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Credit scoring is the set of decision models and their 
underlying techniques that aid lenders in the granting 
of consumer credit.

Credit scoring is one the most successful applications 
of statistical modeling in finance and banking. Yet 
because credit scoring does not have the same 
glamour as the pricing of exotic financial derivatives 
or portfolio analysis, the literature on the subject is 
very limited.

Thomas & al. 2002

1.Introduction
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Basel 2
Basel Committee on Banking Supervision 
from the Bank for International Settlements
« banks are expected to provide an 
estimate of the PD and LGD »

PD (probability of default)
LGD (loss given default)

Impulse on statistical analysis; massive 
recruitments 
New Basel Capital Accord will regulate bank’s 
lending from 2007
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Statistical framework of credit scoring:
response variable Y with 2 categories (« good » 
« bad »)
X1,…,Xp predictors

Belongs to : 
classification  
supervised learning 
discrimination
pattern recognition
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Not only a classification problem
Risk assessment more than a binary decision

Some specificities:
Reject inference
Long term loans 
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2. Linear techniques and 
scorecards

Discriminant analysis
Logistic regression
Linear SVM
Regularized regressions

PLS 
ridge regression

Others (GLM,linear programming,…)
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2.1 Discriminant analysis
2.1.1 Fisher’s linear discriminant 
function (1936)

For numerical predictors: 

The « best » linear predictor which maximizes 
Student’s T
Fisher’s score: 
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2.1.2  a « non-correct » regression

y with 2 values (-1;+1) or (0;1) or (a;b)
a=n/n1 b=-n/n2

Dp Mahalanobis distance between groups
A lot of controversies!
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2.1.4 Linear discriminant analysis 
and probabilistic assumptions

LDA is optimal (Bayes rule) for normal predictors with 
equal covariance matrices

With priors : 

posterior probability 

May be applied even if these assumptions are not 
fulfilled

1
exp( ( ))( / )

1 exp( ( ))
SP G

S
=

+
xx

x

logistic function

1 12
1 2 1 2 1 2

1

1( ) ( ) ' ln( ) ( ) ' ( )
2

pS
p

− −= − − − − +x g g W x g g W g g



Joclad 2006, Lisboa 11

2.2 Logistic regression

Berkson (1944), Cox (1958): medical 
statistics, epidemiology
Later in econometrics with Nobel prize 
McFadden (1973)
Risk factors, not individual prediction
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Preferred by econometricians.             
The « industry standard »

Looks more « scientific » : prediction of 
probability, maximum likelihood estimation, 
standard errors, interpretation of coefficients 
as odds-ratios
Software procedure allows categorical 
predictors, without manipulating indicator 
variables



Joclad 2006, Lisboa 13

But:
No solution in case of perfect separation
Conditional likelihood, asymptotics
Standard errors may be computed by 
bootstrap in LDA
In practice:
« It is generally felt that logistic regression is a 

safer, more robust bet than the LDA model, relying on 
fewer assumptions . It is our experience that the 
models give very similar results , even when LDA is 
used in inappropriately, such as with qualitative 
variables. » Hastie and al.(2001)
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LDA is also a model but on conditional 
distributions of X/Y, logistic regression on 
distributions of Y/X

If the goal is prediction:
No longer science but business decision
Comparison should be made on  

generalisation capacities

A model should be choosen according to 
its performance, not to ideology!
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2.3 Posterior probabilities 
and stratified sampling

Probability estimation requires true priors
Changing priors modifies only β0 in LDA 
and in logistic regression:

Important for probabilities, not for score
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2.4 Other methods derived 
from linear regression

Useful in case of multicollinearity. May be viewed as 
a modification of Fisher’s LDA

2.3.1 Ridge regression

Choice of k : cross-validation or test sample

1ˆ ( ' ) 'k −= +β X X I X y
2 2 2min   with d− <y Xβ β
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2.3.2 PLS discriminant analysis

Look for components explaining both Y and 
X’s
Tucker’s criterion:

Further components ; stopping rule: 
crossvalidation
Only univariate regressions

2max   ( cov( ; ))y Xw
2 2(cov( ; )) ( ; ). ( ). ( )r V V=y Xw y Xw Xw y
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Linear score= linear frontier

frontier

discriminant axis

Adapted from Hastie & al. 2001

2.5 Linear Support Vector
Machines (SVM)
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Vapnik’s optimal hyperplane maximizes the 
margin
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Margin: if perfect separation, distance of the 
closest point to the hyperplane

Non separable case: slack variables
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Trade-off between error rate and margin
Quadratic programming

min  

( ) 1
subject to : 
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Classifier or score function

f(x) depends only on support vectors
is a linear combination of the variables

Decision rule according to the sign of f(x)
Less sensitive to outliers than LDA
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3. Categorical predictors

Frequent in consumers’ credit, but not in 
publications..

Profession
Employment status
Marital status
Etc.
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Categorisation of numerical predictors

Age groups instead of age
A loss of precision?
A way towards non-linearity

Resistant to outliers: robustness
Missing value category
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Preprocessing

Variable selection, discretisation, detection of 
interactions Xj*Xk  need a lot of time 
New automatic tools :

K2C, Khiops, Datalab..



Joclad 2006, Lisboa 26

3.1 LDA for categorical predictors: a 
bit of (pre)history

Fisher (1940) 
Only one predictor
Identical to correspondence analysis
« Scores » were introduced 
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3.2 General case: p predictors
Optimal scaling (quantification) approach:

Allot partial scores to predictor categories in 
order to maximize Mahalanobis distance in Rp

A discriminant analysis where categorical 
variables are replaced by indicator 
variables 0 1 0 1 0

1 0 0 0 1
0 0 1 1 0
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X not of full rank: rank(X)=Σmi-p
Classical solution : discard one indicator 
variable for each predictor
Disqual (Saporta, 1975):

LDA performed on a selection of components of 
Multiple Correspondence Analysis of X. Similar to 
Principal Components Regression 
Components selected in an expert way according 
to 2 criteria: inertia and correlation with the 
response
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An insurance example (SPAD data 

set)

1106 belgian automobile insurance 
contracts :
2 groups: « 1 good », « 2 bad »

9 predictors: 20 categories
Use type(2), gender(3), language (2), 
agegroup (3), region (2), bonus-malus (2), 
horsepower (2), duration (2), age of vehicle 
(2)
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Principal plane MCA
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Fisher’s LDA

FACTORS         CORRELATIONS       LOADINGS        
..............................................................................
1 F  1            0.719          6.9064
2 F  2            0.055          0.7149 
3 F  3           -0.078         -0.8211
4 F  4           -0.030         -0.4615
5 F  5            0.083          1.2581
6 F  6            0.064          1.0274
7 F  7           -0.001          0.2169
8 F  8            0.090          1.3133
9 F  9           -0.074         -1.1383 
10 F 10           -0.150         -3.3193     
11 F 11           -0.056         -1.4830
INTERCEPT                        0.093575    
..............................................................................
R2 =    0.57923     F  =   91.35686     
D2 =    5.49176     T2 = 1018.69159     
..............................................................................

Score= 6.90 F1 - 0.82 F3 + 1.25 F5 + 1.31 F8 - 1.13 F9 - 3.31 F10
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3.3 Transforming scores
Standardisation between 0 and 1000 is often 
convenient
Linear transformation of score implies the 
same transformation for the cut-off



Joclad 2006, Lisboa 35

+----------------------------------------------------------------------------+ 
|                                            | COEFFICIENTS  |  TRANSFORMED  | 
| CATEGORIES                                 | DISCRIMINANT  |  COEFFICIENTS | 
|                                            |   FUNCTION    |    (SCORE)    | 
+----------------------------------------------------------------------------+ 
|    2 . Use type                                                            | 
| USE1 - Profess.                            |       -4.577  |         0.00  | 
| USE2 - private                             |        0.919  |        53.93  | 
+----------------------------------------------------------------------------+ 
|    4 . Gender                                                             | 
| MALE - male                                |        0.220  |        24.10  | 
| FEMA - female                              |       -0.065  |        21.30  | 
| OTHE - companies                           |       -2.236  |         0.00  | 
+----------------------------------------------------------------------------+ 
|    5 . Language                                                            | 
| FREN – French                              |       -0.955  |         0.00  | 
| FLEM - flemish                             |        2.789  |        36.73  | 
+----------------------------------------------------------------------------+ 
|  24 . Birth date                                                           |                  
| BD1  - 1890-1949 BD                        |        0.285  |       116.78  | 
| BD2  - 1950-1973 BD                        |      -11.616  |         0.00  | 
| BD?  - ???BD                               |        7.064  |       183.30  | 
+----------------------------------------------------------------------------+ 
|   25 . Region                                                              | 
| REG1 - Brussels                            |       -6.785  |         0.00  | 
| REG2 – Other  regions                      |        3.369  |        99.64  | 
+----------------------------------------------------------------------------+ 
|   26 . Level of bonus-malus                                | 
| BM01 - B-M 1 (-1)                          |       17.522  |       341.41  | 
| BM02 - Others B-M (-1)                     |      -17.271  |         0.00  | 
+----------------------------------------------------------------------------+ 
|   27 . Duration of contract                                                | 
| C<86 - <86 contracts                       |        2.209  |        50.27  | 
| C>87 - others contracts                    |       -2.913  |         0.00  | 
+----------------------------------------------------------------------------+ 
|   28 . Horsepower                                                          | 
| HP1  - 10-39 HP                            |        6.211  |        75.83  | 
| HP2  - >40    HP                           |       -1.516  |         0.00  | 
+----------------------------------------------------------------------------+ 
|  29 . year of vehicle construction                                         | 
| YVC1 - 1933-1989 YVC                       |        3.515  |       134.80  | 
| YVC2 - 1990-1991 YVC                       |      -10.222  |         0.00  | 
+----------------------------------------------------------------------------+ 

Scorecard
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3.4 PLS and barycentric discrimination

First PLS component: univariate 
regression onto all indicator variables
Getting the first PLS component comes 
down to p PLS regressions performed 
separately  
Each PLS of Y against indicators of Xj is 
equivalent to OLS regression (Y should be 

standardised, not X, and no intercept)
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PLS with one component is equivalent to 
CA of the concatenation of the 
contingency tables crossing Y with the Xj

                      good    bad 
 
                          1    cusag1        29      96 
                          2    cusag2       344     272 
 
                          3    sexe1        288     253 
                          4    sexe2         76      78 
                          5    sexe3          9      37 
 
                          6    clang1       250     295 
                          7    clang2       123      73 
 
                          8    age3m1       118      99 
                          9    age3m2        40     163 
                         10    age3m3       215     106 
 
                         11    cpost2m1      75     172 
                         12    cpost2m2     298     196 
 
                         13    bm2m_11      298      59 
                         14    bm2m_12       75     309 
 
                         15    puis2m1       91      47 
                         16    puis2m2      282     321 
 
                         17    dpoli2m1     277     137 
                         18    dpoli2m2      96     231 
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Previous technique known as barycentric discrimination : 

• The score of a unit: the sum of the p conditional 
probabilities of being a member of group 2 for each 
categories. 

• Barycentric discrimination, similar to the “naive Bayes 
classifier” : multiplicative score equal to the product of the 
conditional probabilities. 

• Barycentric discrimination is equivalent to Disqual only if 
the predictors are pairwise independent. 
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4. Direct scoring

Non linear methods give directly a score, 
or a probability of being « good » or 
« bad » for each unit
Remark: a probability is a score between 
0 and 1. Just multiply it by 1000…
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Density estimation : posterior probabilities
Neural networks: posterior probabilities
Non linear SVM:

Non-linear frontiers

k-nearest neighbours

supports
( ) ( ; ) 0i i i

i
f y K bα

∈

= + =∑x x x

Hastie & al. 2001
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Black-boxes:
Lack of interpretability

Cannot be used for consumer’s credit: legal 
obligations to explain rejection

Should be adapted to categorical 
predictors

Principal components from MCA, or pre-scores
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5 Validation and comparison

5.1 Statistical criteria: are they 
relevant?

D2, log-likelihood measure the adequacy of a 
model to learning data
Not related to predictive inference but easy to 
optimize
Penalized likelihood (AIC,BIC): too restrictive

Difficult to apply : Neural nets, ridge regression?
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Credit scoring is not science but  business 
(bis)

No need for the « true » model but for 
efficient rules
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Error rate and model complexity

5.2 Misclassification rate and Statistical 
Learning Theory
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Empirical risk and VC dimension

Empirical risk= learning error Remp

generalisation error= R
Both are expected values

Vapnik’s inequality
With probability 1-q 

( )( )
emp

ln 2 1 ln 4h n h q
R R

n
+ −

< +

Confidence interval
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VC dimension h

A measure of model complexity
Related to the splitting capacity
h must be finite (consistent learning) 

h= maximum number of 
points always perfectly 
classified by a model, 
whatever are the colours

h=3 for linear frontiers in 
2 dimensions
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Controlling h

h/n should be small: as n increases, one 
may choose more complex models
h decreases with:

Dimension reduction (see Disqual)
Large margin in SVM
Large k in Ridge Regression
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Looking for optimal h
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5.3 The 3 samples

Learning sample: estimating models 
parameters
Test sample: selecting the best model
Validation sample: estimating performance 
for new data

Exact h difficult to find
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5.4 ROC, lift and related measures

Misclassification rate: often not the right 
measure 

Needs a specific cut-off
Posterior probability >0.5 
Minimizing a cost. But costs often unknown

Performance of the score function when 
the cut-off varies
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Traffic light zones
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When cutoff moves : ROC analysis

% of true « goods » (1-β) 
against % of false « goods » (α)
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ROC curve is invariant under any monotonous
transformation
Area under Roc curve is a measure of 
performance allowing model comparisons

If one takes at random one obs from G1 and one from G2

AUC estimated by the proportion of concordant pairs  

nc identical to Wilcoxon-Mann-Whitney statistic

1 2((1 ) ( )( ) )
s

s
AUC Xd s P Xsβ α

=−∞

=+∞
= − = >∫

1 2cc n n n=
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Lift chart

% of the target
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Area under lift

Proportion of units with score>s

Area:
1 1(1 ) (1 )p pβ α− + −

{ }1 1

1 1

1
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Ki Coefficient (Kxen)

Ki=(area between 
estimated lift and 
random lift) / (area 
between ideal lift and 
random lift)

1 1

1 1

1
2(1 ) 12

1 1
2

2 1
L p p AUCKi Cp A

p
U

− + − −
= =

− −
−=

Ki=Somers’ D or Accuracy Ratio AR 
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Optimizing AUC or Ki are equivalent.
But do not depend on costs: assume that 
the two kinds of errors have the same 
importance...
Comparisons should be done on validation 
samples
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5.5 Experimental results
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Baesens (2003) 17 techniques on 8 data sets

« However, it has to be noted that simple, linear classifiers such as LDA and 
LOG also gave very good performances, which clearly indicate that most 
credit scoring data sets are only weakly non-linear ».
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6. Reject inference
Analysis done on approved loans :Biased sample 

Empirical techniques:
Define rejected as bad 
Extrapolation
Augmentation or reweighting

Probabilistic models
Missing data estimation (EM)
Bivariate probit
Tobit 

good
rejected

bad
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If reject variables X1 are a subset of scorecard X 
variables: an unbiased model can be built in 
some cases 

If X1⊄ X: no unbiased model is possible

Müller & al, 2005:  Non parametric bounds for 
misclassifications rate and AUC 
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Few published evaluations
The scope for improved predictive performance by any form of 
reject inference is modest . Reject inference in the form of re-
weighting applicants within a training sample of accepted 
cases and adopting a cut-off point based on those accepted 
cases appears to perform no better than unweighted 
estimation. In fact where the rejection rate is high, results 
appear to be quite noticeably worse. Reject inference in the 
form of extrapolation appears to be both useless and 
harmless.  (Crook, Banasik 2002)
Many methods have been used for tackling this problem. Most 
of those used in practice are demonstrably ineffective. The 
best strategies are to build a formal sample selection model to 
supplement the classification model, and to obtain data about 
the rejected applicants. This can come from a small sample of 
people who would  normally be rejected (this is done in mail 
order) or from other sources, such as other supplier (Hand 
2005)
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7. New frontier: survival 
analysis
Not « if » but « when » default occurs

Integrates censored data: may solve the 
problem of incomplete data for long term 
loans (definition of default)
Useful for lifetime value and LGD 
computations (Basel II)
Stepanova, Thomas, 2001: Cox proportional hazard 
model
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Conclusions and perspectives

Credit scoring: an attractive and active field 
for statisticians
Still place for further research (strong interest 
from firms)
LDA and LR perform well, compared to new 
methods 
But: the precision of refined models could be 
an illusion

If data quality is not present
If there are changes in population
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