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1 Introduction

Let us consider the particular case of linear discriminant analysis for binary
response when the predictor set is a stochastic process with continuous time
index, {Xt}t∈[0,T ]. Such data, known in literature as functional data ([RS97]),
has received in the last years a large interest for research, especially due to the
difficulty to deal with infinite dimensional spaces in the context of classical
multivariate methods. Thus, generalized linear regression models are devel-
oped in [Jam02] and more recently by [CS05]. Different linear approaches
based on decomposition of the underlying stochastic process are proposed :
principal component regression ([CFS99]), partial least squares regression
(PLS)([PS05]), logistic regression ([EAV04], [EAV05]). Non-parametric mod-
els for regression on functional data using classical kernel estimators are de-
veloped in [FV04] and [Pre06], both for scalar and categorical response.

In this paper we are interested to predict a binary response Y , Y ∈ {0, 1},
from a stochastic process X = {Xt}t∈[0,T ] in the following way. Firstly, we
measure the predictive capacity of X by considering the process on the whole
interval [0, T ]. Depending on the quality of prediction, we are interested to
determine a time t∗ < T such that the process X considered on [0, t∗] gives
similar results, in terms of prediction of Y , as considered on [0, T ]. This second
point is very important from a practical point of view. If the process X is
related to a control parameter affecting the outcome (Y ) then it is useful to
anticipate the realization of Y , for example, in order to prevent some critical
events (which will occur at time T ) or just for economical reasons.

Let us consider the example of the kneading process. For a given flour,
during the kneading process one can record the resistance of dough in a inter-
val of time [0, T ]. The obtained curve (see an example in Fig. 1) can be used
([LACMM04], [PSL]) for predicting the quality of cookies obtained with this
dough. If the cookie’s quality could be anticipated in a short time, reparation
could be done for amelioration or for stopping the production process of bad
quality cookies. Several other examples where anticipated prediction is useful
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Fig. 1. Example of functional data : dough resistance curve observed during 480
seconds

for controlling process can be found in [RLH02a], [RLH02b], [KLSK00].
The paper is organized as follow. In the Section 2 we present some tools for

linear discrimination on functional data, in particular the partial least squares
(PLS) approach. Section 3 is devoted to anticipated prediction under several
criterion of prediction quality. A simulation study as well as an application
on kneading data is presented in Section 4.

2 Linear discriminant analysis on functional data. The

PLS approach

Let X = {Xt}t∈[0,T ] be a second order stochastic process L2-continuous with
sample paths in L2[0, T ] and Y a binary random variable, Y ∈ {0, 1}. Without
loss of generality we assume also that E(Xt) = 0, ∀t ∈ [0, T ]. As an extension
of the classical multivariate approach, the aim of linear discriminant analysis

(LDA) for functional data is to find linear combinations Φ(X) =
∫ T

0
Xtβ(t)dt,

β ∈ L2([0, T ]) such that the between class variance is maximized with respect
to the total variance, i.e.

max
β∈L2[0,T ]

V(E(Φ(X)|Y ))

V(Φ(X))
. (1)

Let {(xi, yi)}i=1,...,n be n observations of random variables (X, Y ) with
xi = {xi(t), t ∈ [0, T ]} and yi ∈ {0, 1}, i = 1, . . . , n. Due to infinite dimension
of the predictor, the estimation of β is in general an ill–posed problem. In
[PSL] it is shown that the optimization problem (1) is equivalent to find the
regression coefficients in the linear model which predicts Y (after a convenient
encoding) by the stochastic process X under the least-squares criterion.

Without loss of generality, let us recode Y by : 0 
√

p1

p0

and 1 −
√

p0

p1

,

where p0 = P(Y = 0) and p1 = P(Y = 1). If β is a solution of (1) then β
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satisfies the Wiener-Hopf equation

E(Y Xt) =

∫ T

0

E(XtXs)β(s)ds, (2)

which is the equation giving, up to a constant, the regression coefficient func-
tion of the linear regression of Y on X = {Xt}t∈[0,T ]. Equation (2) has an
unique solution under conditions of convergence of series implying the eigen-
values and eigenvectors of the covariance operator of the process X [Sap81].
These conditions are rarely satisfied. Thus, in practice, the problem to find β

is generally an ill-posed problem. However, if the aim is to find the discrimi-
nant variable (scores), then one can use the above relationship between LDA
and linear regression.

Using this result, there are several ways to approximate the discriminant
score Φ(X). Thus, Φ(X) can be approximate using the linear regression on
the principal components of X . The choice of principal components used for
regression is not easy and should be a trade off between the quality of the
model and the quality of the representation of X . The PLS approach proposed
in [PS05] is an efficient alternative and provides generally better results. It

allows to approximate Φ(X) by ΦPLS(X) =
∫ T

0
βPLS(t)Xtdt and thus, to

compute for a new observation the discriminant score for further prediction.

2.1 The PLS approximation

The PLS regression is an iterative method. Let X0,t = Xt, ∀t ∈ [0, 1] and

Y0 = Y . At step q, q ≥ 1, of the PLS regression of Y on X , we define the qth

PLS component, tq, by the eigenvector associated to the largest eigenvalue of

the operator WX
q−1W

Y
q−1, where WX

q−1, respectively WY
q−1, are the Escoufier’s

operators ([Sap81]) associated to X , respectively to Yq−1. The PLS step is
completed by the ordinary linear regression of Xq−1,t and Yq−1 on tq. Let
Xq,t, t ∈ [0, 1] and Yq be the random variables which represent the residual
of these regressions : Xq,t = Xq−1,t − pq(t)tq and Yq = Yq−1 − cqtq. Then,
for each q ≥ 1, {tq}q≥1 forms an orthogonal system in L2(X) and the PLS
approximation of Y by {Xt}t∈[0,T ] at step q, q ≥ 1, is given by :

ŶPLS(q) = c1t1 + · · · + cqtq =

∫ T

0

β̂PLS(q)(t)Xtdt. (3)

In practice, the number of PLS components used for regression is determined
by cross-validation.

2.2 Quality criterion. The ROC curve

Let denote by dT = ΦPLS(X) =
∫ T

0 βPLS(t)Xtdt the approximation for the
discriminant score given by the PLS regression on the process X = {Xt}t∈[0,T ].
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There are several criteria to evaluate the quality of the discriminant model,
for example the error rate for a defined threshold, the squared correlation

ration η2(dT |Y ) =
V(E(dT |Y ))

V(dT )
, the ROC curve, etc.

For a binary target Y , the ROC curve is generally accepted as the best
measure of the discriminating power of a discriminant score.

Let dT (x) be the score value for some unit x. Given a threshold r, x is
classified into Y = 1 if dT (x) > r. The true positive rate or ”sensitivity”
is P (dT > r|Y = 1) and the false positive rate or 1 − ”specificity”, P (dT >

r|Y = 0). The ROC curve gives the true positive rate as a function of the false
positive rate and is invariant under any monotonic increasing transformation
of the score. In the case of an inefficient score, both conditional distributions
of dT given Y = 1 and Y = 0 are identical and the ROC curve is the diagonal
line. In case of perfect discrimination, the ROC curve is confounded with the
edges of the unit square.

The Area Under ROC Curve or AUC, is then a global measure of dis-
crimination. It can be easily proved that AUC = P (X1 > X0), where X1

is a random variable distributed as d when Y = 1 and X0 is independently
distributed as d for Y = 0. Taking all pairs of observations, one in each group,
AUC is thus estimated by the percentage of concordant pairs (Wilcoxon-
Mann-Whitney statistic).

3 Anticipated prediction

Now, let denote by dt the approximation for the discriminant score given by
PLS regression on the process X considered on the interval time [0, t], with
t ≤ T . The objective here is to find t∗ < T such that the discriminant function
dt∗ performs quite as well as dT .

The stochastic process {dt}t∈[0,T ] is such that :

• dt = Y − εt, where Y is recoded by 0 
√

p1

p0

and 1 −
√

p0

p1

. E(dt) = 0.

• E(εt, ds) = 0, ∀s ≤ t,
• E(dtds) = E(dsY ) =

√
p0p1(E(ds|Y = 0) − E(ds|Y = 1)), ∀s ≤ t.

Once a quality measure Qs is defined, a solution could be to define t∗ as
the first value of s where Qs is not significantly different from QT . Since Qs

and QT are dependent random variables, we will use a non parametric paired
comparison test.

We will use in the following the AUC criterion for defining the quality of
the discriminant model.

Since the distribution of AUC is not known, we will test the equality of
AUC(s) with AUC(T), by using booststrap methodology: we resample M

times the data, according to a stratified scheme in order to keep invariant the
number of observations of each group. Let AUCm(s) and AUCm(T ) be the
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resampled values of AUC for m = 1 to M , and δm their difference. Testing
if AUC(s) = AUC(T ) is performed by using a paired t-test, or a Wilcoxon
paired test, on the M values δm.

4 Applications

We use a simulation study for which the anticipated prediction is possible
before the end of the process and we evaluate our procedure for this partic-
ular case. In the second part, we perform an application of the anticipated
prediction on the kneading data ([LACMM04]) provided by Danone Vitapole
Research Department (France).

4.1 Simulation study

Let us consider Y be a Bernoulli random variable, Y ∼ B(0.5). The simulated
data, X = {Xt}t∈[0,2], we consider correspond to the binary response Y for
which the predictor has the following form :

Class {Y = 0} : Xt =

{

W (1 − t), 0 ≤ t ≤ 1
−2 sin(t − 1) + W (t − 1), 1 < t ≤ 2

Class {Y = 1} : Xt =

{

W (1 − t), 0 ≤ t ≤ 1
2 sin(t − 1) + W (t − 1), 1 < t ≤ 2

where W is the standard brownian motion. Observed data are discretized
curves with 201 equidistant points, t ∈ {0, 0.01, 0.02, . . . , 2}. Fig. 2 displays a
sample of 100 simulated curves for each class.
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Fig. 2. Sample of size n = 100 for each class of Y .
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Clearly, for t ≤ 1, the distribution of X(t) = {Xs}s∈[0,t] being the same

for both classes, any prediction model will fail. For, t > 1, X(t) = {Xs}s∈[0,t]

is intuitively more predictible as t is closer to 2.
For each s ∈ {0, 0.01, 0.02, . . . , 2} one generates M = 50 learning samples

of size n = 100 for each class. For each learning sample we generate a test
sample (same size) which is used to evaluate the model by computing the
AUC(s). One obtains in this way M = 50 independent realisations of AUC(s).

Using the Wilcoxon test (one-tailed) with the first error type fixed to 0.05,
the minimum t∗ for which the test is not significant is t∗ = 1.46. The Wilcoxon
statistic is 1.582 and the two averaged AUC corresponding to t∗ = 1.46 and
respectively to T = 2 are AUC(t∗) = 0.866, respectively, AUC(T ) = 0.872.
The corresponding averaged ROC curves are presented in Fig. 3.
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Fig. 3. Averaged ROC curves for T = 2 and t
∗ = 1.46

4.2 Application to kneading data

PLS approach is applied to predict the quality of cookies from the knead-
ing curve representing the resistance (density) of dough observed during the
kneading process. For a given flour, the kneading process is observed during
480 seconds. Since we have 115 different flours we have 115 curves (func-
tions of time), which represent a set of sample paths of the stochastic process
X = {Xt, t ∈ [0, 480]}. Each curve is observed in a finite number of points
corresponding to a discretization of [0, 480] into 240 equispaced instants of
time (the same for all flours). After kneading, the dough is processed to ob-
tain cookies. For each flour we have the quality (Y ) of cookies which can be
Good, Adjustable or Bad. Our sample contains 50 observations for Y = Good,
25 for Y = Adjustable and 40 for Y = Bad. Due to measuring errors, each
curve is smoothed using cubic B-spline functions as in [LACMM04] (Fig 4.).
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Fig. 4. Sample of kneading curves measuring the resistance of dough during 480
seconds

In the following we consider Y ∈ {Bad, Good}. The sample of 90 flours is
randomly divided into a learning sample of size 60 and a test sample of size
30. In the test sample the two classes have the same number of observations.
Several discriminant models are fitted in [PSL]. The PLS discriminant anal-
ysis gives, for a prediction taking into account the whole interval [0, 480], an
average of the test error rate of about 0.112, for an average AUC(T ) = 0.746.
The anticipated prediction procedure gives for M = 50 and sample size test
n = 30 (same number of observation in each class), t∗ = 186. Thus, one can
reduce the recording period of the resistance dough to less than half of the
current one.

5 Conclusion and perspective

In this paper we addressed the problem of forecasting a random response
categorical variable Y , namely a binary one, by predicting on the associated
continuous stochastic process {Xt}t∈[0,T ]. Such kind of situation is common to
many real applications where a continuous phenomenon evolving in a certain
interval of time results in an outcome not observable before the completion
of the process itself. We faced the problem by means of the PLS approach for
which forecasting of the binary response is drawn as ’anticipated prediction’
of the process {Xt}t∈[0,T ] at t = T .

A conceptually different approach would be ’on-line’ forecasting Y : instead
of using the same anticipated decision time t∗ for all data, we adapt t∗ to each
new trajectory given its incoming measurements. Work in progress comprises
the developping of the presented approach by means of PLS-functional logistic
model, which would involve detection of an optimal time at which starts the
’best’ forecasting and a sequential test procedure to validate the predicted
forecasting of Y .
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[LACMM04] Lévéder C., Abraham C., Cornillon P. A., Matzner-Lober E., Molinari
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