Probabilités, Analyse des données et statistique
Résumé
Table des matières : I. Outils probabilistes. 1. Modèle probabiliste. 2. Variables aléatoires. 3. Couples de variables aléatoires, conditionnement. 4. Vecteurs aléatoires. Formes quadratiques et lois associées. II. Statistique exploratoire. 5. Description unidimensionnelle de données numériques. 6. Description bidimensionnelle et mesures de liaison entre variables. 7. L'analyse en composantes principales. 8. L'analyse canonique et la comparaison de groupes de variables. 9. L'analyse des correspondances. 10. L'analyse des correspondances multiples. 11. Méthodes de classification. III. Statistique inférentielle. 12. Distributions des caractéristiques d'un échantillon. 13. L'estimation. 14. Les tests statistiques. 15. Méthodes de Monte-Carlo et de rééchantillonnage (Jack-knife, bootstrap). IV. Modèles prédictifs. 16. La régression simple. 17. La régression multiple et le modèle linéaire général. 18. Analyse discriminante et régression logistique. 19. Méthodes algorithmiques, choix de modèles et principes d'apprentissage. V. Recueil des données. 20. Sondages. 21. Plans d'expériences. Annexes. Bibliographie. Index des noms. Index.