Upper bounds for large scale integer quadratic multidimensional knapsack problems - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2006

Upper bounds for large scale integer quadratic multidimensional knapsack problems

Dominique Quadri
  • Fonction : Auteur
  • PersonId : 964572
Pierre Tolla
  • Fonction : Auteur

Résumé

Preliminary version of publication[QST07] by D. Quadri, E. Soutif and P. Tolla. Upper bounds for large scale integer quadratic multidimensional knapsack problems . IJOR - International Journal of Operatio, 0(0), 2007. (ref. CEDRIC 1117) We consider the separable quadratic multi-knapsack problem (QMKP) which consists in maximizing a concave separable quadratic integer function subject to m linear capacity constraints. The aim of this paper is to develop an effective method to compute an upper bound for (QMKP) from a surrogate relaxation originally proposed in Djerdjour et al. (1988). We evaluate the quality of three other upper bounds for (QMKP) and compare them theoretically and experimentally with the bound we suggest. We also present an effective heuristic method to obtain a good feasible solution for (QMKP). Finally, we report computational experiments that assess the efficiency of our upper bound for instances up to 2000 variables and constraints.
Fichier non déposé

Dates et versions

hal-01125307 , version 1 (06-03-2015)

Identifiants

  • HAL Id : hal-01125307 , version 1

Citer

Dominique Quadri, Eric Soutif, Pierre Tolla. Upper bounds for large scale integer quadratic multidimensional knapsack problems. [Research Report] CEDRIC-06-1195, CEDRIC Lab/CNAM. 2006. ⟨hal-01125307⟩
140 Consultations
0 Téléchargements

Partager

More