find t* < T such that the 
discriminant function d

0
ˆ( )

t

t td X tβ= ∫ dt

t* performs quite as well as dT . 
 
 For a binary target Y, the ROC curve and the AUC (Area Under Curve) are generally 
accepted as efficient measures of the discriminating power of a discriminant score. Let dt (x) 
be the score value for some unit x. Given a threshold r, x is classified into Y = 1 if dt (x) > r. 
The true positive rate or ”sensitivity” is P(dt > r|Y = 1) and the false positive rate or 
1−”specificity”, P(dt > r|Y = 0). The ROC curve gives the true positive rate as a function of the 
false positive rate and is invariant under any monotonic increasing transformation of the 
score. In the case of an inefficient score, both conditional distributions of dt given Y = 1 and 
Y= 0 are identical and the ROC curve is the diagonal line. In case of perfect discrimination, 
the ROC curve is confounded with the edges of the unit square.  
 The Area Under ROC Curve, is then a global measure of discrimination. It can be 
easily proved that AUC(t)= P(X1 > X0), where X1 is a random variable distributed as dt 
whenY= 1 and X0 is independently distributed as dt for Y = 0. Taking all pairs of observations, 
one in each group, AUC(t) is thus estimated by the percentage of concordant pairs (Wilcoxon-
Mann-Whitney statistic). 
 
 A solution is to define t* as the first value of s where AUC(s) is not significantly 
different from AUC(T) Since AUC(s) and AUC(T) are two dependent random variables, we 
use a bootstrap test for comparing areas under ROC curves: we resample M times the data, 
according to a stratified scheme in order to keep invariant the number of observations of each 
group. Let AUCm(s) and AUCm(T) be the resampled values of AUC for m = 1 to M, and δm 
their difference. Testing if AUC(s) = AUC(T)  is performed by using a paired t-test, or a 
Wilcoxon paired test, on the M values δm. 
 
 The previous methodology has been applied to the kneading data: the sample of 90 
flours is randomly divided into a learning sample of size 60 and a test sample of size 30. In 
the test sample the two classes have the same number of observations. The functional PLS 
discriminant analysis gives, with the whole interval [0, 480], an average of the test error rate 
of about 0.112, for an average AUC(T) = 0.746. The anticipated prediction procedure gives 
for M = 50 and sample size test n = 30 (same number of observation in each class), t* = 186. 
Thus, one can reduce the recording period of the resistance of dough to less than half of the 
current one. 
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4. Conclusion and perspectives 
 
 In this paper we addressed the problem of predicting a categorical or numerical 
variable Y with an infinite set of predictors Xt . We advocated linear models which are easy to 
use and interpret; multicollinearity between predictors is best solved by PLS than by PCR. A 
clusterwise generalization is a way to take into account latent heterogeneity as well as some 
kind of non linearity.  
 For binary classification we proposed an anticipated prediction technique based on 
bootstrap comparisons of ROC curves.  
 Works in progress comprises the extension of clusterwise functional regression to 
binary classification, comparison with functional logistic regression  as well as  “on-line” 
forecasting: instead of using the same anticipated decision time t* for all data, we will try to 
adapt t* to each new trajectory given its incoming measurements.  
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