
HAL Id: hal-01125239
https://hal.science/hal-01125239v1

Submitted on 1 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using a Mixed Integer Quadratic Programming Solver
for the Unconstrained Quadratic 0-1 Problem

Alain Billionnet, Sourour Elloumi

To cite this version:
Alain Billionnet, Sourour Elloumi. Using a Mixed Integer Quadratic Programming Solver for the
Unconstrained Quadratic 0-1 Problem. Mathematical Programming Computation, 2007, 109 (1),
pp.55-68. �10.1007/s10107-005-0637-9�. �hal-01125239�

https://hal.science/hal-01125239v1
https://hal.archives-ouvertes.fr

Using a Mixed Integer Quadratic Programming Solver
for the Unconstrained Quadratic 0-1 Problem

Alain Billionnet • Sourour Elloumi1

Laboratoire CEDRIC, Institut d’Informatique d’Entreprise, 18 allée Jean Rostand, F-91025
Evry

Laboratoire CEDRIC, Conservatoire National des Arts et Métiers, 292 rue Saint Martin,
F-75141 Paris

billionnet@iie.cnam.fr• elloumi@cnam.fr

Abstract

In this paper, we consider problem (P) of minimizing a quadratic function q(x) =

xtQx+ ctx of binary variables. Our main idea is to use the recent Mixed Integer Quadratic

Programming (MIQP) solvers. But, for this, we have to first convexify the objective function

q(x). A classical trick is to raise up the diagonal entries of Q by a vector u until (Q+diag(u))

is positive semidefinite. Then, using the fact that x2
i = xi, we can obtain an equivalent con-

vex objective function, which can then be handled by an MIQP solver. Hence, computing

a suitable vector u constitutes a preprocessing phase in this exact solution method. We

devise two different preprocessing methods. The first one is straightforward and consists in

computing the smallest eigenvalue of Q. In the second method, vector u is obtained once a

classical SDP relaxation of (P) is solved.

We carry out computational tests using the generator of (Pardalos and Rodgers, 1990) and

we compare our two solution methods to several other exact solution methods. Furthermore,

we report computational results for the max-cut problem.

Keywords: Integer Programming, Quadratic 0-1 optimization, Convex Quadratic Relax-

ation, Semidefinite Positive Relaxation, Experiments, Max-cut

1corresponding author

1

1 Introduction

Consider the quadratic function

q(x) = xtQx + ctx

and the 0-1 quadratic problem

(P) : min {q(x) : x ∈ {0, 1}n} (1)

where Q is an n × n real matrix, and c ∈ Rn. Without loss of generality, we can suppose

that Q is symmetric and also that the diagonal terms of Q are equal to 0. If this is not the

case, Q can be converted to the symmetric form (Q + Qt)/2 and the linear terms qiixi can

be substituted for the diagonal terms qiix
2
i because x2

i = xi for xi ∈ {0, 1}. Problem (P) is

NP-hard and has numerous applications. Consult, for example, (Hansen et al. 2000) and

(Boros and Hammer 2001). Furthermore, a recent application of (P) in the medical field is

reported in (Iasemidis et al. 2001).

Various approaches have been used to solve (P) exactly. Three recent overviews of these

approaches are presented in (Beasley 1998), (Helmberg and Rendl 1998), and (Hansen et

al. 2000). One of the possible techniques is to relax (P) to a tractable nonlinear continuous

problem in order to obtain lower bounds. As mentioned in (Poljak and Wolkowicz 1995),

this approach was used for different Combinatorial Optimization problems. In addition to

the references cited by Poljak and Wolkowicz, we have the following ones, which concern

unconstrained quadratic 0-1 programming: McBride and Yormak (1980) and Helmberg and

Rendl (1998). More recently, second order cone programming has been used for solving (P).

See (Kim and Kojima 2001) and (Muramatsu and Suzuki 2003).

Beside these exact methods, several heuristic approaches have been proposed for solving

large instances of (P). The reader can find a brief review and many references on the subject

in (Merz and Katayama (to appear)).

For any vector u ∈ Rn, let us define the perturbed function qu(x) in the following way

qu(x) = xt(Q− diag(u))x+ (c+ u)tx (2)

where diag(u) is the diagonal matrix obtained from vector u. One can easily observe that

qu(x) can also be written as q(x)+
∑n

i=1 ui(xi−x2
i), and that qu(x) = q(x) for all x ∈ {0, 1}n.

Therefore, one can solve problem (P) by solving the equivalent problem

2

(Pu) : min {qu(x) : x ∈ {0, 1}n} (3)

Moreover, we define the lower bound β(u) of the optimal value of problem (P) as the

optimal value obtained by the continuous relaxation of problem (Pu)

β(u) = min {qu(x) : x ∈ [0, 1]n} (4)

In this paper, we will focus on vectors u such that matrix (Q − diag(u)) is positive

semidefinite ((Q− diag(u)) � 0). In this case, computing the lower bound β(u) amounts to

solving a convex quadratic problem, which can be done in polynomial time (see Kozlov et al.

1979). Our motivation comes from the fact that the new versions of optimization software are

now able to solve quadratic integer programs, that have a convex quadratic objective function

and a set of linear constraints. This new tool is called an MIQP solver. Hence, whenever

(Q − diag(u)) � 0, these new versions can handle problem (Pu) directly. This gives us a

family of exact solution methods for problem (P), which differ by the preprocessing phase,

i.e. the method used to find an appropriate vector u.

In Section 2, we present a simple way to find a first vector u with (Q − diag(u)) � 0,

based on the computation of the smallest eigenvalue of matrix Q. This constitutes a first

exact solution method for problem (P).

In Section 3, we consider the problem of finding the best vector u∗, i.e. that maximizes

β(u) under the constraint (Q − diag(u)) � 0. In addition, we use the known relationship

between β(u∗) and semidefinite programming. This relationship provides us with a practical

method for computing u∗, based on the resolution of an SDP relaxation of problem (P).

This constitutes a second exact solution method for problem (P), through the resolution of

problem (Pu∗). SDP relaxations are known to provide tighter bounds than quadratic convex

relaxations but more effort is required to compute them. In our second method, the strength

of an SDP relaxation of (P) is captured in a quadratic convex relaxation of (P).

Sections 4 and 5 report the computational results together with comparisons with existing

methods. Section 6 is a conclusion.

2 A first choice of the perturbed function qu

Let λmin ∈ R be the smallest eigenvalue of matrix Q. If at least one term of Q is nonzero

then λmin is a real negative number. Consider the perturbed function qu where u = λmine

and e is the vector of all ones

3

qλmine(x) = xt(Q− diag(λmine))x+ (c+ λmine)
tx

Matrix (Q− diag(λmine)) is positive semidefinite and then function qλmine is convex. So,

problem (Pλmine) can be solved by an MIQP solver. Recall that problems (Pλmine) and (P)

are equivalent in the sense that ∀ x ∈ {0, 1}n, qλmine(x) = q(x).

The idea of transforming (P) into (Pλmine) has already been considered by Hammer and

Rubin (1970). However, to the authors’ knowledge, no computational results associated to

this approach have been reported in the literature.

Example 1 Consider the example where Q =

0 26 44 −73
26 0 −45 11
44 −45 0 84
−73 11 84 0

 and c =

−119
27
−187
−2

.

The smallest eigenvalue of matrix Q is λmin = −149.8 and the bound β(λmine) is equal to

−302.25. The optimal value is -267.

3 An optimal perturbed function q∗u

We have seen in the introduction that any vector u satisfying (Q− diag(u)) � 0 gives a new

problem (Pu), defined by (3), and equivalent to our initial problem (P), defined by (1). We

also recall the definition β(u) = min {qu(x) : x ∈ [0, 1]n} already given by (4).

As mentioned above, any problem (Pu) can be submitted for resolution by the branch-

and-bound algorithm of the MIQP solver. But, it is well known that the behavior of a

branch-and-bound algorithm is very dependent upon the bound at the root of the search

tree. Hence, we would say that formulation (Pu1) is better than formulation (Pu2) if its

continuous relaxation amounts to a better bound or, in other words, if β(u1) is larger than

β(u2). Furthermore, one can make an ”optimal” choice by computing a vector u∗ that

maximizes β(u), under the constraint (Q − diag(u)) � 0. More precisely, let us define u∗

and the associated lower bound β∗ as

β∗ = β(u∗) = max
u∈Rn

(Q−diag(u))�0

β(u) (5)

It is already known that β∗ can be computed as the optimal value of a semidefinite

programming relaxation of problem (P). This result appears, for example, in (Poljak, Rendl,

and Wolkowicz 1995), but we can consider it was already proved in (Körner and Richter

1982), (Shor 1987), and (Körner 1988). Besides, (Lemaréchal and Oustry 2001) give an

4

interpretation of this result through lagrangian duality. In order to recall this result inside

our context and notations, we state the following proposition.

Proposition 1 Bound β∗ is equal to the optimal value of the semidefinite program:

(SDP) : max r

s.t.: [
−r 1

2
(c+ u)t

1
2
(c+ u) Q− diag(u)

]
� 0

r ∈ R u ∈ Rn

and is also equal to the optimal value of its dual:

(DSDP) : min ctx +
∑n

i=1

∑n
j=1QijXij

s.t.: Xii = xi i = 1, ..., n[
1 xt

x X

]
� 0

x ∈ Rn X ∈ Rn×n

Moreover, if (r∗, u∗) is an optimal solution of (SDP), then (Q− diag(u∗)) � 0 holds and

β(u∗) = β∗. �

Proposition 1 gives a practical method for computing the best vector u∗ and the lower

bound β∗, based on the resolution of a semidefinite program. Let us consider again the

instance of Example 1 to show that β∗ can be strictly better than β(λmine). The optimal

vector one obtains by solving the SDP is u∗ = (−174.85,−74.62,−177.62,−145.71), and the

corresponding lower bound is β∗ = β(u∗) = −290.50, which is indeed better than β(λmine) =

−302.25. Recall that, in this example, the optimal value is equal to −267.

The SDP relaxation we consider is not new. It has already been considered by several

authors. It was shown in (Goemans and Williamson 1994) that, for the max-cut problem

with non-negative weights -a particular case of problem (P)-, this SDP relaxation leads to

a bound with an error of at most 13.8%. Furthermore, in (Helmberg and Rendl 1998),

this SDP relaxation has been both used in a cutting-plane approach and embedded in a

branch-and-bound framework. We provide an alternative use of this SDP relaxation, as a

preprocessing phase of an MIQP resolution.

5

4 Computational results for the Unconstrained Quadratic

0-1 Problem

We will first describe the machine and software we use all along the computational results

in the current section and in Section 5 . Then we consider a large set of instances, randomly

generated by the generator in (Pardalos and Rodgers 1990). We apply the two algorithms

of Sections 2 and 3 to these instances and we compare our results to a general linearization

method and to methods in the literature. Finally, we provide computational results for a

set of 45 benchmak instances introduced in (Glover and al. 1998) and available in OR-

Library (Beasley 1990).

Machine and software

Our experiments are carried out on a portable PC with a Pentium IV of 1600 MHz and

1024 MB of RAM.

Implementing our first exact solution method described in Section 2 is particularly easy.

The preprocessing phase consists of computing the smallest eigenvalue λmin. We do this

using Scilab (Gomez 1999).

For our second exact solution method described in Section 3, the preprocessing phase con-

sists of computing the best vector u∗ as part of an optimal dual solution (r∗, u∗) for problem

(DSDP). In order to solve (DSDP), we use SDP S, the modeling language for semidefinite

programming designed by Delaporte et al. (2002). SDP S works with SBmethod, an SDP

solver that implements the spectral bundle method of Helmberg and Rendl (2000).

Then, for our two solution methods, the preprocessing phase is followed by the exact

solution phase. For this, we use the modeling language AMPL (Fourer et al. 1994) together

with the MIQP solver of CPLEX 8.1 (ILOG 2002). Observe that only the formulation

(Pλmine) or (Pu∗) is provided to the solver. For example, we do not provide a starting feasible

solution although this could be done easily.

4.1 Results and comparisons for randomly generated Instances

We use the Sparse Problem Generator of (Pardalos and Rodgers 1990) which we implemented

in C++. We restrict our parameters to the following profile, already used by several authors:

- the linear (or diagonal) coefficients ci are in the range [-100, 100],

- the off-diagonal coefficients of the symmetric matrix Q are in the range [-50, 50], and,

6

- matrix Q has a density equal to d, a fraction of 1. This is a parameter of the generator.

Density is here meant to be the probability that a nonzero will occur for any off-diagonal

entry.

For any considered pair (n, d) where n is the number of variables and d, the density of

matrix Q, we generate 10 instances with seeds 1, 2, ..., 10. Then, we choose 15 pairs (n, d),

6 of which have been used by (Pardalos and Rodgers 1990) in their Table 5.4 which was

intended to show the limits of their method. These instances have also been used in (Hansen

et al. 2000). The remaining 9 pairs are intended to show the performances and limits of our

new solution methods, as shown in Tables 1 and 2. For several instances, we could compute

the optimal value by our solution methods. But, for the large-sized instances, we only have

the value of the best integer solution computed by our second method through the MIQP

solver, after three hours of CPU time.

Computational results concerning the solution of P through the solution of

(Pλmine)

In Table 1, Column 1 gives the size n. Column 2 indicates the density of matrix Q. Column 3

gives the average CPU time in seconds for preprocessing, i.e. for computing the smallest

eigenvalue λmin. Column 4 gives the average gap at the root, which is also the error associ-

ated to lower bound β(λmine), i.e. β(λmine)−opt
opt

where opt is either the optimal value or the

value of the best known integer solution obtained as described above. Column 5 gives the

number of instances (over 10) for which the MIQP solver was able to solve the quadratic

MIP problem within three hours of CPU time. For the instances solved within three hours,

Columns 6, 7, and 8 (resp. 10) report the min, average, and max CPU time needed (resp.

number of nodes explored) by the branch-and-bound algorithm to prove optimality. For the

instances which could not be solved, the MIQP solver stops with a final gap, i.e. bb−opt
opt

where bb is the lower bound computed by the branch-and-bound algorithm after three hours.

Column 9 gives this average final gap. For example, for the n = 100 and d = 1 row, 4

instances over 10 could be solved to optimality within an average time of 4080 seconds and

after 3736585 nodes have been explored. For the 6 unsolved instances, the final gap is equal

to 2.6% in average.

For all the instances of Table 1, the preprocessing phase is very fast, and the gap at

the root is rather independent of the size and of the density. These results are already

7

satisfactory if compared to literature and we will show in the following that they are much

improved by the results of our second solution method.

Table 1: Results through the solution of (Pλmine)

Preproc MIQP solver

n density CPU1 Gap (%) solved (3h) CPU2 final Gap (%) nodes
av. av. min av. max av. av.

*50 0.4 0.1 15.3 10 0.3 4.3 16.8 0 17865
*50 0.6 0.2 13.7 10 0.1 3.3 10 0 13007
50 1.0 0.2 14.5 10 0.2 5.2 19.4 0 16952

*60 0.2 0.1 16.6 10 0.1 45.4 228 0 185911
*60 0.4 0.2 15.4 10 1.1 35.7 247 0 111388
*70 0.3 0.2 13.8 10 0.9 209 1580 0 455052
70 0.8 0.3 15.1 10 12.6 104 208.5 0 224661

*80 0.2 0.2 14.5 10 72 681 3447 0 1298802
100 1.0 0.7 15.3 4 2661 4080 7412 2.6 3736585
120 0.3 0.4 15.8 0 - 4.4 -
120 0.8 0.8 16.2 0 - 5.2 -
150 0.3 0.6 16.7 0 - NC -
150 0.8 1.2 16.2 0 - NC -
200 0.3 1.0 16.8 0 - NC -
200 0.8 2.4 15.5 0 - NC -

* : these instances have already been considered in (Pardalos and Rodgers 1990)
- : no instance could be solved to optimality within 3h

Computational results concerning the solution of P through the solution of (Pu∗)

Here, we consider again the same instances. We apply the two-phase solution method de-

scribed in Section 3. Table 2 reports the results for the instances of Table 1, and the same

meaning is associated to each column. When compared to the results of Table 1, we can

observe that the gap at the root of the branch-and-bound tree is approximatively divided by

2. This mainly explains the fact that in Table 2, 107 instances over 150 are solved within

three hours, i.e., our improved method could solve 23 instances that the first method could

not solve within three hours. Moreover, the new method is much faster. For example, for

the instances with n=70, and density=0.8, the 10 instances were solved by both of the meth-

ods. The new method took 1.7+5.4=7.1 seconds while the first method took 0.3+104=104.3

seconds in average, i.e. the new method is about 15 times faster for those instances.

We can also observe that, as expected, the preprocessing by solving an SDP takes quite

a long time. For the (n=100, density=1.0) instances, the computation of the smallest eigen-

8

value by Scilab took about 0.7 seconds in average, versus 4.5 seconds for solving the SDP.

Hence, for those instances, we spent about 4 seconds of additional time to move the gap

on the relaxation at the root from 15.3% to 7.6%, and this is globally very profitable. Let

us point out that, although only 6 of the (n=120, density=0.8) instances are solved within

three hours of CPU time, the gap between the best node and the best known solution after

three hours is about 1% for the 4 remaining instances.

Table 2: Results through the solution of (Pu∗)

Preproc MIQP solver

n density CPU1 Gap (%) solved (3h) CPU2 final Gap (%) nodes
av. av. min av. max av. av.

*50 0.4 1 6.1 10 0.1 0.3 0.8 0 910
*50 0.6 1 5.8 10 0.1 0.3 1 0 1034
50 1.0 0.7 6.6 10 0.1 0.5 1.7 0 1367

*60 0.2 2.4 5.5 10 0.1 0.5 1.5 0 1768
*60 0.4 1.2 9.0 10 0.2 1.4 7.7 0 4366
*70 0.3 1.7 6.1 10 0.1 2.8 11 0 8841
70 0.8 1.7 7.3 10 1 5.4 10.6 0 10899

*80 0.2 4.7 5.9 10 0.6 5.4 28.7 0 16046
100 1.0 4.5 7.6 10 27.4 372.7 1671 0 370358
120 0.3 5.5 7.1 10 168 1263.6 4667 0 1405507
120 0.8 6.8 8.7 6 322 3909.5 9898 1.3 2703558
150 0.3 9.8 8.4 1 6789 2.5 3964619
150 0.8 12.2 8.8 0 - 2.9 -
200 0.3 17.7 8.9 0 - 4.9 -
200 0.8 22.5 8.5 0 - 4.8 -

* : these instances have already been considered in (Pardalos and Rodgers 1990)
- : no instance could be solved to optimality within 3h

Comparison with the solution of (P) by linearization

Consider problem (LP) which is equivalent to (P):

(LP) : min
∑n

i=1 cixi +
∑n−1

i=1

∑n
j=i+1 2 ∗Qijyij

s.t.: yij ≤ xi i < j, Qij < 0

yij ≤ xj i < j, Qij < 0

yij ≥ xi + xj − 1 i < j, Qij > 0

yij ≥ 0 i < j, Qij 6= 0

xi ∈ {0, 1}

9

Table 3: Solution of (P) through (LP) and a MILP solver

n density Gap (%) solved (3h) CPU final Gap (%) nodes
av. min av. max av. av.

*50 0.4 55.3 10 0.7 4.4 16.7 0 2297
*50 0.6 88.4 10 1.8 90.1 250 0 34781
50 1.0 146.2 7 1130 3420 5555 14.3 393864

*60 0.2 19.0 10 0.1 0.4 0.8 0 86
*60 0.4 75.0 10 22 122.8 581 0 49104
*70 0.3 54.2 10 6 60 208 0 21666
70 0.8 169.5 0 - 60.2 -

*80 0.2 36.6 10 1.6 16.3 88 0 6031
100 1.0 266.6 0 - 187.3 -
120 0.3 112.2 0 - NC -
120 0.8 267.8 0 - NC -
150 0.3 145.6 0 - NC -
150 0.8 302.4 0 - NC -
200 0.3 186.1 0 - NC -
200 0.8 354.7 0 - NC -

* : these instances have already been considered in (Pardalos and Rodgers 1990)
- : no instance could be solved to optimality within 3h

As already observed by other authors, the integrality gap associated to problem (LP)

and reported in Column 3 of Table 3 is large for this class of instances. Moreover, when n

is large or Q is not sparse, only a few nodes can be explored within three hours. By a brief

comparison of Tables 1, 2, and 3, we can conclude that the LP-based method outperforms

the one based on the solution of (Pλmine) for sparse instances, but the method based on the

solution of (Pu∗) largely outperforms the LP-based method for all instances.

Comparison to enumerative methods

Here, we focus on a comparison of our approach to two enumerative methods. A well

known enumerative method is the one proposed by Pardalos and Rodgers (1990). Hansen et

al. (2000) improve this method by first transforming the objective function into a posiform.

The main feature of Pardalos and Rodgers algorithm consists in using first order boolean

derivatives in order to progressively fix variables in a branch and bound process. Consider

the quadratic function of binary variables q(x) =
∑
i

cixi +
∑
i

∑
j 6=i

cijxixj and let ∆i(x) =

ci +
∑
j 6=i

cijxj . The following property allows to fix some variables: if ∆i(x) > 0 for all x then

xi = 0 in all optimal solutions, if ∆i(x) < 0 for all x then xi = 1 in all optimal solutions,

10

and if ∆i(x) = 0 for all x then there exist an optimal solution with xi = 0 and an optimal

solution with xi = 1.

In Hansen et al.’s algorithm, at the root of the search tree, thanks to a max-flow algorithm,

q(x) is written as q(x) = c∗ + φ(x, x̄), φ(x, x̄) being a quadratic posiform and c∗ being a

constant as large as possible. The lower bound c∗ belongs to the family of roof dual bounds

(Hammer et al. 1984) and is precisely equal to the LP-bound reported in our Table 3.

Recall that φ(x, x̄), a function of the literals xi and x̄i = 1 − xi, is a quadratic posiform if

φ(x, x̄) =
m∑
k=1

akTk with ak > 0 for all k and Tk is a literal or a product of two literals. Then

some variables are fixed by using the following so-called persistency property: all minimizing

solutions of q(x) satisfy Tk = 0 for all k such that Tk is a linear term (Hammer et al. 1984),

(Billionnet and Sutter 1992). Then, the fixation of variables to 0 or 1 by branching or

reduction tests can create new linear terms in the posiform that can be used by relation of

the form xi + x̄i = 1 to improve the lower bound. Conversely, in a classical way, the lower

bound is used to fix some variables. Finally, fixation of variables are carried out by using

the partial derivatives as in Pardalos and Rodgers algorithm.

Table 4 presents a comparison between the method of Pardalos and Rodgers (1990), the

one of Hansen et al. (2000) and ours. Each line of this table corresponds to average results

for 10 instances. These instances are exactly the same as the instances pointed out by ∗ in

Tables 1-3. Hansen et al. run their program and the one of Pardalos and Rodgers on a Sun

Sparc SS20/514 MP with 128 MB of RAM, with 0 as initial solution, and Table 4 reports

their results.

Table 4: Comparison between Pardalos and Rodgers (PR), Hansen et al. (HJM), and our
approach

Gap (%) CPU (sec.)

n density PR (1990) HJM (2000) our PR (1990)(1) HJM (2000)(1) our(2)

50 0.4 238 55 6.1 317.8 46.4 1.3
50 0.6 299 88 5.8 - 636.6 1.3
60 0.2 176 18 5.5 34.2 2.1 2.9
60 0.4 276 75 9.0 - 3525 2.6
70 0.3 232 53 6.1 - 6190 4.5
80 0.2 204 36 5.9 - 5011 10.1

(1): on a Sun Sparc SS20/514 MP with 128 MB of RAM

(2): on a PC with a Pentium IV of 1600 MHz and 1024 MB of RAM

11

Our method has an average gap equal to about 7%, smaller by a factor 8 compared to

HJM(2000) and by a factor 37 compared to PR(1990). This makes us think that it would

still need significantly less CPU time than the two others if a more accurate comparison was

carried on by using the same machine.

4.2 Results for Glover et al. Instances

Here, we consider a set of 45 instances that are available in OR-Library (Beasley 1990). All

these instances were generated by the Pardalos and Rodgers generator and are divided into

5 classes having different characteristics (n, density, and ranges of diagonal and off-diagonal

coefficients). These classes are referred to as problem sets a, b, c, d, and e. Problems from

classes a, b, and c were already introduced in (Pardalos and Rodgers 1990), the others were

generated in (Glover et al. 1998).

We first run our method of Section 3 on the 25 instances from classes a, b, and c. Each

of these instances are solved within a limit of two hours of CPU time (the largest one having

n = 125 and d = 1). But, we also observed that all these instances are much faster solved

by the trivial linearization method described above in Section 4.1. The total CPU time

needed by the linearization method for these 25 instances is 79 seconds ! The largest CPU

time needed by a single instance is 21 seconds and the largest number of branch and bound

nodes is 3942. In view of these results and of the results reported in (Glover and al. 1998)

about the exact solution of these instances by the Pardalos and Rodgers software, we can

now consider that the linearization method is largely the best to solve these instances.

Then, we consider the 10 instances of class d. For all of them, n = 100, the linear

(or diagonal) coefficients ci are in the range [-75, 75], the off-diagonal coefficients of the

symmetric matrix Q are in the range [-50, 50], and matrix Q has a density equal to d, a

fraction of 1. Table 5 reports the results of our method applied to these instances, where

Column opt provides the optimal solution value. It shows that each of them can be solved

within 10 minutes of CPU time. To the best of our knowledge, for 6 instances over 10, they

are solved to optimality for the first time. We can also indicate that, when applied to these

instances, the linearization method performs very well for instance 1d but fails in solving

the remaining instances within a limit of 1 hour of CPU time.

Finally, we consider the instances from classes e (n = 200) and f (n = 500). These

instances are globally beyond the practical capability of our method. However, the prepro-

cessing phase by semidefinite programming remains tractable within about 7 minutes for

12

the largest instance (n = 500, d = 1) and the associated gap varies from 5.6% to 10.7%.

Nevertheless, none of these instances could be solved within the limit of 1 hour of CPU time.

Table 5: Results through the solution of (Pu∗) for d-instances of Glover et al. (n = 100)

Preproc MIQP solver

instance density opt CPU1 Gap (%) CPU2 nodes

1d∗∗ 0.1 6333∗ 8.4 4.1 4 9320
2d 0.2 6579∗ 3.7 10.0 188 367962
3d 0.3 9261∗ 3.6 7.6 114 216551
4d 0.4 10727∗ 4.8 8.1 137 224352
5d 0.5 11626 3.5 8.7 545 786445
6d 0.6 14207 4.1 7.2 80 108890
7d 0.7 14476 4.6 8.3 490 598217
8d 0.8 16352 5.3 6.1 39 46885
9d 0.9 15656 5.1 8.7 372 411085
10d 1.0 19102 6.0 6.9 221 241924

* : these values are already announced to be optimal in (Boros et al. 2005)
** : instance 1d is solved within 1.7 seconds and 59 nodes by the linearization method

5 Computational results for the max-cut problem

A very large literature concerns max-cut, a central combinatorial optimization problem. Our

objective here is to apply our method to max-cut. We make almost no adaptation of our

general method described in Section 3. Our computational experiment gives a first idea of

what can be obtained by our approach on a particularly-structured problem.

Let G = (V,E) be a weighted undirected graph. The max-cut problem consists in finding

a partition (S, V \S) of the set of vertices V such that the total weight of the crossing edges

is maximum. Many equivalent formulations exist for max-cut. We consider the following

one, which matches our general problem (P):

(MC) : min {mc(x) : x ∈ {0, 1}n}

with

mc(x) = −
n∑

i=1

(

n∑

j 6=i
wij)xi +

n∑

i=1

∑

j 6=i
wijxixj

where wij = wji is the weight of edge (i, j), xi is the decision variable equal to 1 if and only

if vertex i is in S, and mc(x) is precisely the cut weight multiplied by -2.

13

Following the general method described in Section 3, we first solve the SDP relaxation

(DSDPMC) of (MC):

(DSDPMC) : min −∑n
i=1(
∑n

j 6=iwij)xi +
∑n

i=1

∑
j 6=iwijXij

s.t.: Xii = xi i = 1, ..., n[
1 xt

x X

]
� 0

x ∈ Rn X ∈ Rn×n

and we get the optimal convexified function mc′(x), which is equivalent to mc(x) over {0, 1}n.

Then, we solve the following quadratic 0-1 problem :

(MC ′) : min {mc′(x) : xi0 = 1, x ∈ {0, 1}n}

The variable fixation xi0 = 1 is the only adaptation we introduce in our general method

described in Section 3. It is a classical trick to break the symmetry of the max-cut solutions.

We choose a vertex i0 for which
∑

j 6=iwij is maximum. We observed that this simple trick

divides by about 4 the number of nodes while solving (MC ′) by the MIQP solver. Observe

that, for the results of Tables 6 and 7, we let the MIQP solver of CPLEX use the default

branching rules for a general mixed integer problem. This turns out, for the max-cut problem,

to select a node i and branch on the fact that node i is either in subset S or not.

Following (Helmberg and Rendl 1998), we generate two types of test problems. The

first, called G.5, consists of unweighted graphs with edge probability 1/2. The second type,

G−1/0/1 is a weighted (complete) graph with edge weights chosen uniformly from {−1/0/1}.

Table 6: Results for the G.5 instances through the solution of (Pu∗)

Preproc MIQP solver

n CPU1 Gap (%) solved (3h) CPU2 final Gap (%) nodes
av. av. min av. max av. av.

40 0.9 2.5 10 0.2 1.0 3.2 0 1894
50 1.1 2.6 10 2.4 7.3 17.2 0 11239
70 2.8 2.4 10 7.2 103 128.4 0 242225
80 4.0 2.2 10 35.5 481 1934.4 0 876623
90 5.9 2.4 9 582 6044 10572 0.3 6317736

100 7.8 2.2 2 7071 7848 8624 0.4 7915644

14

Table 7: Results for the G−1/0/1 instances through the solution of (Pu∗)

Preproc MIQP solver

n CPU1 Gap (%) solved (3h) CPU2 final Gap (%) nodes
av. av. min av. max av. av.

40 0.5 14.5 10 0.1 0.3 0.6 0 1150
50 0.6 15.5 10 0.2 1.9 6.8 0 6897
70 1.1 16.2 10 32.6 73 190.6 0 154730
80 1.3 17.9 10 199 1016 2952 0 1419577
90 1.9 18.0 6 270 5208 10321 3.1 4787156

100 2.3 16.6 0 - 2.1 -
- : no instance could be solved to optimality within 3h

To explore the limits of our method for the max-cut problem, we run it on a 450 nodes

graph from the G.5 class. The SDP-based preprocessing phase takes 208 seconds of CPU

time. In three hours of the MIQP solver phase, about 320000 nodes are explored. The

deviation of the lower bound from the best cut, given after three hours, moves only from

1.56% to 1.51%.

Helmberg and Rendl (1998) consider the same SDP relaxation (DSDPMC) and combine

it with a cutting plane technique. This bounding process is embedded within a branch-

and-bound algorithm. Our method seems to be competitive with the Helmberg and Rendl’s

from the computational time point of view. For example, with the 80 nodes G.5 instances of

Table 6, Helmberg and Rendl’s method needs about one hour and 46 minutes (average on 2

instances) of CPU time on a HP9000/715 workstation while our’s needs about 8 minutes, on

the above Pentium IV PC. But their branch-and-bound algorithm performs 154 nodes when

our’s performs 876623 nodes.

In (Helmberg and Rendl 1998), the branching rule is carefully discussed and selected

among five different rules. All these rules use the so-called edge-branching. Edge branching

is commonly used for the max-cut problem. It consists in selecting an edge (i, j) and branch

on either (i, j) contributes in the cut or not. It is well-known that, in both cases, the two

vertices i and j can be contracted into a single vertex. In our approach, an implementation

of this branching scheme can simply be done by adding constraint xi = xj to the quadratic

program of one node, and constraint xi + xj = 1 to the other node’s. Hence, the convexity

of the quadratic objective function is again preserved. An implementation of this specialized

branch-and-bound algorithm would probably improve the results of Tables 6 and 7. But it

15

makes us loose the ability to use a general-purpose algorithm in the solution process.

6 Conclusion

In this paper, we have proposed two methods to state the problem of minimizing a quadratic

0-1 function q(x) as the problem of minimizing an equivalent 0-1 function q ′(x) whose con-

tinuous relaxation is convex. The first method is fast and easy to implement since it only

requires eigenvalues computation. The second one, which requires the solution of a positive

semidefinite program, takes more computation time and is more sophisticated. The experi-

ments show that the relative gap between the optimum of the continuous relaxation of q ′(x)

and the optimum of q(x) is about twice smaller in the second method than in the first one.

In both approaches, the computation of the optimum of the 0-1 function q ′(x) (and therefore

the optimum of q(x)) is entirely carried out by the general-purpose MIQP solver of CPLEX.

At each node of the search tree, the computation of the lower bound consists in minimizing

a convex quadratic function over [0, 1]n, which is particularly fast. The experiments show

that these two methods allow to minimize quadratic 0-1 functions efficiently in terms of com-

putation time and the size of the problems considered, in comparison to existing methods.

Finally, the approaches that we propose can be easily generalized to linearly constrained

quadratic 0-1 optimization problems.

References

[1] J. Beasley. Heuristic algorithms for the unconstrained binary quadratic programming

problem, 1998. Tech. Rep., Management School, Imperial College, London, UK, 1998.

[2] J.E. Beasley. Or-library: Distributing test problems by electronic mail. Journal of the

Operational Research Society, 41(11):1069–1072, 1990.

[3] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathe-

matics, 123:155–225, 2002.

[4] E. Boros, P. L. Hammer, and G. Tavares. The pseudo-boolean optimization website,

2005. http://rutcor.rutgers.edu/˜pbo/index.htm.

[5] G. Delaporte, S. Jouteau, and F. Roupin. Sdp s : A tool to formulate and solve

semidefinite relaxations for bivalent quadratic problems, 2002. http://semidef.free.fr/.

16

[6] C. Gomez (Ed.). Engineering and Scientific Computing With Scilab. Springer Verlag,

1999.

[7] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathe-

matical Programming. The Scientific Press (now an imprint of Boyd & Fraser Publishing

Co.), Danvers, MA, USA, 1993.

[8] F. Glover, G.A. Kochenberger, and B. Alidaee. Adaptive memory tabu search for binary

quadratic programs. Management Science, pages 336–345, 1998.

[9] M. X. Goemans and D. P. Williamson. .878-approximation for max cut and max 2sat.

in Proc. 26 th ACM Symp. Theor. Computing, pages 422–431, 1994.

[10] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality, complementation and persis-

tency in quadratic 0-1 optimization. Mathematical Programming, 28:121–155, 1984.

[11] P. L. Hammer and A. A. Rubin. Some remarks on quadratic programming with 0–1

variables. Revue Francaise d’Informatique et de Recherche Operationnelle, 4(3):67–79,

1970.

[12] P. Hansen, B. Jaumard, and C. Meyer. A simple enumerative algorithm for uncon-

strained 0-1 quadratic programming. Technical Report G-2000-59, Les Cahiers du

GERAD, 2000.

[13] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite programs

and cutting planes. Mathematical Programming, 82:291–315, 1998.

[14] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming.

SIAM Journal on Optimization, 10(3):673–696, 2000.

[15] L. D. Iasemidis, P. M. Pardalos, J. C. Sackellares, and D.-S. Shiau. Quadratic binary

programming and dynamical system approach to determine the predictability of epilep-

tic seizures. Journal of Combinatorial Optimization, 5(1):9–26, 2001.

[16] ILOG. ILOG CPLEX 8.0 Reference Manual. ILOG CPLEX Division, Gentilly, France,

2002.

17

[17] S. Kim and M. Kojima. Second order cone programming relaxation of nonconvex

quadratic optimization problems. Optimization Methods and Software, 15:201–224,

2001.

[18] F. Körner. A tight bound for the Boolean quadratic optimization problem and its use

in a branch and bound algorithm. Optimization, 19(5):711–721, 1988.

[19] F. Körner and C. Richter. Zur effektiven Lösung von Booleschen, quadratischen Opti-

mierungsproblemen. Numerische Mathematik, 40:99–109, 1982.

[20] M. K. Kozlov, S. P. Tarasov, and L. G. Khachiyan. Polynomial solvability of convex

quadratic programming. Doklady Akademii Nauk SSSR, 248(5):1049–1051, 1979. See

also, Soviet Mathematics Doklady volume 20, pages 1108–1111, 1979.

[21] C. Lemaréchal and F. Oustry. SDP relaxations in combinatorial optimization from a

Lagrangian point of view. In N. Hadjisavvas and P. M. Pardalos, editors, Advances in

Convex Analysis and Global Optimization, pages 119–134. Kluwer, 2001.

[22] R. McBride and J. Yormark. An implicit enumeration algorithm for quadratic integer

programming. Management Science, 26:282–296, 1980.

[23] P. Merz and K. Katayama. Memetic algorithms for the unconstrained binary quadratic

programming problem. BioSystems, 78(1-3):99–118, 2004.

[24] M. Muramatsu and T. Suzuki. A new second order cone programming relaxation for

max-cut problems. Journal of Operations Research Society of Japan, 46:164–177, 2003.

[25] P.M. Pardalos and G.P. Rodgers. Computational aspects of a branch and bound algo-

rithm for quadratic 0-1 programming. Computing, 45:131–144, 1990.

[26] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite relaxation for (0,1)-

quadratic programming. Journal of Global Optimization, 7:51–73, 1995.

[27] S. Poljak and H. Wolkowicz. Convex relaxations of (0, 1)-quadratic programming. Math-

ematics of Operations Reseach, 20:550–561, 1995.

[28] N.Z. Shor. Class of global minimum bounds of polynomial functions. Cybernetics,

23(6):731–734, 1987.

18

